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Mixture Models

» k-Means assigns each instance to one cluster

> Could it be assigned to another cluster equally well? Almost equally?

~ Hard assignment f : x — c loses information on:

- Which clusters are “close seconds”

- Uncertainty = how sure are we of the assignment

Hq

Ho

H3

« Mixture Model = prior over clusters p(c) + distribution in each cluster p(x | ¢)

» — Posterior p(c | x) = probabilistic (soft) assignment of x to ¢
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Gaussian Mixture Models (GMMs)

» Each cluster is modeled by a Gaussian p(x|c) = A/ (x; u,., 2.)

> 2. allows non-isotropic clusters = weighted Euclidean distance

» Mixture = distribution over Gaussians is given by a probability vector p(c)

« Generative model = we can sample p(x):

» Sample z ~ p(c)

we don't output z, it is “latent” = hidden
/ —> can be any of them

» Sample x ~ p(x|c = 2)

I

 Probability of this x: Z plc=2pkx|c=2) = 2 p(c,x) = p(x)
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Multivariate Gaussian distributions
W@ T) = @0 # T Fexp (—10r = =0 — )

» For data points {x;}, maximum log-likelihood estimator of p, 2:

V, ) log V(xzpu2) ==Y (== =0

Vs Y log /(s 1, 2) = =5 Y (G — ) — )T = %) =0
matrix calculus identity:

1 _
— 2=;Z(xi—//t)(xi—//t)T Vealog| 2| =2
l
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Training GMMs

o k-Means:

> Assign data points to clusters z;
» Update each cluster's parameters u..
« A “soft” version of k-Means: Expectation—Maximization (EM) algorithm

> Find a “soft” assignment p(c | x)

» Update model parameters p(c), p(x| c)

 The EM algorithm is extremely general, GMMs are a very special case
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Expectation-Maximization: E-step

e Initialize model parameters 7. = p(c), 1., 2.
e E-step (Expectation): [why “expectation”? comes from the general EM algorithm]

> For each data point x;, use Bayes' rule to compute:

o= np(c|x) = plople)  m N pe, 2
e = F - Zép(ﬁ)p(xi\(?) B Zgﬂé'/’/(xi;ﬂé’zé)

> High weight to clusters that are likely a-priori, or in which X; is relatively probable

area: 7,

area: 7, r 2 0.7 { N —
\ v
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Expectation-Maximization: M-step

 Given assignment probabilities r;,
e M-step (Maximization):

> For each cluster ¢, fit the best Gaussian to the weighted assignment

total weight assigned to cluster ¢ 2

Tem,. = 2 what is Z m.? m

18
] C

fraction of weight assigned to cluster c

~~—~ me _ L
% ; Mo = m 2 ,ricxi
C l V\

T
Ze = o 20l = G = H)T

weighted covariance of data in cluster c

weighted mean of data in cluster ¢
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ICML 2001
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From P. Smyth
ICML 2001
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Demo

e https://lukapopijac.github.io/gaussian-mixture-model/
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https://lukapopijac.github.io/gaussian-mixture-model/

Expectation—-Maximization: considerations

* Each iteration of EM is guaranteed to increase the data log likelihood

logp(2) = ) logp(x) = ) log ¥ m.N(x;i i Z,)

we won't show this
but proof is very insightful!

> Convergence guaranteed — descends NLL
- But could be local optima = initialization important

e Qut-of-sample data: can find soft assignment = probabilistic prediction

» Choosing #clusters: regularized training log-likelihood (as in k-Means)

> Or: validate log-likelihood on held out data; many clusters =— overfitting!
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Recap

 Gaussian Mixture Models (GMMs)

> Expressive class of generative models p(x)

> EXxplain variation with latent clusters + cluster distribution

> Given cluster (= mode), feature values are Gaussian
» Expectation—-Maximization (EM)

» Compute soft assignment probabilities, “responsibility” r;.

> Update model parameters: mixture z., cluster mean and covariance y,., 2.
> Ascent on log-likelihood: convergent, but local optima

* Selecting the number of clusters

> Regularized training log-likelihood, or validation log-likelihood
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Today's lecture
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Why reduce dimensionality?

 Data is often high-dimensional = many features

Hngar axtanskn

> Images (even at 28x28 pixels)
> Text (even a “bag of words”)

» Stock prices (e.g. S&P500)

* Issues with high-dimensionality:
» Computational complexity of analyzing the data
» Model complexity (more parameters)
» Sparse data = cannot cover all combinations of features

> Correlated features can be independently noisy

» Hard to visualize
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Dimensionality reduction

 With many features, some tend to change together
> Can be summarized together

> Others may have little or irrelevant change

 Example: S&P500 — “Tech stocks up 2x, manufacturing up 1.5x, ...”

d

n

— |

» Embed instances in lower-dimensional space f : |

> Keep dimensions of “interesting” variability of data

> Discard dimensions of noise or unimportant variability; or no variability at all

> Keep “similar” data close = may preserve cluster structure, other insights
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Linear features

» Example: summarize two real features x = |x, x,| — one real feature z

» If z preserves much information about x, should be able to find x ~ f(2)

e Linear embedding:
X2
> X R ZV
o .Xa:uu
> zv should be the closest point to x along v - ,
yd
- = z=Xx-V -
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Principal Component Analysis (PCA)

e How to find a good v?

X2 800

» Assume X has mean 0; otherwise, subtract the mean X=X-— 7

> |dea: find the direction v of maximum “spread” (variance) of the data

» Project Xon v:z = Xv
J < empirical covariance

max Z (Zi)2 = 7Tz = vTXTXv = v is eigenvector of XTX of largest eigenvalue

vi||v]|=1

» = minimum MSE of the residual X — vl = X — vaT o A |
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

Geometry of a Gaussian

~J

. Data covariance: ¥ = —XTX X=X—u

m

e Gaussian fit: p(x) ~ N (u, 2)
« Value contour for p(x): A* = (x — u)TZ " (x — u) = const

o [t's always possible to write 2 in terms of its eigenvectors U, eigenvalues A:

1717

l:1 1 Yo .
n /\%/2
In the eigenvector basis: A? = 2 7’ with y. = uiT(x — ) A2

X > =UAUT = Z/I-u-u.T — Y1 = 2 %uiuiT \/'“1
=1 |

>

=0
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PCA representation

e Subtract data mean from data points
* (Optional) Scale each dimension by its variance

> Don't just focus on large-scale features (e.g., +1 mileage << +1yr ownership)

» Focus on correlation between features

.y . . 1 - ~
) Compute empirical covariance matrix 2 = — E xl-xlT

l

 Take k largest eigenvectors of 2 = UAUT
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Singular Value Decomposition (SVD)

» Alternative method for finding covariance eigenvectors

> Has many other uses

o Singular Value Decomposition (SVD): X = UDV1

» U and V (left- and right singular vectors) are orthogonal: UTU = [, VIV =]

> D (singular values) is rectangular-diagonal

&

mXn m X k k Xk kXn

. ¥ = XX = VDTUTUDV' = V(DTD)VT

« UD matrix gives coefficients to reconstruct data: x; = Ui’1D1,1v1 + Ui,zDz,zvz + ...

» We can truncate this after top k singular values (square root of eigenvalues)
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