CS 175:

Project in Artificial Intelligence
Winter 2020

Lecture 3: Reinforcement Learning

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

* Policy evaluation + improvement = RL
» \alue lteration, Generalized Policy lteration

e Model-free RL

 Exploration

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

System state

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

System = agent + environment

 Markov Decision Process (MDP)

» State?

» Action?

» Reward?

» Value?

environment

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Optimality principle

* Proposition: |f f s a shortest path from S to S ¢ that goes through S/, then a suffix
of £ is a shortest path from §' to s

» It follows that forall s # Sy
V(s) = min{l + V(f(s,a))}

 The optimal policy Is

m(s) = arginin{l + V(f(s,a))}

Algorithm 1 Bellman-Ford
V(Sf) — 0
V(s) « Vs e S\{sf}
for / from 1 to |S| — 1 do
V(s) <« mingea{l + V(f(s,a))} Vs e S\{s¢}

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Horizon classes

How to trade off short-term and long-term rewards?

+ Finite: R=) r(s;a)
t=0
1 T—1
e |nfinite: T = Thfgo T ;) r(se, at)
e Discounted: R = Z vr (s, a;) 0<vy<1
t—
1T—1
e Episodic: R = r(se, az) S.t. sp = Sy
t=0

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Policy evaluation

e Distribution over trajectories:

px(§) = p(so) H (@ $1)p(St+1]St, ar)

t

e Expected return: E¢., [R]

« State value function: V,(s) = E¢,_[R|so = 5]

* Recursively:

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Model-free policy evaluation

 Monte Carlo (MC) evaluation:
1
Eils ~ pr Vis) = —ZRZ-
o Temporal-Difference (TD) evaluation:

for each (s;, a3, 11,8;) : AV(s;) — a(r; + vV (s;) — V(s;))

> Only works on-policy @;|S; ~ T
e Off-policy version:
Qr(s,a) = Eerp |R|So = S,a0 = a
for each (si,a;,15,8,) : AQ(S;, a;) «— a(r; + YEygr|Q(s,)] — Q(s4,a;))

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Policy improvement

* A value function suggests the greedy policy:

m(s) = argmax (s, a) = argmax(r(s,a) + v Egs.awp[V ()]

a a

* Proposition: the greedy policy for () is never worse than 7

> Generally: the greedy policy for maX(Qm, QWQ) IS never worse than 71 or 7o
e Corollary 1: the optimal policy 7* is greedy for ()* = ().x

» Corollary 2: all fixed points of 7(s) = argmax (0 (s,a) have Q, = QF

a

Bellman optimality

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

The RL scheme

policy evaluation

policy improvement

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Value lteration

 Repeat:

V(s;) < max(r(s; a) + 7 Egjs, ap[V(s')])

a

» Must update each state repeatedly until convergence

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Generalized Policy Iteration

* Alternate by some schedule:

V(SZ) — Ea\sww [T(Siv a) + /YIES/‘SZ’,CLNP[V(S/)]]
m(s;) <« argmax(r(s;,a) + v Egjs;.ap|V(8)])

a

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Model-free reinforcement learning

e MC:

1
§i|87aNpW Q(S,CL) < ZR’L

T «— argmax ()

e Q-learning (TD):
AQ(S’U ai) N CV(T'Z' T ﬂ/m@XQ(S;, Cl,) o Q<Si7 az))

a

Interaction policy

* |In model-free RL, we often get data by interaction with the environment

> How should we interact?
* On-policy methods (e.g. MC): must use current policy

o Off-policy methods: can use different policy — but not too different!

> Otherwise may have train—test distribution mismatch (with Deep RL)

* In either case, must make sure interaction policy explores well enough

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Exploration policies

e g-greedy exploration: select uniform action w.p. €, otherwise greedy

e Boltzmann exploration:

ey — an(Ofs.). 3y — SPBA(s, a))
7'('(|) p (Q())76> Za/ GXP(EQ(S,Q’))

» Becomes uniformas 0 — 0, greedyas 5 — O

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Partial observability

* Need to infer something about the state from observations
» Optimal inference is Bayesian, maintain belief b(s;|observable history)
e Can define MDP over belief space
» But it's very large!
 Many methods and tricks: PBVI, PSR, etc.

* This is one topic Deep RL makes conceptually much easier

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcement Learning

Recap

 Bellman optimality = policy is greedy for its own value

* (Can optimize by iterating policy evaluation < policy improvement

* On-policy (e.g. MC) vs. off-policy (e.g. TD / Q-learning) volicy

evaluation

e EXxploration should reach all states often enough

policy
Improvement

Roy Fox | CS 175 | Winter 2020 | Lecture 3: Reinforcemen t Learning

