CS 175: Project in Artificial Intelligence Winter 2020

Lecture 3: Reinforcement Learning

Roy Fox
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

- Policy evaluation + improvement = RL
- Value Iteration, Generalized Policy Iteration
- Model-free RL
- Exploration

System state

System = agent + environment

- Markov Decision Process (MDP)
 - State?
 - Action?
 - Reward?
 - Value?

Optimality principle

- **Proposition:** If ξ is a shortest path from s to s_f that goes through s', then a suffix of ξ is a shortest path from s' to s_f
- It follows that for all $s \neq s_f$

$$V(s) = \min_{a} \{1 + V(f(s, a))\}$$

The optimal policy is

$$\pi(s) = \underset{a}{\operatorname{argmin}} \{1 + V(f(s, a))\}$$

Algorithm 1 Bellman-Ford

$$V(s_f) \leftarrow 0$$

 $V(s) \leftarrow \infty \quad \forall s \in S \setminus \{s_f\}$
for ℓ from 1 to $|S| - 1$ **do**
 $V(s) \leftarrow \min_{a \in A} \{1 + V(f(s, a))\} \quad \forall s \in S \setminus \{s_f\}$

Horizon classes

How to trade off short-term and long-term rewards?

$$R = \sum_{t=0}^{T-1} r(s_t, a_t)$$

• Infinite:

$$R = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} r(s_t, a_t)$$

Discounted:

$$R = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \qquad 0 \leqslant \gamma < 1$$

Episodic

$$R = \sum_{t=0}^{T-1} r(s_t, a_t)$$
 s.t. $s_T = s_f$

Learning setting is usually episodic, but return is usually discounted

Policy evaluation

• Distribution over trajectories:

$$p_{\pi}(\xi) = p(s_0) \prod_{t} \pi(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

- Expected return: $\mathbb{E}_{\xi \sim p_\pi}[R]$
- State value function: $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R|s_0 = s]$
- Recursively:

$$V_{\pi}(s) = \mathbb{E}_{a|s \sim \pi} [r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p} [V_{\pi}(s')]]$$

Model-free policy evaluation

Monte Carlo (MC) evaluation:

$$\xi_i|s \sim p_{\pi} \qquad V(s) = \frac{1}{N} \sum_i R_i$$

• Temporal-Difference (TD) evaluation:

for each
$$(s_i, a_i, r_i, s_i')$$
: $\Delta V(s_i) \leftarrow \alpha(r_i + \gamma V(s_i') - V(s_i))$

- Only works on-policy $a_i|s_i\sim\pi$
- Off-policy version:

$$Q_{\pi}(s, a) = \mathbb{E}_{\xi \sim p_{\pi}}[R|s_0 = s, a_0 = a]$$

for each
$$(s_i, a_i, r_i, s_i')$$
: $\Delta Q(s_i, a_i) \leftarrow \alpha(r_i + \gamma \mathbb{E}_{a'|s_i' \sim \pi}[Q(s_i', a')] - Q(s_i, a_i))$

Policy improvement

A value function suggests the greedy policy:

$$\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a) = \underset{a}{\operatorname{argmax}} (r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p}[V(s')])$$

- Proposition: the greedy policy for Q_{π} is never worse than π
 - Generally: the greedy policy for $\max(Q_{\pi_1},Q_{\pi_2})$ is never worse than π_1 or π_2
- Corollary 1: the optimal policy π^* is greedy for $Q^* = Q_{\pi^*}$
- Corollary 2: all fixed points of $\pi(s) = \operatorname*{argmax}_{a} Q_{\pi}(s,a)$ have $Q_{\pi} = Q^*$

Bellman optimality

The RL scheme

Value Iteration

Repeat:

$$V(s_i) \leftarrow \max_{a} (r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V(s')])$$

Must update each state repeatedly until convergence

Generalized Policy Iteration

• Alternate by some schedule:

$$V(s_i) \leftarrow \mathbb{E}_{a|s_i \sim \pi} [r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p} [V(s')]]$$
$$\pi(s_i) \leftarrow \underset{a}{\operatorname{argmax}} (r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p} [V(s')])$$

Model-free reinforcement learning

• MC:

$$\xi_i|s, a \sim p_{\pi}$$
 $Q(s, a) \leftarrow \frac{1}{N} \sum_i R_i$
 $\pi \leftarrow \operatorname{argmax} Q$

• Q-learning (TD):

$$\Delta Q(s_i, a_i) \leftarrow \alpha(r_i + \gamma \max_{a'} Q(s'_i, a') - Q(s_i, a_i))$$

Interaction policy

- In model-free RL, we often get data by interaction with the environment
 - How should we interact?
- On-policy methods (e.g. MC): must use current policy
- Off-policy methods: can use different policy but not too different!
 - Otherwise may have train—test distribution mismatch (with Deep RL)
- In either case, must make sure interaction policy explores well enough

Exploration policies

- ε-greedy exploration: select uniform action w.p. ε, otherwise greedy
- Boltzmann exploration:

$$\pi(a|s) = \operatorname{sm}(Q(s,a);\beta) = \frac{\exp(\beta Q(s,a))}{\sum_{a'} \exp(\beta Q(s,a'))}$$

• Becomes uniform as $\beta \to 0$, greedy as $\beta \to \infty$

Partial observability

- Need to infer something about the state from observations
- Optimal inference is Bayesian, maintain belief $b(s_t|\text{observable history})$
- Can define MDP over belief space
 - But it's very large!
- Many methods and tricks: PBVI, PSR, etc.
- This is one topic Deep RL makes conceptually much easier

Recap

- Bellman optimality = policy is greedy for its own value
- Can optimize by iterating policy evaluation
 → policy improvement
- On-policy (e.g. MC) vs. off-policy (e.g. TD / Q-learning)
- Exploration should reach all states often enough

