

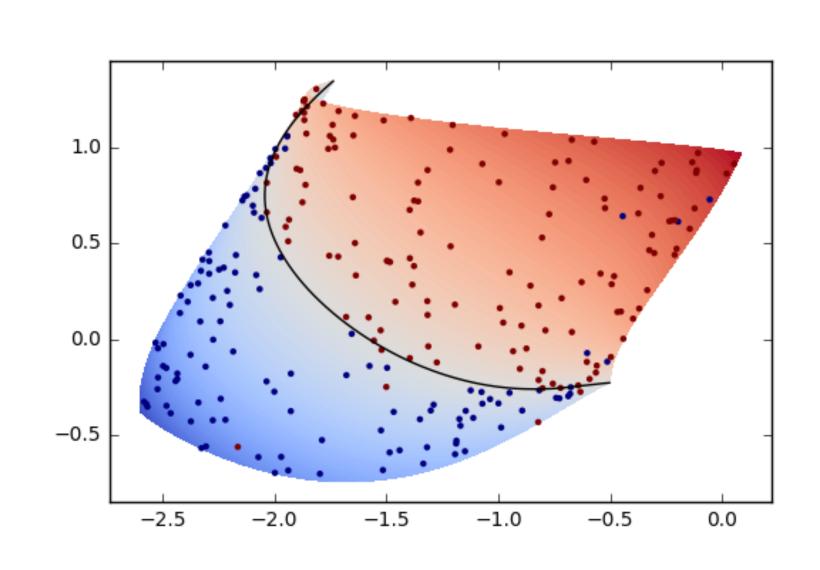
CS 273A: Machine Learning Winter 2021

Lecture 15: Latent-Space Models

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



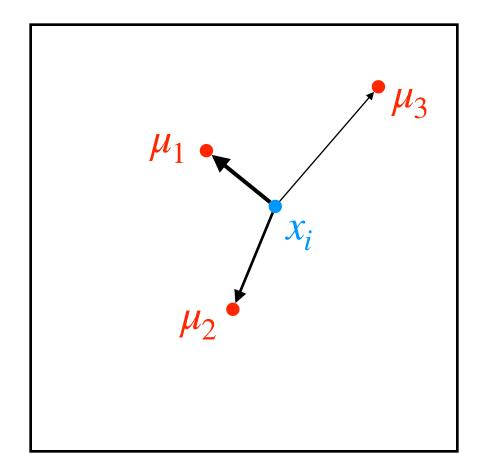
Today's lecture

Gaussian Mixture Models

Dimensionality Reduction

Mixture Models

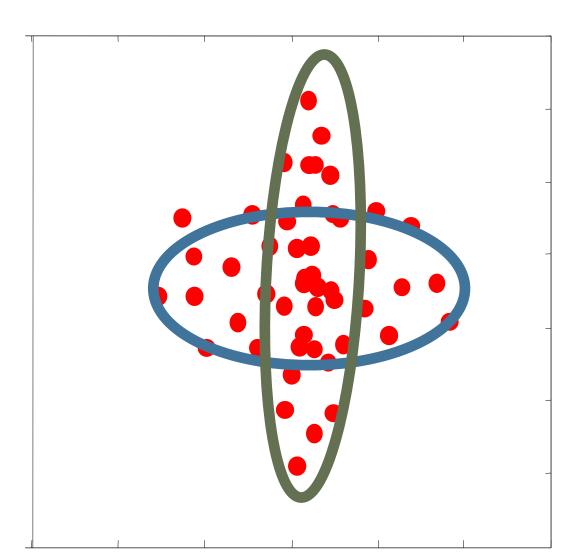
- k-Means assigns each instance to one cluster
 - Could it be assigned to another cluster equally well? Almost equally?
 - Hard assignment $f: x \mapsto c$ loses information on:
 - Which clusters are "close seconds"
 - Uncertainty = how sure are we of the assignment



- Mixture Model = prior over clusters p(c) + distribution in each cluster $p(x \mid c)$
 - ightharpoonup Posterior p(c | x) = probabilistic (soft) assignment of x to c

Gaussian Mixture Models (GMMs)

- Each cluster is modeled by a Gaussian $p(x \mid c) = \mathcal{N}(x; \mu_c, \Sigma_c)$
 - $\succ \Sigma_c$ allows non-isotropic clusters \Longrightarrow weighted Euclidean distance
- Mixture = distribution over Gaussians is given by a probability vector p(c)
- Generative model = we can sample p(x):
 - Sample $z \sim p(c)$
 - ► Sample $x \sim p(x \mid c = z)$ we don't output z, it is "latent" = hidden \Rightarrow can be any of them
 - Probability of this x: $\sum_{c} p(c=z)p(x \mid c=z) = \sum_{c} p(c,x) = p(x)$



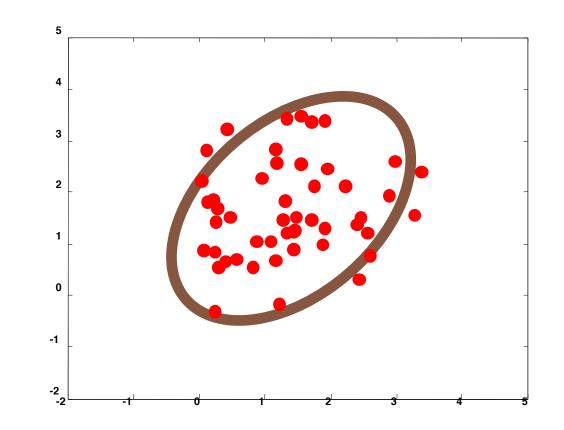
Multivariate Gaussian distributions

$$\mathcal{N}(x; \mu, \Sigma) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x - \mu)^{\mathsf{T}} \Sigma^{-1}(x - \mu)\right)$$

• For data points $\{x_i\}$, maximum log-likelihood estimator of μ , Σ :

$$\nabla_{\mu} \sum_{i} \log \mathcal{N}(x_i; \mu, \Sigma) = \frac{1}{2} \sum_{i} (x_i - \mu)^{\mathsf{T}} \Sigma^{-1} = 0$$

$$\implies \mu = \frac{1}{m} \sum_{i} x_{i}$$



$$\nabla_{\Sigma^{-1}} \sum_{i} \log \mathcal{N}(x_i; \mu, \Sigma) = -\frac{1}{2} \sum_{i} \left((x_i - \mu)(x_i - \mu)^{\mathsf{T}} - \Sigma \right) = 0$$

$$\Longrightarrow \Sigma = \frac{1}{m} \sum_{i} (x_i - \mu)(x_i - \mu)^{\mathsf{T}}$$

matrix calculus identity:

$$\nabla_{\Sigma^{-1}} \log |\Sigma|^{-1} = \Sigma$$

Training GMMs

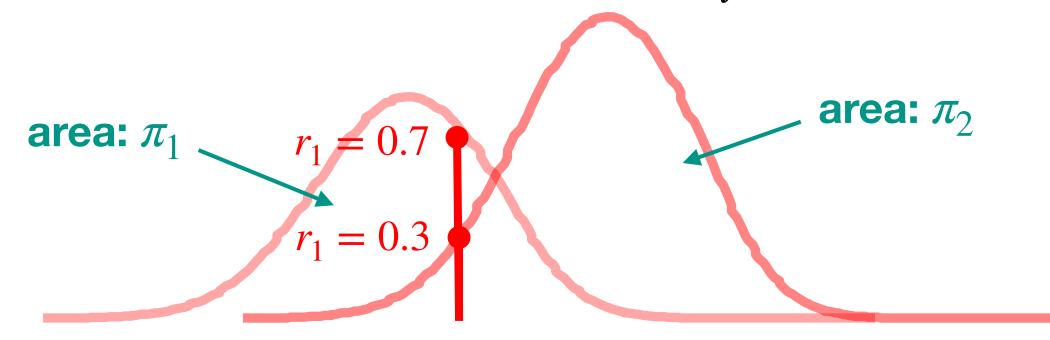
- k-Means:
 - Assign data points to clusters z_i
 - Update each cluster's parameters μ_c
- A "soft" version of k-Means: Expectation–Maximization (EM) algorithm
 - Find a "soft" assignment p(c | x)
 - Update model parameters p(c), $p(x \mid c)$
- The EM algorithm is extremely general, GMMs are a very special case

Expectation-Maximization: E-step

- Initialize model parameters $\pi_c = p(c)$, μ_c , Σ_c
- E-step (Expectation): [why "expectation"? comes from the general EM algorithm]
 - For each data point x_i , use Bayes' rule to compute:

$$r_{ic} = p(c \mid x_i) = \frac{p(c)p(x_i \mid c)}{\sum_{\bar{c}} p(\bar{c})p(x_i \mid \bar{c})} = \frac{\pi_c \mathcal{N}(x_i; \mu_c, \Sigma_c)}{\sum_{\bar{c}} \pi_{\bar{c}} \mathcal{N}(x_i; \mu_{\bar{c}}, \Sigma_{\bar{c}})}$$

• High weight to clusters that are likely a-priori, or in which x_i is relatively probable



Expectation-Maximization: M-step

- Given assignment probabilities r_{ic}
- M-step (Maximization):
 - \blacktriangleright For each cluster c, fit the best Gaussian to the weighted assignment

total weight assigned to cluster
$$c$$
 $m_c = \sum_i r_{ic}$ what is $\sum_c m_c$? m

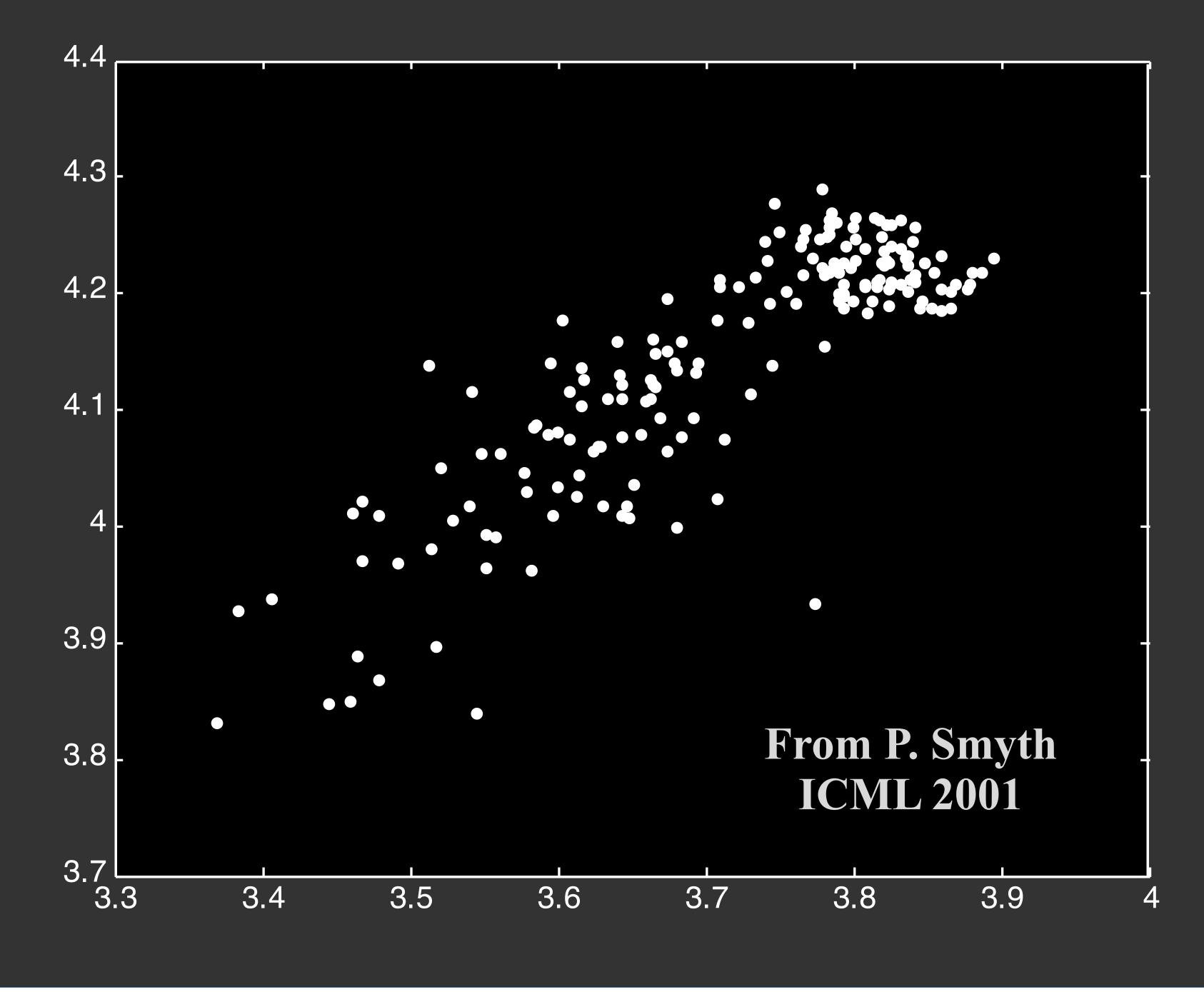
fraction of weight assigned to cluster c

$$\pi_c = \frac{m_c}{m} \qquad \mu_c = \frac{1}{m_c} \sum_i r_{ic} x_i$$

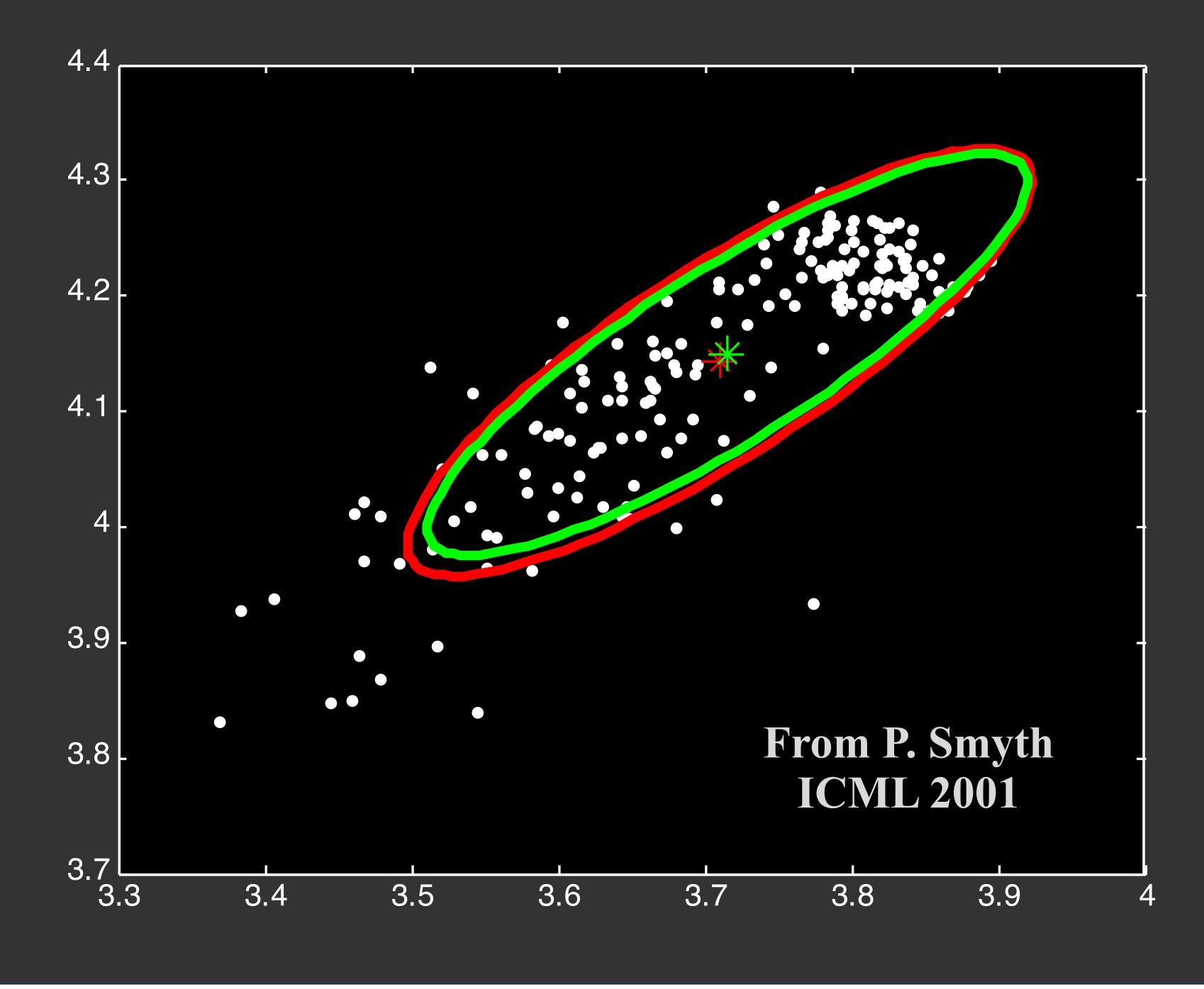
weighted mean of data in cluster \boldsymbol{c}

$$\Sigma_{c} = \frac{1}{m_{c}} \sum_{i} r_{ic} (x_{i} - \mu_{c}) (x_{i} - \mu_{c})^{T}$$

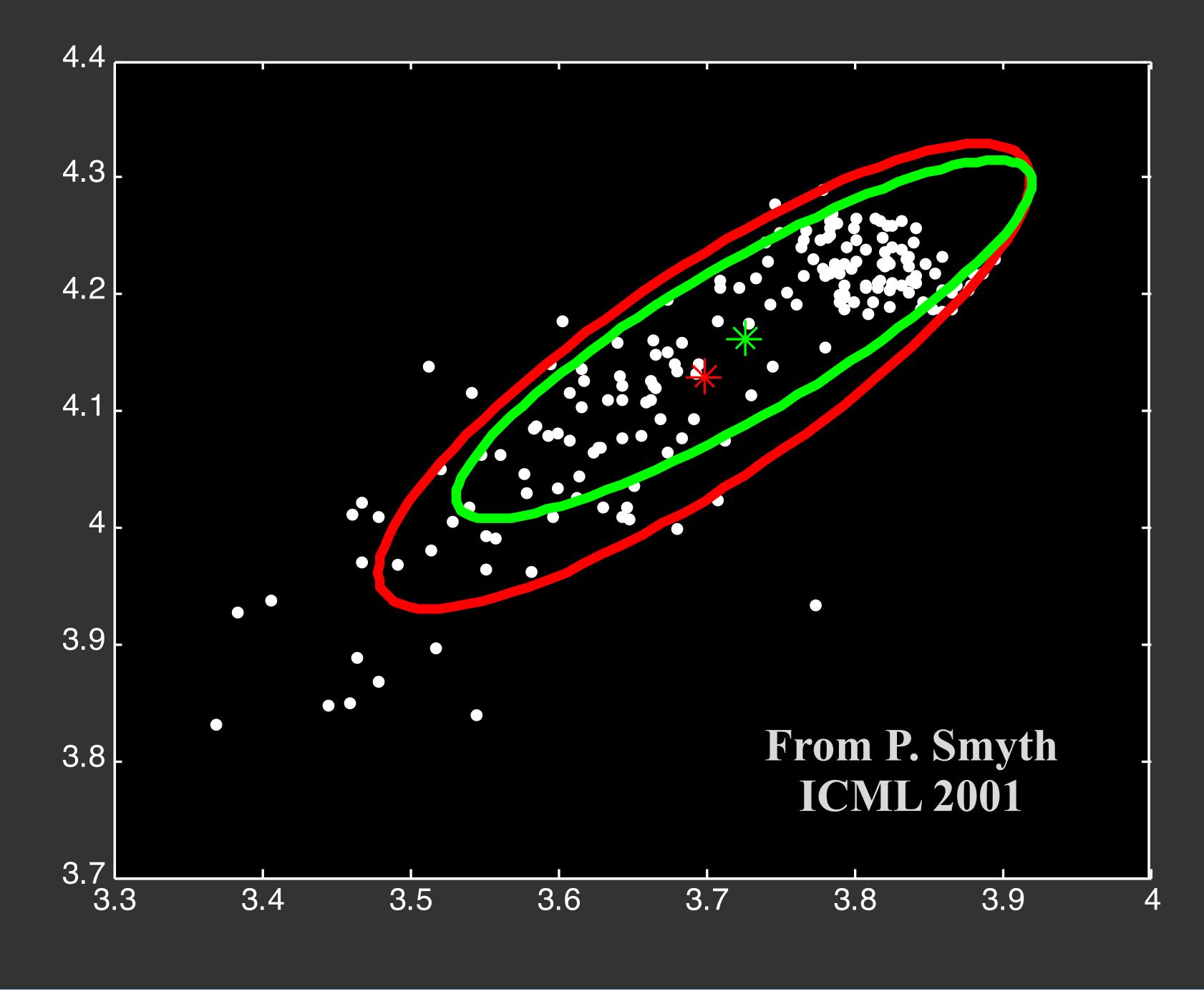
weighted covariance of data in cluster c



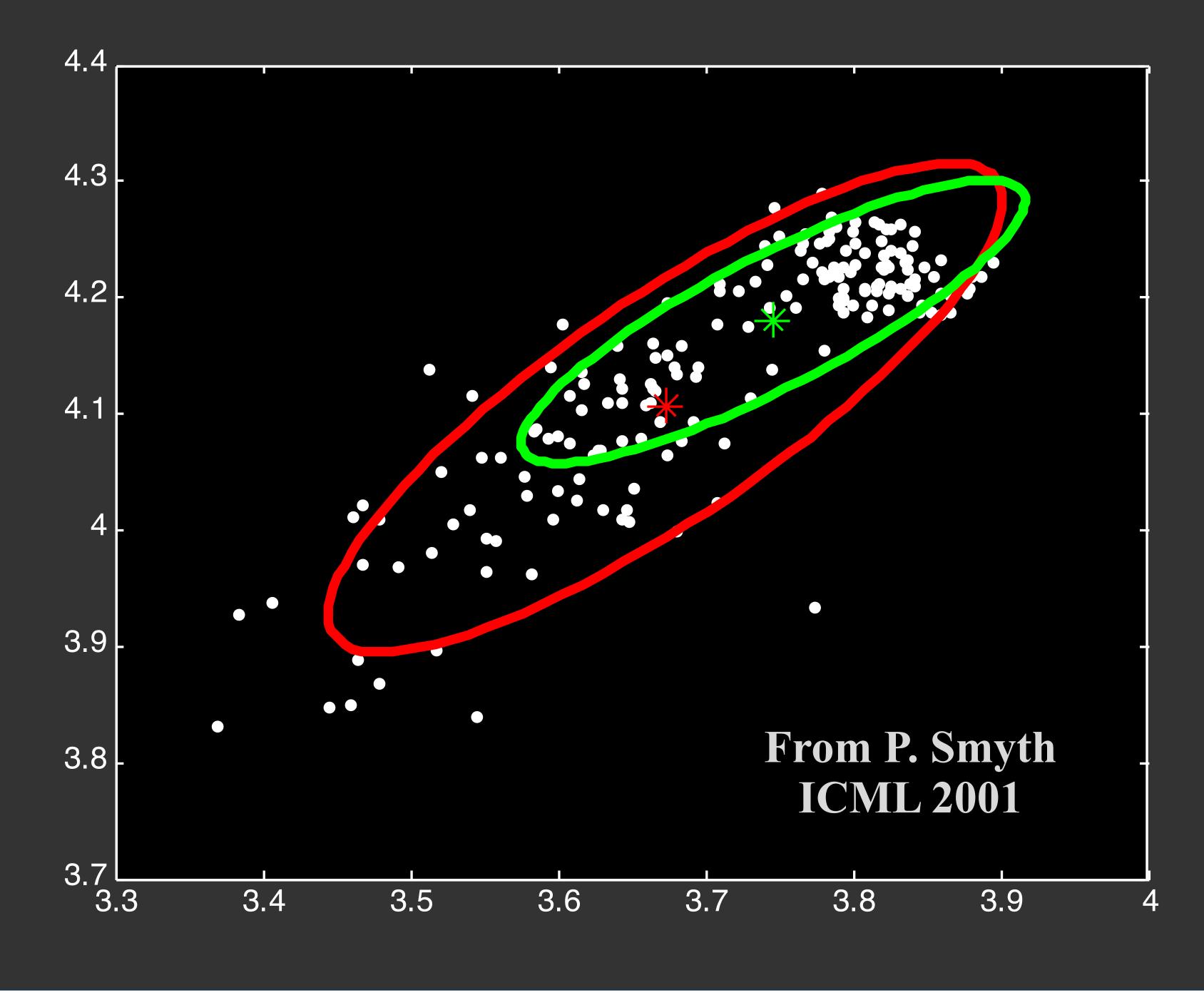
Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



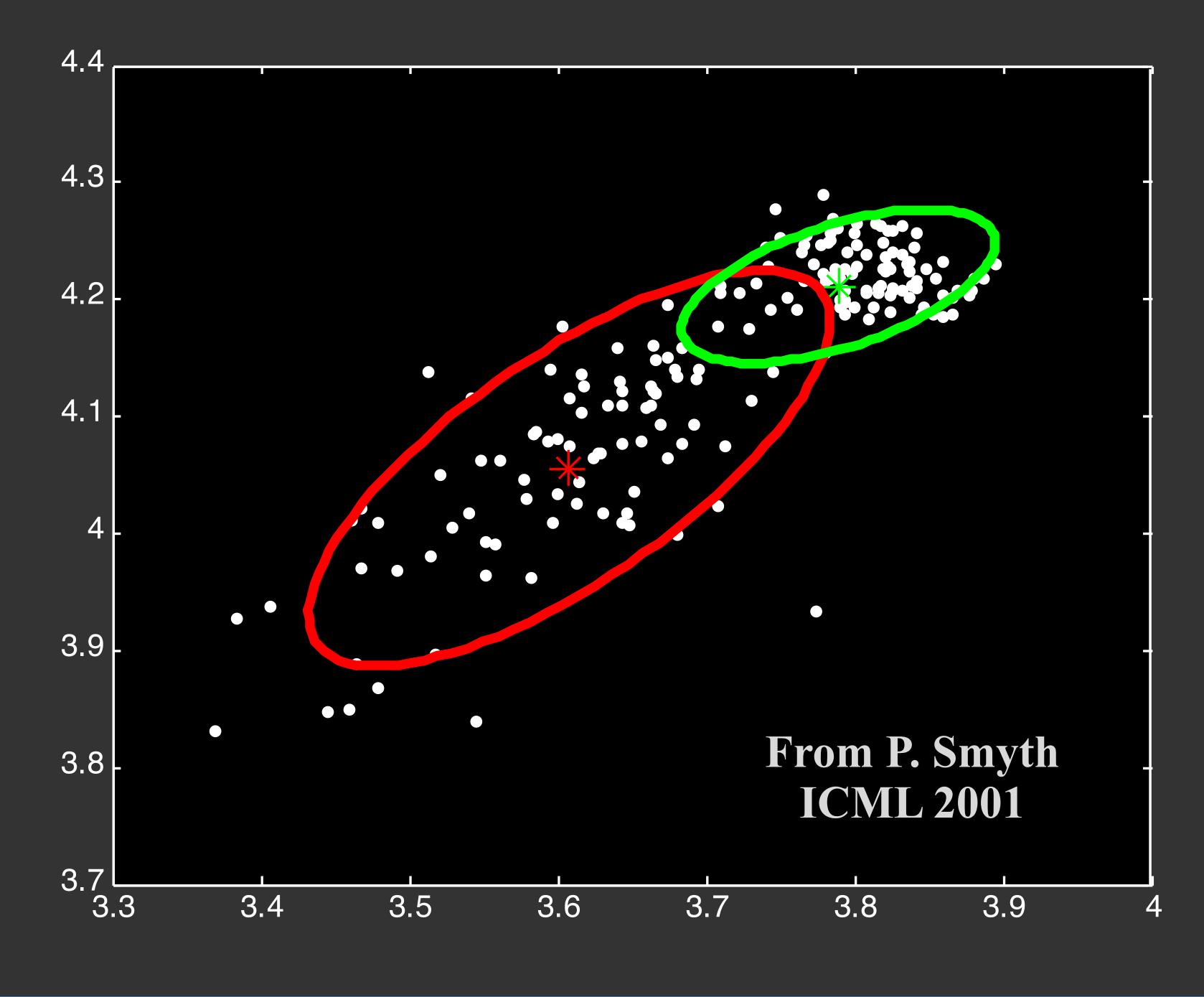
Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



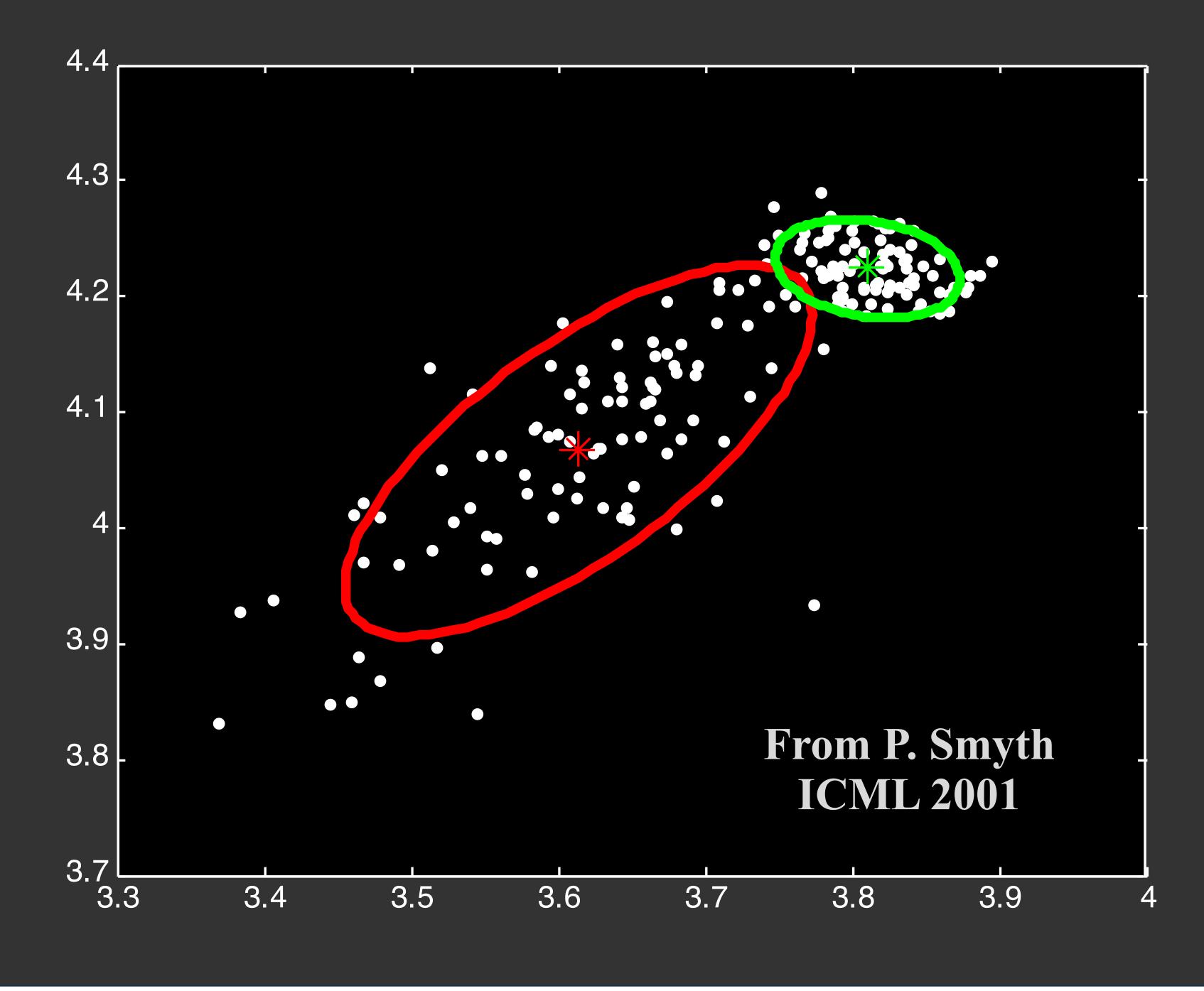
Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



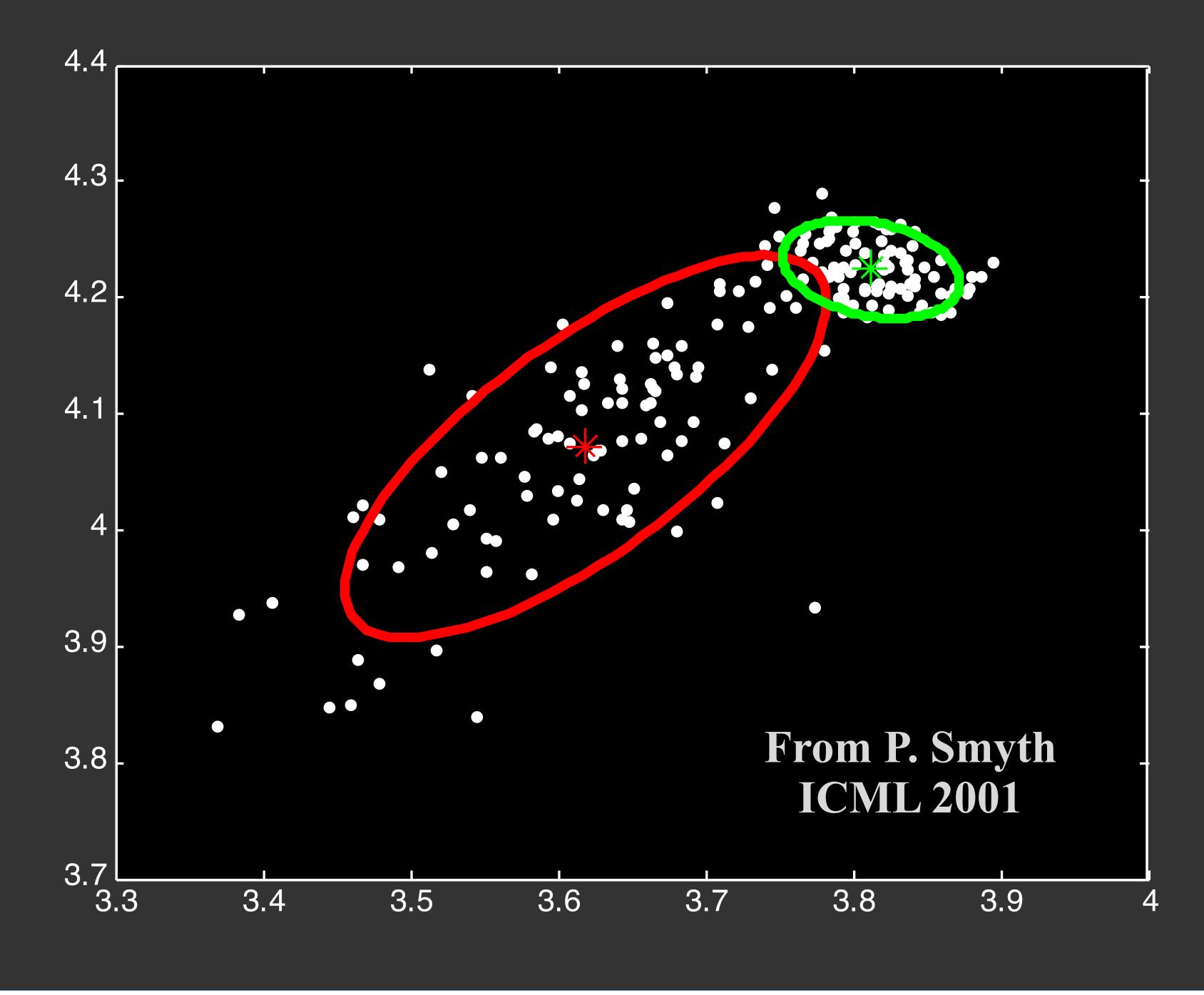
Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



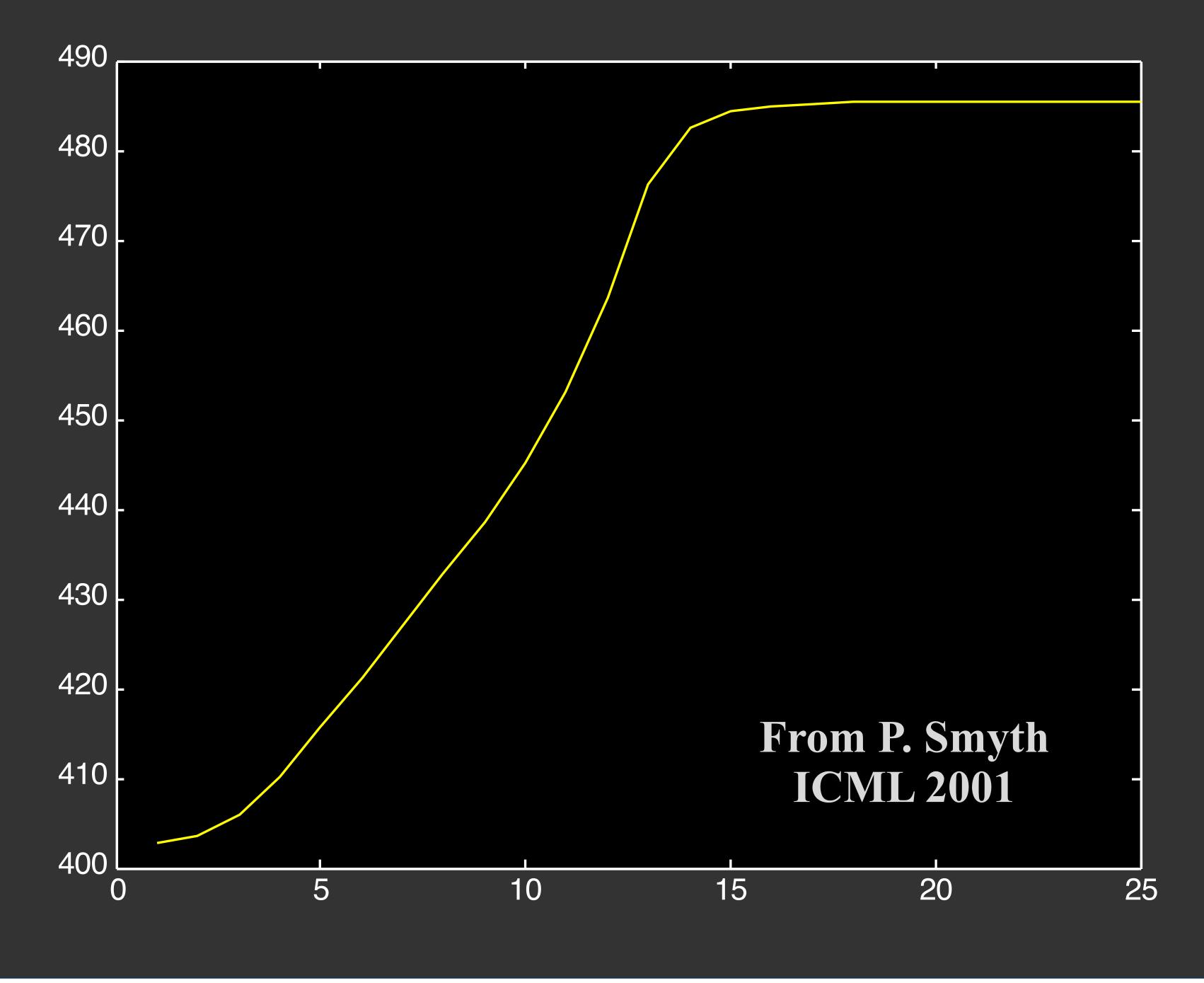
Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models



Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Demo

• https://lukapopijac.github.io/gaussian-mixture-model/

Expectation-Maximization: considerations

Each iteration of EM is guaranteed to increase the data log likelihood

$$\log p(\mathcal{D}) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{c} \pi_c \mathcal{N}(x_i; \mu_c, \Sigma_c)$$
 we won't show this but proof is very insightful!

- Convergence guaranteed descends NLL
 - But could be local optima ⇒ initialization important
- Out-of-sample data: can find soft assignment = probabilistic prediction
- Choosing #clusters: regularized training log-likelihood (as in k-Means)
 - ► Or: validate log-likelihood on held out data; many clusters ⇒ overfitting!

Recap

- Gaussian Mixture Models (GMMs)
 - Expressive class of generative models p(x)
 - Explain variation with latent clusters + cluster distribution
 - Given cluster (= mode), feature values are Gaussian
- Expectation–Maximization (EM)
 - ightharpoonup Compute soft assignment probabilities, "responsibility" r_{ic}
 - Update model parameters: mixture π_c , cluster mean and covariance μ_c , Σ_c
 - Ascent on log-likelihood: convergent, but local optima
- Selecting the number of clusters
 - Regularized training log-likelihood, or validation log-likelihood

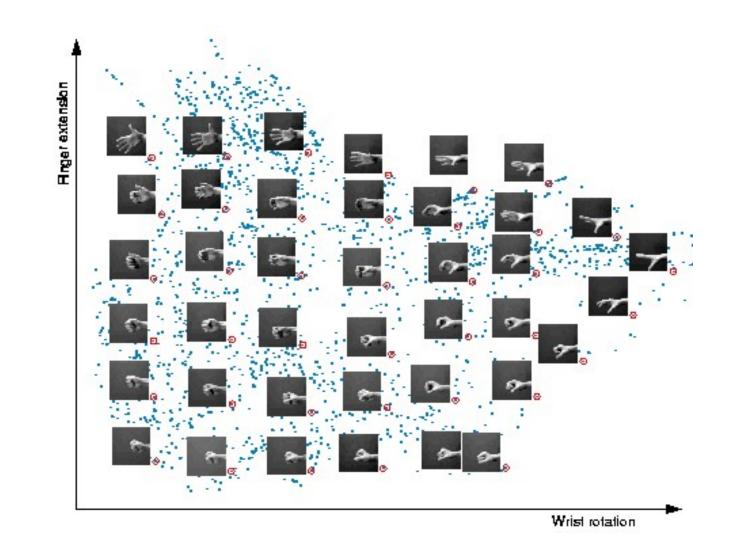
Today's lecture

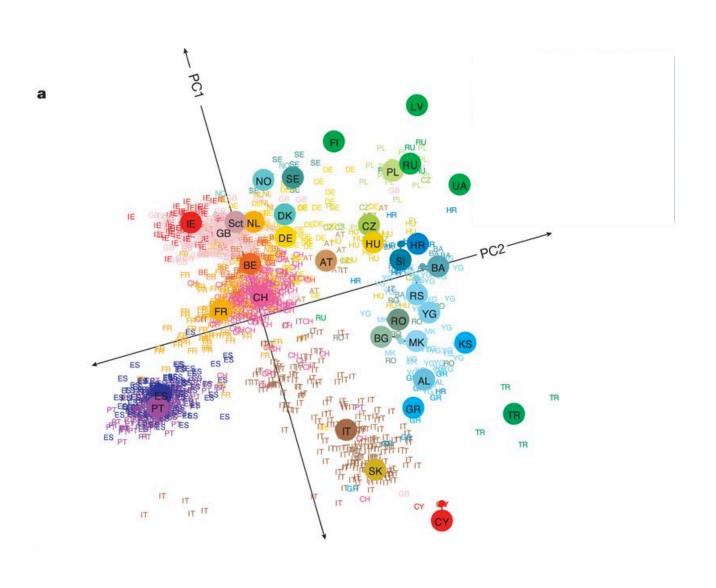
Gaussian Mixture Models

Dimensionality Reduction

Why reduce dimensionality?

- Data is often high-dimensional = many features
 - Images (even at 28x28 pixels)
 - Text (even a "bag of words")
 - Stock prices (e.g. S&P500)
- Issues with high-dimensionality:
 - Computational complexity of analyzing the data
 - Model complexity (more parameters)
 - Sparse data = cannot cover all combinations of features
 - Correlated features can be independently noisy
 - Hard to visualize



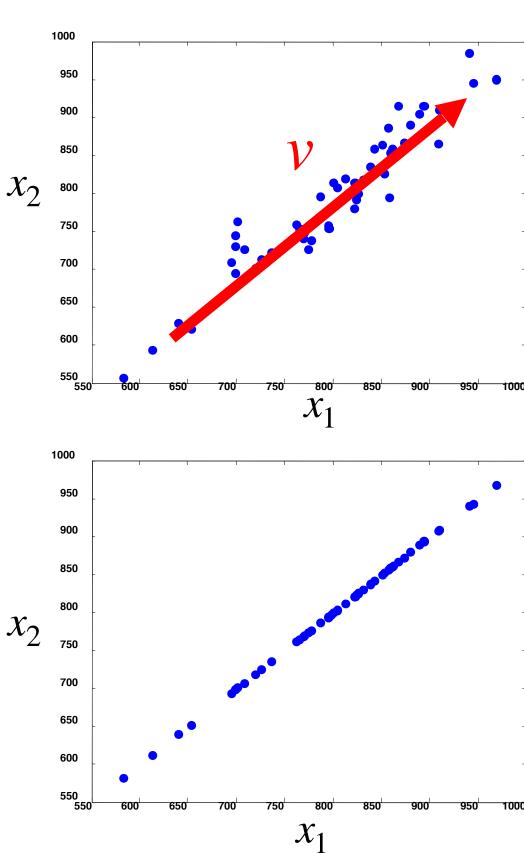


Dimensionality reduction

- With many features, some tend to change together
 - Can be summarized together
 - Others may have little or irrelevant change
- Example: S&P500 → "Tech stocks up 2x, manufacturing up 1.5x, ..."
- Embed instances in lower-dimensional space $f: \mathbb{R}^n \mapsto \mathbb{R}^d$
 - Keep dimensions of "interesting" variability of data
 - Discard dimensions of noise or unimportant variability; or no variability at all
 - ► Keep "similar" data close ⇒ may preserve cluster structure, other insights

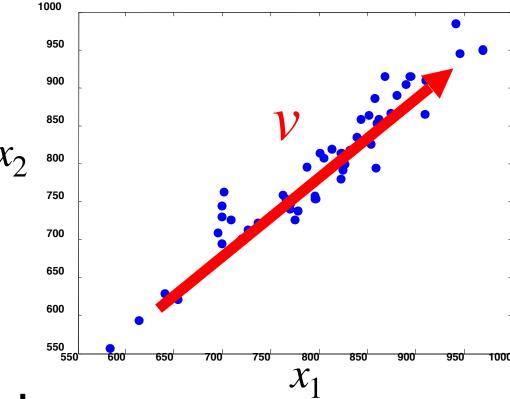
Linear features

- Example: summarize two real features $x = [x_1, x_2] \rightarrow$ one real feature z
 - If z preserves much information about x, should be able to find $x \approx f(z)$
- Linear embedding:
 - $\rightarrow x \approx zv$
 - zv should be the closest point to x along v
 - $\implies z = x \cdot v$



Principal Component Analysis (PCA)

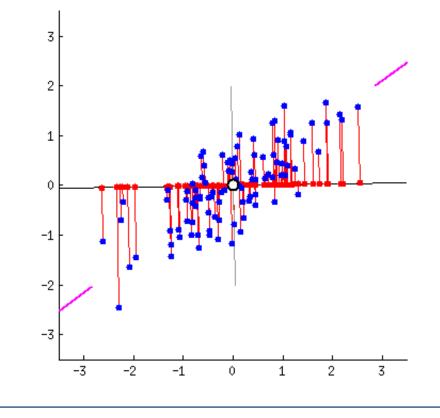
- How to find a good v?
 - Assume X has mean 0; otherwise, subtract the mean $\tilde{X} = X \mu$



- ► Idea: find the direction *v* of maximum "spread" (variance) of the data
- Project \tilde{X} on v: $z = \tilde{X}v$

 $\max_{v:\|v\|=1} \sum_{i}^{n} (z_i)^2 = z^{\dagger}z = v^{\dagger}\tilde{X}^{\dagger}\tilde{X}v \Longrightarrow v \text{ is eigenvector of } \tilde{X}^{\dagger}\tilde{X} \text{ of largest eigenvalue}$

- minimum MSE of the residual $\tilde{X}-zv^\intercal=\tilde{X}-\tilde{X}vv^\intercal$



empirical covariance

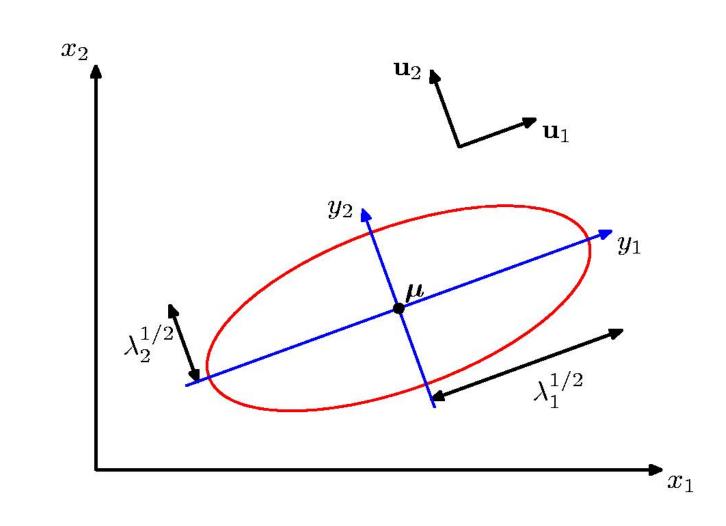
Geometry of a Gaussian

• Data covariance:
$$\Sigma = \frac{1}{m} \tilde{X}^{\mathsf{T}} \tilde{X}$$
 $\tilde{X} = X - \mu$

- Gaussian fit: $p(x) \sim \mathcal{N}(\mu, \Sigma)$
- Value contour for p(x): $\Delta^2 = (x \mu)^\intercal \Sigma^{-1}(x \mu) = \text{const}$
- It's always possible to write Σ in terms of its eigenvectors U, eigenvalues λ :

$$\Sigma = U \Lambda U^{\mathsf{T}} = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}} \Longrightarrow \Sigma^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} u_i u_i^{\mathsf{T}}$$

In the eigenvector basis: $\Delta^2 = \sum_{i=0}^n \frac{y_i}{\lambda_i}$, with $y_i = u_i^\intercal(x - \mu)$



PCA representation

- Subtract data mean from data points
- (Optional) Scale each dimension by its variance
 - ► Don't just focus on large-scale features (e.g., +1 mileage ≪ +1yr ownership)
 - Focus on correlation between features
- Compute empirical covariance matrix $\Sigma = \frac{1}{m} \sum_{i} \tilde{x}_{i} \tilde{x}_{i}^{\mathsf{T}}$
- Take k largest eigenvectors of $\Sigma = U \Lambda U^{\mathsf{T}}$

Singular Value Decomposition (SVD)

- Alternative method for finding covariance eigenvectors
 - Has many other uses
- Singular Value Decomposition (SVD): $X = UDV^{\mathsf{T}}$
 - U and V (left- and right singular vectors) are orthogonal: $U^{\dagger}U = I$, $V^{\dagger}V = I$

 - $\quad \Sigma = X^{\mathsf{T}} X = V D^{\mathsf{T}} U^{\mathsf{T}} U D V^{\mathsf{T}} = V (D^{\mathsf{T}} D) V^{\mathsf{T}}$

$$\begin{bmatrix} X \\ m \times n \end{bmatrix} \approx \begin{bmatrix} U \\ m \times k \end{bmatrix} \cdot \begin{bmatrix} D \\ k \times k \end{bmatrix} \cdot \begin{bmatrix} V^{\mathsf{T}} \\ k \times n \end{bmatrix}$$

- UD matrix gives coefficients to reconstruct data: $x_i = U_{i,1}D_{1,1}v_1 + U_{i,2}D_{2,2}v_2 + \cdots$
 - We can truncate this after top k singular values (square root of eigenvalues)