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Logistics

* Final report due this Thursday

e Evaluations due end of this week

 Review: this Thursday

e Final: next Thursday, March 18, 1:30-3:30pm
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Today's lecture

Markov Decision Processes (MDPs)

Policy evaluation, planning

Model-free Reinforcement Learning
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Agent—-environment interface

e Environment

> EXxecutes the action — changes its state

» Generates next observation ooservtion /| V| " sen

> Supervisor: reveals the reward

 Agent

~ Policy decides on next action z(a, | x,)

> Context can be full state x, = s,

- Or any summary of observable history x, = f(h,)
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Markov Property

“The future is independent of the past given the present”
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Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P)[St_|_1 ‘ St] — ]P[St—l-l ‘ Sl,...,St]
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Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P)[St_|_1 ‘ St] — ]P)[St_|_1 ‘ Sl,...,St]

m [ he state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. [he state is a sufficient statistic of the future
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State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

7)55/ =P [St_|_]_ = 5/ ‘ St = 5]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

7)55/ =P [St_|_]_ = 5/ ‘ St = 5]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

P = from

where each row of the matrix sums to 1.
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Markov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.
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Markov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)

m S is a (finite) set of states

m P Is a state transition probability matrix,
7)55/ =P [St—l-l =5 ‘ St — S]
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Student Markov Chain

0.9

0.1

Class\l 0.0

Sleep

Pub

>

1.0

Pass
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Student MC: Episodes

Sample episodes for Student Markov
Chain starting from $; = C1

51,52,..., 5T

0.5 0.2 1.0
ClasD 0.) > Clasb ge »(Class 3 0.6 >@
0.4
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Student MC: Episodes

Sample episodes for Student Markov
Chain starting from $; = C1

517 527 e ST

m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m C1 FBFB C1 C2C3PubClFBFEFB
FB C1 C2 C3 Pub C2 Sleep
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Student MC:

Transition Matrix

Pub

C1 C2

C2
C3
P = Pass

Pub 0.4
FB

Sleep

o o
=N

C3

0.8

0.4

Pass

0.6

Pub

0.4

FB
0.5

0.9

Sleep

0.2

1.0
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Demo Time

http://setosa.io/ev/markov-chains/
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http://setosa.io/ev/markov-chains/

Markov Reward Process

A Markov reward process is a Markov chain with values.
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Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R, )
m S is a finite set of states

m P Is a state transition probability matrix,
7)55/ = P [St_|_1 = Sl | St — S]
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Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R, )
m S is a finite set of states

m P Is a state transition probability matrix,
7)55/ = P [St_|_1 = Sl | St — S]
m R is a reward function, Rs = E[R;y1 | St = 5|

m ~ is a discount factor, v € [0, 1}
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The Student MRP

0.9

0.1 A R

0.5 1.0
Class 1 0.5 » Pass
R =-2
R=+10
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Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rip1 +YRep2 + ... = ZWth+k+1
k=0
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Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rip1 +YRep2 + ... = ZWth+k+1
k=0

m The discount v € [0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v*R.
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Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rey1 + YRep2 + .0 = Z’YkRH-k—H
k=0

m The discount v € [0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v*R.

m [ his values immediate reward above delayed reward.

m 7y close to 0 leads to "myopic” evaluation
m v close to 1 leads to "far-sighted” evaluation
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Why discount?

Most Markov reward and decision processes are discounted. Why?
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Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards

m Avoids infinite returns in cyclic Markov processes

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards
m Avoids infinite returns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards
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Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards

O
m Avoids infinite returns in cyclic Markov processes

m Uncertainty about the future may not be fully represented
O

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward
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Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards
Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m |t is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.
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Value Function

The value function v(s) gives the long-term value of state s
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Value Function

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return

starting from state s

v(s) =E[G; | S; = s}
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Student MRP: Returns

Sample returns for Student MRP:

Starting from S; = C1 with v = 2

C1 C2 C3 Pass Sleep
Cl1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep
Cl1 FBFB C1 C2C3 Pub C1 ...
FB FB FB C1 C2 C3 Pub C2 Sleep

2

Gi=Ry+vR3+ ...+~ 2Rt
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Student MRP: Returns

Sample returns for Student MRP:

Starting from 51 = C1 with v = %

Gi=Ry+vR3+ ...+~ 2Rt

C1 C2 C3 Pass Sleep i=—2—2%3—2x7+10% 3 =  —2.25

Cl1 FB FB C1 C2 Sleep V1:_2_1*%_1*%_2*%_2*%6 —3.125

C1 C2 C3 Pub C2 C3 Pass Sleep i=—-2—2%3—2xz+1l%xz—2%5... = —3.41
— 1 1 1 1

FB FB FB C1 C2 C3 Pub C2 Sleep
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Student MRP: Value Function

v(s) for y =0
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Student MRP: Value Function

v(s) for y =0.9
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Student MRP: Value Function

v(s) fory =1
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Bellman Equations for MRP

The value function can be decomposed into two parts:

m immediate reward R;y1

m discounted value of successor state yv(St+1)

v(s) =E|[G: | St = 3]

— E[Rt 1+ YR: 2+72Rt 3+ .. | St:S]
=E[Rey1+7(Reya +YRey3 +...) | St =]
= E[Ret+1 + vGey1 | St = 5]

= E[Re+1 +v(St+1) | St = 5]
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Backup Diagrams for MRP
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Backup Diagrams for MRP

v(s) = Rs + 7 Z Posrv(s)

s’eS
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Student MRP: Bellman Eq

4.3=-2+0.6*10+ 0.4*%0.8
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Matrix Form of Bellman Eq

The Bellman equation can be expressed concisely using matrices,

v=R-+YPv

where v Is a column vector with one entry per state

—V(l)- R1 P11 ... Pin —V(l)—

|
+
'

_v(n)_ Rn P11 ... Pnn _v(n)_
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Solving the Bellman Equation

m [he Bellman equation is a linear equation
m It can be solved directly:

v=R+v9Pv
(Il —yP)v=TR
v=>—-vP) 'R
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Solving the Bellman Equation

m [he Bellman equation is a linear equation
m It can be solved directly:

v=R+~Pv
(Il —yP)v=TR
v=(—-~P)'R

m Computational complexity is O(n3) for n states

m Direct solution only possible for small MRPs
m [here are many iterative methods for large MRPs, e.g.
m Dynamic programming
m Monte-Carlo evaluation

m Temporal-Difference learning
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Today's lecture

Markov (Reward) Processes

Policy evaluation, planning

Model-free Reinforcement Learning
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Markov Decision Processes

States

+ Rewards

+ Actions
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Recap 1: Markov Process

A Markov Process (or Markov Chain) is a tuple (S, P)

m S is a (finite) set of states

m P is a state transition probability matrix,
7)55/ =P [St_|_1 — S/ I St — 5]

Sleep |<g—

0.5 0.2 1.0
czass\l 05 o Class\Z 0.8 0.9 »@
0.4
0.2
Pub
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Recap 2: Markov Reward Process

A Markov Reward Process is a tuple (S,P, R, )
m S is a finite set of states

m P is a state transition probability matrix,
Pssl =P [St_|_1 =g | St — S]
m R is a reward function, Rs = E[R;+1 | S = 5]

m 7 is a discount factor, v € [0, 1]

Sleep |—

$R=0 \
0.2
R=-2
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Recap 3: Value Function

e Value as expected discounted future reward:

V(S) = F [Rl‘+1 + th+2 + yth+3 + ...+ ]/T_lRT‘ SZ‘ = S]
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Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.
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Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A, P,R,~)
m S is a finite set of states

m A is a finite set of actions

m P Is a state transition probability matrix,
Psasz — IP[SH_]_ — S, ‘ St — S,At — a]
m R is a reward function, R =E[R;11 | 5t = s, A: = 3]

m 7 is a discount factor v € [0, 1].
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The Student MDP

Facebook
R=-I
Quit Facebook
R=0 R=-1

Study
R=+10

0.4

0.2
0.4
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Policies

A policy m Is a distribution over actions given states,

w(als) =P[A; =a | 5 = ]
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Policies

A policy m Is a distribution over actions given states,

mw(als) =P[A; =a | 5 = ]

m A policy fully defines the behaviour of an agent

m MDP policies depend on the current state (not the history)
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Policies

A policy m Is a distribution over actions given states,

mw(als) =P[A; =a | 5 = ]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ W("St),\V’t > 0
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MPs & MRPs @ MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7
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MPs & MRPs @ MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7
m The state sequence 51, 5,, ... is a Markov process (S, P™)

m [ he state and reward sequence 51, R», 5>, ... is a Markov
reward process (S,P™,R™,~)

m where

;r,s’ — ZTF(Q‘S) :s’

acA

RT = Z m(als)R:

acA
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Value Function

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

Vﬂ-(S) — {:ﬂ- [Gt ‘ St — 5]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Value Function

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) = E; [G: | S¢ = 5]

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy m

gr(s,a) =E;[G: | St = s, Ar = 3]
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Student MDP: Value Function

Facebook va(s) for n(als)=0.5, y =1
R=-I

Facebook
—_]

Study
R=+10

Pub
R=+I

0.4
0.2

0.4
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Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Ex [Ret1 + YVa(Sts1) | St = 5]
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Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Ex [Ret1 + YVa(Sts1) | St = 5]

The action-value function can similarly be decomposed,

q7T(57 a) — {I’W [Rt+1 -+ fyqﬁ(st-i—la At-l-l) ‘ St = 35, At — a]
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Bellman Expected Equation, V

Vw(s) — Z W(a‘s)qw(sv a)

acA




Bellman Expected Equation, Q




Bellman Expected Equation, V




Student MDP: Bellman Exp Eq.

Facebook 74=05*(1+02*-1.3+04*2.7+04%*7.4)
R=-1I + 0.5 *10
0 |-
A
Quit Facebook
R=0 R=-1
Study
Stud -
73 34 R=+10

R=-2
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Bellman Expected Equation, Q

Gr(s,a) = Rs+~ Z P Z m(a'|s")qr(s’, )

s’'eS acA
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Bellman Exp Eqg: Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R" + P vy

with direct solution

Ve = (I — 777”)_1 R™
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Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vr(S)
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Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vi (S)

The optimal action-value function g(s, a) is the maximum
action-value function over all policies

g« (s, a) = max q,(s, a)
s
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Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vi (S)

The optimal action-value function g(s, a) is the maximum
action-value function over all policies

g« (s, a) = max q,(s, a)
s

m [ he optimal value function specifies the best possible
performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.
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Student MDP: Optimal V

Facebook v(s) for y =1
R=-1

A
Quit Facebook
R=0 R=-1
Stud
( 5 ) 3%
R=-2
Pub
R=+I
0.4
0.2

0.4
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Student MDP: Optimal Q

Facebook q «(s,a) for y =1

Quit

R=0

I = Study
R=+10
qx =10

Pub
R=+I
0.4 qx =8.4

0.2
0.4
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Optimal Policy

Define a partial ordering over policies

> 7w if ve(s) > v (s),Vs
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Optimal Policy

Define a partial ordering over policies

> 7w if ve(s) > v (s),Vs

For any Markov Decision Process

m [ here exists an optimal policy m, that is better than or equal
to all other policies, ., > w, V1

m All optimal policies achieve the optimal value function,
Vi, () = va(5)

m All optimal policies achieve the optimal action-value function,
dr. (57 a) — q*(s, a)
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Finding Optimal Policy

An optimal policy can be found by maximising over g.(s, a),

ac A

(a[5) 1 if a = argmax g«(s, a)
m«(a|s) =
0 otherwise

m [here is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy
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Student MDP: Optimal Policy

Facebook Tx(als) fory =1
R=-1
qx =5
0 |=
A
Quit Facebook Sleep
R=0 R=- R=0
qdx = qd% = qx = Study

Stud Stud R=+10

Pub
R=+I

0.4 g% =8.4
0.2
0.4
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Bellman Optimality Eq, V

The optimal value functions are recursively related by the Bellman
optimality equations:

Vi (S) = max g.(s, a)
d
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Bellman Optimality Eq, Q

g«(s,a) = R+~ Z o Vi(s

s’eS
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Bellman Optimality Eq, V

Vi(S) = max Re 4+ Z Poivy(s

s’eS
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Student MDP: Bellman Optimality

Facebook 6 =max {-2+8, -1+6
R=-1
0
A
Quit Facebook
R=0 R=-I

@ Study
R=-2
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Solving Bellman Equations

 Not easy...
> Not a linear equation

» No “closed-form” solution

~ We may not know &, and £ (model-free)
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Overview

- States, Transitions, Actions, Rewards

Prediction | Given Policy m, Estimate State Value Functions, Action Value Functions
Control | Estimate Optimal Value Functions, Optimal Policy

\_ _J

It’s “planning” It’s “Model-free RL”

Agent knows - Agent observes everything as it
everything goes

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Today's lecture

Markov (Reward) Processes

Markov Decision Processes (MDPs)

Model-free Reinforcement Learning
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Overview

Evaluate Policy, mt Find Best Policy, t*
(Prediction) (Control)

MDP Known Policy
Evaluation

Policy/Value
Iteration

(Model-free) MC and TD
Evaluation
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Overview

Evaluate Policy, mt Find Best Policy, t*
(Prediction) (Control)

4 Planning
MDP Known Policy

Policy/Value

Iteration

Evaluation

o

MDP Unknown
(Model-free)
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Overview

al o

/ EvalvatiaBShey. m) Find Best Policy, T
(Prediction) (Control)

4 Planninc i

MDP Known Policy

Evaluation -

N

MDP Unknown |

(Model-free)

\ v
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Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup
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Iterative Policy Evaluation

m Problem: evaluate a given policy 7
m Solution: iterative application of Bellman expectation backup

BV — Vo — ... — V.
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Iterative Policy Evaluation

m Problem: evaluate a given policy 7
m Solution: iterative application of Bellman expectation backup

BV — Vo — ... — V.

m Using synchronous backups,

m At each iteration K+ 1

m For all states s € S

m Update vii1(s) from vi(s’)

m where s’ is a successor state of s
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Iterative Policy Evaluation

Vir1(S) = Z m(a|s) (Rg + Z Pe vk(s’))

acA s’'eS
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Random Policy: Grid World

1

2

5

6

+

9

10

11

actions

12

13

14

m Undiscounted episodic MDP (v = 1)
m Nonterminal states 1, ..., 14

r= -1
on all transitions

m One terminal state (shown twice as shaded squares)

m Actions leading out of the grid leave state unchanged

m Reward is —1 until the terminal state is reached

m Agent follows uniform random policy

m(n|-) = n(e|) = 7(s|-) = m(w]|-) = 0.25
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Policy Evaluation: Grid World
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Policy Evaluation: Grid World

VI for the
Random Policy

Greedy Policy
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Overview

Evaluate Policy, m Find Best Policy, t*

(Prediction) (Control)
MDP Known | ) Policy/Value
g y Iteration
MDP Unknown . N

(Model-free)
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Improving a Policy!

m Given a policy 7
m Evaluate the policy m

VW(S) = [ [Rt+1 + ’yRH_Q + ‘St — S]
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Improving a Policy!

m Given a policy 7
m Evaluate the policy m

VW(S) = [ [Rt+1 + ’yRH_Q + ‘St — S]

m Improve the policy by acting greedily with respect to v,

' = greedy(v;,)
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Improving a Policy!

m Given a policy 7
m Evaluate the policy m

Vﬂ-(S) = I, [Rt—l—l + "}/RH_Q + ‘St — 5]

m Improve the policy by acting greedily with respect to v,

' = greedy(v;,)

m In Small Gridworld improved policy was optimal, 7’ = 7*
m In general, need more iterations of improvement / evaluation

m But this process of policy iteration always converges to m*
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Policy lteration

starting
V =

Policy evaluation Estimate v,
lterative policy evaluation

Policy improvement Generate 7’ > 7
Greedy policy improvement

evaluation

T |4

ni—>greedy(V)

Improvement
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Policy Improvement

m |If improvements stop,

Gr(s,7'(s)) = max gz (s, 3) = gu (s, 7(5)) = v (s)
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Policy Improvement

m |If improvements stop,

Gr(s,7'(s)) = max gz (s, 3) = gu (s, 7(5)) = v (s)

m [hen the Bellman optimality equation has been satisfied

Vr(S) = max qgx(s, a)
acA
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Policy Improvement

m |If improvements stop,

Gr(s,7'(s)) = max gz (s, 3) = gu (s, 7(5)) = v (s)

m [hen the Bellman optimality equation has been satisfied

Vr(S) = max qgx(s, a)
acA

m Therefore v;(s) = v(s) foralls € S

m so 7 Is an optimal policy
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Value lteration

m Problem: find optimal policy 7

m Solution: iterative application of Bellman optimality backup
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Value lteration

m Problem: find optimal policy 7
m Solution: iterative application of Bellman optimality backup

BV — Vo — ... 7 V4

m Using synchronous backups

m At each iteration kK + 1
m For all states s € S
m Update v, 1(s) from vi(s’)
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Value lteration

Problem: find optimal policy 7
Solution: iterative application of Bellman optimality backup

Vi —7 Vo — ... — Vx

Using synchronous backups

m At each iteration kK + 1
m For all states s € S
m Update v, 1(s) from vi(s’)

m Unlike policy iteration, there is no explicit policy
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Value lteration

Vir1(s) = max (R? + Z P vk(s’))

A s’'eS
Vkt1 = max R? + vP%v
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Today's lecture

Markov (Reward) Processes

Markov Decision Processes (MDPs)

Policy evaluation, planning
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Overview

Evaluate Policy, m Find Best Policy, t*

(Prediction) (Control)
MDP Known | ) )
U o U o
MDP Unknown § )
(Model-free) MC and TD

Evaluation
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Monte Carlo RL

m MC methods learn directly from episodes of experience

m MC is model-free: no knowledge of MDP transitions / rewards

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Monte Carlo RL

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return
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Monte Carlo RL

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards
MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs
m All episodes must terminate
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Monte Carlo Policy Evaluation

m Goal: learn v, from episodes of experience under policy 7
51,A1,Ro,...., S5k ~
m Recall that the return is the total discounted reward:
Gt = Riy1 + YRy + ... + VT_IRT

m Recall that the value function is the expected return:

Vr(S) = E [G; | St = 5]

m Monte-Carlo policy evaluation uses empirical mean return
instead of expected return
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Every-Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s Is visited in an episode,

Increment total return S(s) < S(s) + G;
Value is estimated by mean return V(s) = S(s)/N(s)
m Again, V(s) — vi(s) as N(s) = o

m
N
m Increment counter N(s) < N(s) + 1
N
N

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Blackjack Example

m States (200 of them):

m Current sum (12-21)

m Dealer’'s showing card (ace-10)
m Do | have a “useable” ace? (yes-no)

m Action stand Stop receiving cards (and terminate)
m Action hit : Take another card (no replacement)

m Reward for stand

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

m Reward for hit

m -1 if sum of cards > 21 (and terminate)
m 0 otherwise

m Transitions: automatically hit if sum of cards < 12
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Blackjack Value Function

After 10,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit
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Blackjack Value Function

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit
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Temporal Difference Learning

m D methods learn directly from episodes of experience

m TD is model-free: no knowledge of MDP transitions / rewards

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Temporal Difference Learning

m D methods learn directly from episodes of experience
m TD is model-free: no knowledge of MDP transitions / rewards
m D learns from incomplete episodes, by bootstrapping

m I D updates a guess towards a guess
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MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))
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MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(St) <— V(St) + (Gt — V(St))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)
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MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)

V(S:) < V(5t) + a(Rev1 + vV (Si41) — V(S5:))
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MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)

V(S:) < V(5t) + a(Rev1 + vV (Si41) — V(S5:))

m Rii1 +vV(S:y1) is called the TD target
m 0 = Rer1 +7V(Se1) — V(S:) is called the TD error
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Driving Home Example

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining S 35 40
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43
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Driving Home: MC vs TD

Changes recommended by
Monte Carlo methods (o=1)

45 -
__actual outcome_
A A
, 40
Predicted

total

travel  35-
time

30 -

T ! I 1 | 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation
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Driving Home: MC vs TD

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

45
[ actual outcome_____ actual
! outcome
. 40 .
Predicted Predicted
total total
travel 35 travel
time time
30
| I | I | | T 1 1 1 T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home
Situation Situation
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Large-Scale RL: Value Function Approximation

Reinforcement learning can be used to solve /large problems, e.g.

m Backgammon: 10?2 states

0170

m Computer Go: 1 states

m Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?
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Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)
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Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m It is too slow to learn the value of each state individually
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Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m It is too slow to learn the value of each state individually

m Solution for large MDPs:

m Estimate value function with function approximation

V(s,w) = v, (s)

or G(s,a,w) =~ g.(s, a)

m Generalise from seen states to unseen states
m Update parameter w using MC or TD learning
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Deep-Q learning

* Use deep neural network architectures for Q(s,a)
e EX: Atari game playing (DeepMind)

> Input: pixel images of current state

> Qutput: joystick actions

32 4x4 filcers 256 hidden unics Fully-connected linear
oucput layer

:
i
r'l-

I\II_I—I—I:__..\TT,-.__

4xB4x84

[=3
L
Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear unics
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