U CI University of
California, Irvine

CS 273A: Machine Learning
Winter 2021
Lecture 18: Reinforcement Learning

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Logistics

* Final report due this Thursday

e Evaluations due end of this week

 Review: this Thursday

e Final: next Thursday, March 18, 1:30-3:30pm

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Today's lecture

Markov Decision Processes (MDPs)

Policy evaluation, planning

Model-free Reinforcement Learning

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Agent—-environment interface

e Environment

> EXxecutes the action — changes its state

» Generates next observation ooservtion /| V| " sen

> Supervisor: reveals the reward

 Agent

~ Policy decides on next action z(a, | x,)

> Context can be full state x, = s,

- Or any summary of observable history x, = f(h,)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Property

“The future is independent of the past given the present”

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P)[St_|_1 ‘ St] —]P[St—l-l ‘ Sl,...,St]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P)[St_|_1 ‘ St] —]P)[St_|_1 ‘ Sl,...,St]

m [he state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. [he state is a sufficient statistic of the future

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

7)55/ =P [St_|_]_ = 5/ ‘ St = 5]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

7)55/ =P [St_|_]_ = 5/ ‘ St = 5]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

P = from

where each row of the matrix sums to 1.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)

m S is a (finite) set of states

m P Is a state transition probability matrix,
7)55/ =P [St—l-l =5 ‘ St — S]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student Markov Chain

0.9

0.1

Class\l 0.0

Sleep

Pub

>

1.0

Pass

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MC: Episodes

Sample episodes for Student Markov
Chain starting from $; = C1

51,52,..., 5T

0.5 0.2 1.0
ClasD 0.) > Clasb ge »(Class 3 0.6 >@
0.4

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MC: Episodes

Sample episodes for Student Markov
Chain starting from $; = C1

517 527 e ST

m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m C1 FBFB C1 C2C3PubClFBFEFB
FB C1 C2 C3 Pub C2 Sleep

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MC:

Transition Matrix

Pub

C1 C2

C2
C3
P = Pass

Pub 0.4
FB

Sleep

o o
=N

C3

0.8

0.4

Pass

0.6

Pub

0.4

FB
0.5

0.9

Sleep

0.2

1.0

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Demo Time

http://setosa.io/ev/markov-chains/

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

http://setosa.io/ev/markov-chains/

Markov Reward Process

A Markov reward process is a Markov chain with values.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R,)
m S is a finite set of states

m P Is a state transition probability matrix,
7)55/ = P [St_|_1 = Sl | St — S]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R,)
m S is a finite set of states

m P Is a state transition probability matrix,
7)55/ = P [St_|_1 = Sl | St — S]
m R is a reward function, Rs = E[R;y1 | St = 5|

m ~ is a discount factor, v € [0, 1}

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

The Student MRP

0.9

0.1 A R

0.5 1.0
Class 1 0.5 » Pass
R =-2
R=+10

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rip1 +YRep2 + ... = ZWth+k+1
k=0

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rip1 +YRep2 + ... = ZWth+k+1
k=0

m The discount v € [0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v*R.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rey1 + YRep2 + .0 = Z’YkRH-k—H
k=0

m The discount v € [0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v*R.

m [his values immediate reward above delayed reward.

m 7y close to 0 leads to "myopic” evaluation
m v close to 1 leads to "far-sighted” evaluation

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Why discount?

Most Markov reward and decision processes are discounted. Why?

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards

m Avoids infinite returns in cyclic Markov processes

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards
m Avoids infinite returns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards

O
m Avoids infinite returns in cyclic Markov processes

m Uncertainty about the future may not be fully represented
O

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards
Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m |t is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function

The value function v(s) gives the long-term value of state s

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return

starting from state s

v(s) =E[G; | S; = s}

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MRP: Returns

Sample returns for Student MRP:

Starting from S; = C1 with v = 2

C1 C2 C3 Pass Sleep
Cl1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep
Cl1 FBFB C1 C2C3 Pub C1 ...
FB FB FB C1 C2 C3 Pub C2 Sleep

2

Gi=Ry+vR3+ ...+~ 2Rt

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MRP: Returns

Sample returns for Student MRP:

Starting from 51 = C1 with v = %

Gi=Ry+vR3+ ...+~ 2Rt

C1 C2 C3 Pass Sleep i=—2—2%3—2x7+10% 3 = —2.25

Cl1 FB FB C1 C2 Sleep V1:_2_1*%_1*%_2*%_2*%6 —3.125

C1 C2 C3 Pub C2 C3 Pass Sleep i=—-2—2%3—2xz+1l%xz—2%5... = —3.41
— 1 1 1 1

FB FB FB C1 C2 C3 Pub C2 Sleep

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MRP: Value Function

v(s) for y =0

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MRP: Value Function

v(s) for y =0.9

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MRP: Value Function

v(s) fory =1

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Equations for MRP

The value function can be decomposed into two parts:

m immediate reward R;y1

m discounted value of successor state yv(St+1)

v(s) =E|[G: | St = 3]

— E[Rt 1+ YR: 2+72Rt 3+ .. | St:S]
=E[Rey1+7(Reya +YRey3 +...) | St =]
= E[Ret+1 + vGey1 | St = 5]

= E[Re+1 +v(St+1) | St = 5]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Backup Diagrams for MRP

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Backup Diagrams for MRP

v(s) = Rs + 7 Z Posrv(s)

s’eS

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MRP: Bellman Eq

4.3=-2+0.6*10+ 0.4*%0.8

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Matrix Form of Bellman Eq

The Bellman equation can be expressed concisely using matrices,

v=R-+YPv

where v Is a column vector with one entry per state

—V(l)- R1 P11 ... Pin —V(l)—

|
+
'

v(n) Rn P11 ... Pnn _v(n)_

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Solving the Bellman Equation

m [he Bellman equation is a linear equation
m It can be solved directly:

v=R+v9Pv
(Il —yP)v=TR
v=>—-vP) 'R

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Solving the Bellman Equation

m [he Bellman equation is a linear equation
m It can be solved directly:

v=R+~Pv
(Il —yP)v=TR
v=(—-~P)'R

m Computational complexity is O(n3) for n states

m Direct solution only possible for small MRPs
m [here are many iterative methods for large MRPs, e.g.
m Dynamic programming
m Monte-Carlo evaluation

m Temporal-Difference learning

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Today's lecture

Markov (Reward) Processes

Policy evaluation, planning

Model-free Reinforcement Learning

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Decision Processes

States

+ Rewards

+ Actions

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Recap 1: Markov Process

A Markov Process (or Markov Chain) is a tuple (S, P)

m S is a (finite) set of states

m P is a state transition probability matrix,
7)55/ =P [St_|_1 — S/ I St — 5]

Sleep |<g—

0.5 0.2 1.0
czass\l 05 o Class\Z 0.8 0.9 »@
0.4
0.2
Pub

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Recap 2: Markov Reward Process

A Markov Reward Process is a tuple (S,P, R,)
m S is a finite set of states

m P is a state transition probability matrix,
Pssl =P [St_|_1 =g | St — S]
m R is a reward function, Rs = E[R;+1 | S = 5]

m 7 is a discount factor, v € [0, 1]

Sleep |—

$R=0 \
0.2
R=-2

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Recap 3: Value Function

e Value as expected discounted future reward:

V(S) = F [Rl‘+1 + th+2 + yth+3 + ...+]/T_lRT‘ SZ‘ = S]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A, P,R,~)
m S is a finite set of states

m A is a finite set of actions

m P Is a state transition probability matrix,
Psasz — IP[SH_]_ — S, ‘ St — S,At — a]
m R is a reward function, R =E[R;11 | 5t = s, A: = 3]

m 7 is a discount factor v € [0, 1].

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

The Student MDP

Facebook
R=-I
Quit Facebook
R=0 R=-1

Study
R=+10

0.4

0.2
0.4

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policies

A policy m Is a distribution over actions given states,

w(als) =P[A; =a | 5 =]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policies

A policy m Is a distribution over actions given states,

mw(als) =P[A; =a | 5 =]

m A policy fully defines the behaviour of an agent

m MDP policies depend on the current state (not the history)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policies

A policy m Is a distribution over actions given states,

mw(als) =P[A; =a | 5 =]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ W("St),\V’t > 0

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MPs & MRPs @ MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MPs & MRPs @ MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7
m The state sequence 51, 5,, ... is a Markov process (S, P™)

m [he state and reward sequence 51, R», 5>, ... is a Markov
reward process (S,P™,R™,~)

m where

;r,s’ — ZTF(Q‘S) :s’

acA

RT = Z m(als)R:

acA

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

Vﬂ-(S) — {:ﬂ- [Gt ‘ St — 5]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) = E; [G: | S¢ = 5]

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy m

gr(s,a) =E;[G: | St = s, Ar = 3]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MDP: Value Function

Facebook va(s) for n(als)=0.5, y =1
R=-I

Facebook
—_]

Study
R=+10

Pub
R=+I

0.4
0.2

0.4

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Ex [Ret1 + YVa(Sts1) | St = 5]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Ex [Ret1 + YVa(Sts1) | St = 5]

The action-value function can similarly be decomposed,

q7T(57 a) — {I’W [Rt+1 -+ fyqﬁ(st-i—la At-l-l) ‘ St = 35, At — a]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Expected Equation, V

Vw(s) — Z W(a‘s)qw(sv a)

acA

Bellman Expected Equation, Q

Bellman Expected Equation, V

Student MDP: Bellman Exp Eq.

Facebook 74=05*(1+02*-1.3+04*2.7+04%*7.4)
R=-1I + 0.5 *10
0 |-
A
Quit Facebook
R=0 R=-1
Study
Stud -
73 34 R=+10

R=-2

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Expected Equation, Q

Gr(s,a) = Rs+~ Z P Z m(a'|s")qr(s’,)

s’'eS acA

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Exp Eqg: Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R" + P vy

with direct solution

Ve = (I — 777”)_1 R™

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vr(S)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vi (S)

The optimal action-value function g(s, a) is the maximum
action-value function over all policies

g« (s, a) = max q,(s, a)
s

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vi (S)

The optimal action-value function g(s, a) is the maximum
action-value function over all policies

g« (s, a) = max q,(s, a)
s

m [he optimal value function specifies the best possible
performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MDP: Optimal V

Facebook v(s) for y =1
R=-1

A
Quit Facebook
R=0 R=-1
Stud
(5) 3%
R=-2
Pub
R=+I
0.4
0.2

0.4

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MDP: Optimal Q

Facebook q «(s,a) for y =1

Quit

R=0

I = Study
R=+10
qx =10

Pub
R=+I
0.4 qx =8.4

0.2
0.4

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Optimal Policy

Define a partial ordering over policies

> 7w if ve(s) > v (s),Vs

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Optimal Policy

Define a partial ordering over policies

> 7w if ve(s) > v (s),Vs

For any Markov Decision Process

m [here exists an optimal policy m, that is better than or equal
to all other policies, ., > w, V1

m All optimal policies achieve the optimal value function,
Vi, () = va(5)

m All optimal policies achieve the optimal action-value function,
dr. (57 a) — q*(s, a)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Finding Optimal Policy

An optimal policy can be found by maximising over g.(s, a),

ac A

(a[5) 1 if a = argmax g«(s, a)
m«(a|s) =
0 otherwise

m [here is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MDP: Optimal Policy

Facebook Tx(als) fory =1
R=-1
qx =5
0 |=
A
Quit Facebook Sleep
R=0 R=- R=0
qdx = qd% = qx = Study

Stud Stud R=+10

Pub
R=+I

0.4 g% =8.4
0.2
0.4

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Optimality Eq, V

The optimal value functions are recursively related by the Bellman
optimality equations:

Vi (S) = max g.(s, a)
d

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Optimality Eq, Q

g«(s,a) = R+~ Z o Vi(s

s’eS

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Optimality Eq, V

Vi(S) = max Re 4+ Z Poivy(s

s’eS

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Student MDP: Bellman Optimality

Facebook 6 =max {-2+8, -1+6
R=-1
0
A
Quit Facebook
R=0 R=-I

@ Study
R=-2

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Solving Bellman Equations

 Not easy...
> Not a linear equation

» No “closed-form” solution

~ We may not know &, and £ (model-free)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Overview

- States, Transitions, Actions, Rewards

Prediction | Given Policy m, Estimate State Value Functions, Action Value Functions
Control | Estimate Optimal Value Functions, Optimal Policy

_ _J

It’s “planning” It’s “Model-free RL”

Agent knows - Agent observes everything as it
everything goes

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Today's lecture

Markov (Reward) Processes

Markov Decision Processes (MDPs)

Model-free Reinforcement Learning

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Overview

Evaluate Policy, mt Find Best Policy, t*
(Prediction) (Control)

MDP Known Policy
Evaluation

Policy/Value
Iteration

(Model-free) MC and TD
Evaluation

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Overview

Evaluate Policy, mt Find Best Policy, t*
(Prediction) (Control)

4 Planning
MDP Known Policy

Policy/Value

Iteration

Evaluation

o

MDP Unknown
(Model-free)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Overview

al o

/ EvalvatiaBShey. m) Find Best Policy, T
(Prediction) (Control)

4 Planninc i

MDP Known Policy

Evaluation -

N

MDP Unknown |

(Model-free)

\ v

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Iterative Policy Evaluation

m Problem: evaluate a given policy 7
m Solution: iterative application of Bellman expectation backup

BV — Vo — ... — V.

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Iterative Policy Evaluation

m Problem: evaluate a given policy 7
m Solution: iterative application of Bellman expectation backup

BV — Vo — ... — V.

m Using synchronous backups,

m At each iteration K+ 1

m For all states s € S

m Update vii1(s) from vi(s’)

m where s’ is a successor state of s

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Iterative Policy Evaluation

Vir1(S) = Z m(a|s) (Rg + Z Pe vk(s’))

acA s’'eS

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Random Policy: Grid World

1

2

5

6

+

9

10

11

actions

12

13

14

m Undiscounted episodic MDP (v = 1)
m Nonterminal states 1, ..., 14

r= -1
on all transitions

m One terminal state (shown twice as shaded squares)

m Actions leading out of the grid leave state unchanged

m Reward is —1 until the terminal state is reached

m Agent follows uniform random policy

m(n|-) = n(e|) = 7(s|-) = m(w]|-) = 0.25

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy Evaluation: Grid World

k=0
25%
probability of
transitioning -1

into field
with value 0

\ O.O
1

k=72

VL for the
Random Policy

0.0

0.0

0.0

0.0

Greedy Policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

-1.7

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

wrt Uk
£ A n
€ > |12 |1
v v v
o A - R
[[|1
Y v Y L4
B o) 4
 amend b e D e e
Y v v L4
4 & &
I | [
¥ v ¥
B s
— |1
v v
t i B n
[|1
v v v
) o o
 am md R e Do oS]
v v ¥
4 o
| —
¥ v
— |« |
— —

random
policy

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy Evaluation: Grid World

VI for the
Random Policy

Greedy Policy
wrt Uk

k

10

0.0

2.4

-2.9

-3.0

!

-2.4

-2.9

-3.0

-2.9

|

-2.9

-3.0

-2.9

2.4

—

|

-3.0

-2.9

-2.4

0.0

P
t,

3
r

0.0

-6.1

-8.4

-9.0

-6.1

-1.7

-8.4

-8.4

<+

-8.4

-8.4

-1.7

-6.1

—

-9.0

-8.4

-6.1

0.0

P
t,

“
r

0.0

-14.

-20.

-22.

-14.

-18.

-20.

-20.

-—

-20.

|-18.

-14.

—

-22.

-20.

-14.

0.0

.
t,

!
r

optimal
policy

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Overview

Evaluate Policy, m Find Best Policy, t*

(Prediction) (Control)
MDP Known |) Policy/Value
g y Iteration
MDP Unknown . N

(Model-free)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Improving a Policy!

m Given a policy 7
m Evaluate the policy m

VW(S) = [[Rt+1 + ’yRH_Q + ‘St — S]

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Improving a Policy!

m Given a policy 7
m Evaluate the policy m

VW(S) = [[Rt+1 + ’yRH_Q + ‘St — S]

m Improve the policy by acting greedily with respect to v,

' = greedy(v;,)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Improving a Policy!

m Given a policy 7
m Evaluate the policy m

Vﬂ-(S) = I, [Rt—l—l + "}/RH_Q + ‘St — 5]

m Improve the policy by acting greedily with respect to v,

' = greedy(v;,)

m In Small Gridworld improved policy was optimal, 7’ = 7*
m In general, need more iterations of improvement / evaluation

m But this process of policy iteration always converges to m*

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy lteration

starting
V =

Policy evaluation Estimate v,
lterative policy evaluation

Policy improvement Generate 7’ > 7
Greedy policy improvement

evaluation

T |4

ni—>greedy(V)

Improvement

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy Improvement

m |If improvements stop,

Gr(s,7'(s)) = max gz (s, 3) = gu (s, 7(5)) = v (s)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy Improvement

m |If improvements stop,

Gr(s,7'(s)) = max gz (s, 3) = gu (s, 7(5)) = v (s)

m [hen the Bellman optimality equation has been satisfied

Vr(S) = max qgx(s, a)
acA

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy Improvement

m |If improvements stop,

Gr(s,7'(s)) = max gz (s, 3) = gu (s, 7(5)) = v (s)

m [hen the Bellman optimality equation has been satisfied

Vr(S) = max qgx(s, a)
acA

m Therefore v;(s) = v(s) foralls € S

m so 7 Is an optimal policy

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value lteration

m Problem: find optimal policy 7

m Solution: iterative application of Bellman optimality backup

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value lteration

m Problem: find optimal policy 7
m Solution: iterative application of Bellman optimality backup

BV — Vo — ... 7 V4

m Using synchronous backups

m At each iteration kK + 1
m For all states s € S
m Update v, 1(s) from vi(s’)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value lteration

Problem: find optimal policy 7
Solution: iterative application of Bellman optimality backup

Vi —7 Vo — ... — Vx

Using synchronous backups

m At each iteration kK + 1
m For all states s € S
m Update v, 1(s) from vi(s’)

m Unlike policy iteration, there is no explicit policy

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value lteration

Vir1(s) = max (R? + Z P vk(s’))

A s’'eS
Vkt1 = max R? + vP%v

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Today's lecture

Markov (Reward) Processes

Markov Decision Processes (MDPs)

Policy evaluation, planning

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Overview

Evaluate Policy, m Find Best Policy, t*

(Prediction) (Control)
MDP Known |))
U o U o
MDP Unknown §)
(Model-free) MC and TD

Evaluation

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Monte Carlo RL

m MC methods learn directly from episodes of experience

m MC is model-free: no knowledge of MDP transitions / rewards

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Monte Carlo RL

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Monte Carlo RL

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards
MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs
m All episodes must terminate

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Monte Carlo Policy Evaluation

m Goal: learn v, from episodes of experience under policy 7
51,A1,Ro,...., S5k ~
m Recall that the return is the total discounted reward:
Gt = Riy1 + YRy + ... + VT_IRT

m Recall that the value function is the expected return:

Vr(S) = E [G; | St = 5]

m Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Every-Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s Is visited in an episode,

Increment total return S(s) < S(s) + G;
Value is estimated by mean return V(s) = S(s)/N(s)
m Again, V(s) — vi(s) as N(s) = o

m
N
m Increment counter N(s) < N(s) + 1
N
N

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Blackjack Example

m States (200 of them):

m Current sum (12-21)

m Dealer’'s showing card (ace-10)
m Do | have a “useable” ace? (yes-no)

m Action stand Stop receiving cards (and terminate)
m Action hit : Take another card (no replacement)

m Reward for stand

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

m Reward for hit

m -1 if sum of cards > 21 (and terminate)
m 0 otherwise

m Transitions: automatically hit if sum of cards < 12

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Blackjack Value Function

After 10,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Blackjack Value Function

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Temporal Difference Learning

m D methods learn directly from episodes of experience

m TD is model-free: no knowledge of MDP transitions / rewards

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Temporal Difference Learning

m D methods learn directly from episodes of experience
m TD is model-free: no knowledge of MDP transitions / rewards
m D learns from incomplete episodes, by bootstrapping

m I D updates a guess towards a guess

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(St) <— V(St) + (Gt — V(St))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)

V(S:) < V(5t) + a(Rev1 + vV (Si41) — V(S5:))

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)

V(S:) < V(5t) + a(Rev1 + vV (Si41) — V(S5:))

m Rii1 +vV(S:y1) is called the TD target
m 0 = Rer1 +7V(Se1) — V(S:) is called the TD error

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Driving Home Example

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining S 35 40
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Driving Home: MC vs TD

Changes recommended by
Monte Carlo methods (o=1)

45 -
__actual outcome_
A A
, 40
Predicted

total

travel 35-
time

30 -

T ! I 1 | 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Driving Home: MC vs TD

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

45
[actual outcome_____ actual
! outcome
. 40 .
Predicted Predicted
total total
travel 35 travel
time time
30
| I | I | | T 1 1 1 T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home
Situation Situation

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Large-Scale RL: Value Function Approximation

Reinforcement learning can be used to solve /large problems, e.g.

m Backgammon: 10?2 states

0170

m Computer Go: 1 states

m Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m It is too slow to learn the value of each state individually

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Function Approximation

m So far we have represented value function by a lookup table

m Every state s has an entry V/(s)
m Or every state-action pair s, a has an entry Q(s, a)

m Problem with large MDPs:

m There are too many states and/or actions to store in memory
m It is too slow to learn the value of each state individually

m Solution for large MDPs:

m Estimate value function with function approximation

V(s,w) = v, (s)

or G(s,a,w) =~ g.(s, a)

m Generalise from seen states to unseen states
m Update parameter w using MC or TD learning

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Deep-Q learning

* Use deep neural network architectures for Q(s,a)
e EX: Atari game playing (DeepMind)

> Input: pixel images of current state

> Qutput: joystick actions

32 4x4 filcers 256 hidden unics Fully-connected linear
oucput layer

:
i
r'l-

I\II_I—I—I:__..\TT,-.__

4xB4x84

[=3
L
Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear unics

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

