CS 175:

Project in Artificial Intelligence
Winter 2020

Lecture 4: Deep Reinforcement Learning

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

 Deep Learning basics
* Reinforcement learning with function approximation

 Some basic Deep RL algorithms

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Basics: Gradient Descent

 Hard to optimize m@in E@(D) over high-dimensional parameter space 0 € R4

e But try to improve gradually by following direction of maximal decrease

0 «— 0 — CYVQ[,Q(D)

* All we need is a differentiable loss function, and hope it's "well-behaved"

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Basics: Stochastic Gradient Descent (SGD)

e |If Eg Z Lg , we can do Gradient Descent with big data:

xeD
« Sample a batch B < D and take a gradient step with

f— 06—) Voly(x)
xeB
 Fast growing body of theory + heuristics for how to make this work

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Basics: Deep Learning

o Ifwerepresent Ly(x) = fo, (- fo,(fo,()) - +)

> Denote 19 == Ty = fo(xo_1) Lo(x) =21
 \We get back-propagation
Vo, Lo(x) =V, fo,(®r—1) - Va,fo,,,(xe) Ve, fo,(Tr-1)
 Enables very expressive model classes from very simple layers

e Shifts algorithmic challenge from optimizer to loss, architecture, and data

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Deep MC policy evaluation

 Monte Carlo (MC) evaluation:
1
fz‘s ~ Pr V(S) = NZZ]RZ
 What if the state space is large?

Lo(&) = (Va(so) — R)?

o With proper parametrization, this can yield generalization over state space

e But still very data inefficient

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Deep 1D policy evaluation

* On-policy Temporal-Difference (TD) evaluation:
for each (si, a,11,8) : AV(s;) «— a(r; + vV (s)) — V (s;))
e |ends itself nicely to SGD:
Lo(s,a,r,s) = (r+4Vy(s) — Vy(s))

» Using both current-state j(s) and next-state V(') may be unstable

> Heuristic: use target network Vg(sl), update it periodically with O — 0

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Deep MC reinforcement learning

e A variant of Monte Carlo Tree Search (MCTS):

E~Dry Lo(&) = (Qols0,a0) — R)

~ With 7 greedy for a snapshot of (Jy

« We need a representation of (Jy that allows computing

Ty(s) = argmax Qy(s, a)

a

 For a small action space: Deep Q Network S " 4o > QQ(S)
(96(8))a = Qo(s,a) N

» T Is not differentiable, but we don't need it to be

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Deep D reinforcement learning

* Deep Q Learning (historically called DQN):

Lo(s,a,r,s') = (r +ymaxQg(s', a') — Qs(s,a))’

a

* This algorithm should work off-policy, so we can keep replay buffer

e Variants differ on
> How to add experience to the buffer

> How to sample from the buffer

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

differentiable value
function approximation

policy evaluation

policy improvement greedy policy

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Policy gradient

policy evaluation e.g. MC

policy improvement differentiable policy

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Policy gradient

» Unlike minimizing L4(D) in general ML, in RL we maximize Jy = ngvpﬁe R
 This is harder since the "data" distribution depends on @

e But there's a trick:

Voo — Vs j po(€)R(€)de

~ | (&) Vo log m(©) RIE)E
= B¢ py [Vo log po(§) R

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

REINFORCE (1992)

 Roll out 7y to sample & ~ pg
e Compute R and

Volog ps(€) = Ve(log p(so) + Y (log mg(aysy) + log p(siiase, ar)))
 Take a gradient step with Vy log pz(f)R

 Repeat

* This is on-policy + has very high variance of the gradient estimator

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Actor—Critic

critic:
evaluates the actor

policy evaluation

actor:

licy impr - : iti '
policy improvement improves using the critic's advice

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Partial observability

environment

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Partial observability

environment

W@(mu at‘mt—la Ot)

e Can be represented by a Recurrent Neural Network (RNN)

> For example, Long Short-Term Memory (LSTM)

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

How to choose a Deep RL algorithm?

 Continuous or discrete action space?

e Stochastic or deterministic policy?

o Sample efficiency — generally speaking:
> Off-policy > on-policy
> Model-based > TD > PG

e Robustness

 Well-studied, well-supported

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

Recap

* Policy evaluation and reinforcement learning with function approximation
o Can represent the value function: DQN, SQL, etc.
* Orthe policy: PG, DPG, DDPG, TRPO, PPO, etc.

 Or both: A2C, SAC, etc.

* Did not mention model-based Deep RL, derivative-free methods, etc.

Roy Fox | CS 175 | Winter 2020 | Lecture 4: Deep Reinforcement Learning

