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Logistics

staff

• Emad Naeini is joining the course staff


• Emad's office hours:


• https://calendly.com/ekasaeya/cs-273a-emad-s-office-hour

assignments
• Assignment 1 due today


• Assignment 2 to be published next week

https://calendly.com/ekasaeya/cs-273a-emad-s-office-hour
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Today's lecture

ROC curves

Linear regression

Gradient descent
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Terminology

• Class prior probabilities: 


‣ Prior = before seeing any features


• Class-conditional probabilities: 


• Class posterior probabilities: 


• Bayes' rule: 


• Law of total probability: 

p(y)

p(x |y)

p(y |x)

p(y |x) =
p(y)p(x |y)

p(x)

p(x) = ∑
y

p(x, y) = ∑
y

p(y)p(x |y)
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Measuring error
• Confusion matrix: all possible values of 


• Binary case: true / false (correct or not) positive / negative (prediction)


‣ Accuracy: 


‣ True positive rate (TPR):  (aka, sensitivity)


‣ False negative rate (FNR): 


‣ False positive rate (FPR): 


‣ True negative rate (TNR):  (aka, specificity)

(y, ̂y)

TP + TN
TP + TN + FP + FN

= 1 − error rate

̂p( ̂y = 1 |y = 1) = #(y = 1, ̂y = 1)
#(y = 1)

̂p( ̂y = 0 |y = 1) = #(y = 1, ̂y = 0)
#(y = 1)

̂p( ̂y = 1 |y = 0) = #(y = 0, ̂y = 1)
#(y = 0)

̂p( ̂y = 0 |y = 0) = #(y = 0, ̂y = 0)
#(y = 0)

Predict 0 Predict 1

Y=0 380 5
Y=1 338 3

TN

FN

FP

TP
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• Not all errors are equally bad


‣ Do some cost more? (e.g. red / green light, diseased / healthy)


• False negative rate: ; false positive rate: 
p(y = 1, ̂y = 0)

p(y = 1)
p(y = 0, ̂y = 1)

p(y = 0)

Types of error

“positive”

“negative”

false positive

false negative
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• Weight different costs differently


‣ 


• Increase  to prefer class 0 — increase FNR, decrease FPR

α ⋅ p(y = 0)p(x |y = 0) ≶ p(y = 1)p(x |y = 1)

α

Cost of error

false positive

false negative
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• Weight different costs differently


‣ 


• Decrease  to prefer class 1 — decrease FNR, increase FPR

α ⋅ p(y = 0)p(x |y = 0) ≶ p(y = 1)p(x |y = 1)

α

Cost of error

false positive

false negative
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Bayes-optimal decision

• Maximum posterior decision: 


‣ Optimal for the error-rate (0–1) loss: 


• What if we have different cost for different errors? , 


‣ 


• Bayes-optimal decision: 


‣ Log probability ratio: 

̂p(y = 0 |x) ≶ ̂p(y = 1 |x)

𝔼x,y∼p[ ̂y(x) ≠ y]

αFP αFN

ℒ = 𝔼x,y∼p[αFP ⋅ #(y = 0, ̂y(x) = 1) + αFN ⋅ #(y = 1, ̂y(x) = 0)]

αFP ⋅ ̂p(y = 0 |x) ≶ αFN ⋅ ̂p(y = 1 |x)

log
̂p(y = 1 |x)
̂p(y = 0 |x)

≶ log
αFP
αFN

= α
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• Often models have a “knob” for tuning preference over classes (e.g. )


‣ Changing the decision boundary to include more instances in preferred class


• Characteristic performance curve:


α

ROC curve

log
̂p(y = 1 |x)
̂p(y = 0 |x)

≶ α

small  
always 

α
̂y = 1

large  
always 

α
̂y = 0

random guess

Bayes-optimal
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Demonstration

• http://www.navan.name/roc

http://www.navan.name/roc
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• Which classifier performs “better”?


‣ A is better for high specificity


‣ B is better for high sensitivity


‣ Need single performance measure


• Area Under Curve (AUC)


‣ 0.5 ≤ AUC ≤ 1


‣ AUC = 0.5: random guess


‣ AUC = 1: no errors

Comparing classifiers

small  
always 

α
̂y = 1

large  
always 

α
̂y = 0

classifier A

classifier B
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Discriminative vs. probabilistic predictions

• Probabilistic learning gives more nuanced prediction


‣ Can use  to find  (if argmax is feasible)


‣ Express confidence in predicting 


‣ Conditional models: ; vs. generative models: 


- Can be used to generate 


- Bayes classifiers, Naïve Bayes classifiers are generative

p(y |x) ̂y(x) = arg max
y

p(y |x)

̂y

p(y |x) p(x, y)

x

discriminative predictions ̂y(x) probabilistic predictions p(y |x)
>> learner = gaussianBayesClassify(X,Y)  % build a classifier

>> Ysoft = predictSoft(learner, X)       %  M x C matrix of confidences

>> plotSoftClassify2D(learner,X,Y)       %  shaded confidence plot
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Gaussian models

• Bayes-optimal decision:


‣ Scale each Gaussian by prior  and relative cost of error


‣ Choose the larger scaled probability density


• Decision boundary = where scaled probabilities equal

p(y)
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Gaussian models
• Consider binary classifier with Gaussian conditionals


‣ 


‣ Assume same covariance 


• What is the shape of the decision boundary ?


 

p(x |y = c) = 𝒩(x; μc, Σc) = (2π)− d
2 |Σc |− 1

2 exp (− 1
2 (x − μc)⊺Σ−1

c (x − μc))
Σ0 = Σ1

p(y = 0 |x) = p(y = 1 |x)

α ≶ log
p(y = 1)p(x |y = 1)
p(y = 0)p(x |y = 0)

=
p(y = 1)
p(y = 0)

+ const

+ 1
2 (x⊺Σ−1x − 2μ⊺

0Σ−1x + μ⊺
0Σ−1μ0)

− 1
2 (x⊺Σ−1x − 2μ⊺

1Σ−1x + μ⊺
1Σ−1μ1)

= 1
2 (μ1 − μ0)⊺Σ−1x + const

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

linear!
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Gaussian models

• Isotropic covariance: 


‣ Decision: 


‣ Decision boundary perpendicular to segment between means


• General (but equal) covariance:


‣ Decision boundary linear, but


- scaled, if  has different eigenvalues


- rotated, if  is not diagonal

Σ = σ2Id

(μ1 − μ0)⊺x ≶ α

Σ

Σ

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1

0

1

2

3

4

Σ = [3 0
0 .25]
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Today's lecture

ROC curves

Linear regression

Gradient descent
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Machine learning

Learner /
Model /

Agent


            fθθ

Training 
data

𝒟

Learning 
algorithmtrain

Score /

Loss

predictTest

data evaluate



Roy Fox | CS 273A | Winter 2021 | Lecture 4: Linear Regression

Linear regression

• Decision function  is linear, 


•  is stored by its parameters 

f : x ↦ y f(x) = θ0 + θ1x

f θ = [θ0 θ1]
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Linear regression

• More generally: 


• Define dummy feature  for the shift / bias 


‣
; where 

̂y(x) = θ0 + θ1x1 + θ2x2 + ⋯θnxn

x0 = 1 θ0

̂y(x) = θ⊺x x =

x0
x1
⋮
xn

θ =

θ0

θ1
⋮
θn

∈ ℝn+1
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Machine learning

Learner /
Model /

Agent


            fθθ

Training 
data

𝒟

Learning 
algorithmtrain

Score /

Loss

predictTest

data evaluate
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Measuring error

• Error / residual: 


• Mean square error (MSE): 

ϵ = y − ̂y

1
m ∑

j

(ϵ( j))2 =
1
m ∑

j

(y( j) − ̂y( j))2

observation y

prediction 
̂y = f(x)

ϵ
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Mean square error

• 


• Why MSE?


‣ Mathematically and computationally convenient (we'll see why)


‣ Estimates the variance of the residuals


‣ Corresponds to log-likelihood under Gaussian noise model


ℒθ =
1
m ∑

j

(y( j) − ̂y(x( j)))2 =
1
m ∑

j

(y( j) − θ⊺x( j))2

log p(y |x) = log 𝒩(y; θ⊺x, σ2) = − 1
2σ2 (y − θ⊺x)2 + const
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MSE of training data

•
Training data matrix: 


• Training labels vector: 


• Prediction: 


• Training MSE: 

X =

x(1)
0 ⋯ x(m)

0

x(1)
1 ⋯ x(m)

1
⋮ ⋮

x(1)
n ⋯ x(m)

n

∈ ℝ(n+1)×m

y = [y(1) ⋯ y(m)]
̂y = [ ̂y(1) ⋯ ̂y(m)] = θ⊺X

ℒθ(𝒟) =
1
m ∑

j

(y( j) − θ⊺x( j))2 =
1
m

(y − θ⊺X)(y − θ⊺X)⊺

# Python / NumPy:

e = y - theta.T @ X

loss = (e @ e.T) / m  # == np.mean( e ** 2 )
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Machine learning

Learner /
Model /

Agent


            fθθ

Training 
data

𝒟

Learning 
algorithmtrain

Score /

Loss

predictTest

data evaluate
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Loss landscape
• 
ℒθ(𝒟) = 1

m (y − θ⊺X)(y − θ⊺X)⊺ = 1
m (θ⊺XX⊺θ − 2yX⊺θ + yy⊺)

ℒθ

θ0 θ0

θ0 θ0

θ1 θ1

θ1 θ1

quadratic!

minimum loss
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Today's lecture

ROC curves

Linear regression

Gradient descent
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Gradient descent

• How to vary  to improve the loss ?


‣ Find a direction in parameter space in which  is decreasing


• Derivative 


‣ Positive = loss increases with 


‣ Negative = loss decreases with 

θ ∈ ℝn+1 ℒθ

ℒθ

∂θℒθ = lim
δθ→0

ℒθ+δθ − ℒθ

δθ

θ

θ

?
ℒθ

θ
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• How to vary  to improve the loss ?


‣ Find a direction in parameter space in which  is decreasing


• Derivative 


‣ Positive = loss increases with 


‣ Negative = loss decreases with 

θ ∈ ℝn+1 ℒθ

ℒθ

∂θℒθ = lim
δθ→0

ℒθ+δθ − ℒθ

δθ

θ

θ

ℒθ

θ

Gradient descent
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Gradient descent in higher dimension
• Gradient vector: 


• Taylor expansion: 


‣ If we take a small step , the best one is in direction 


‣ Gradient = direction of steepest ascent (negative = steepest descent)


∇θℒθ = [∂θ0
ℒθ ⋯ ∂θn

ℒθ]
ℒ(θ + δθ) = ℒ(θ) + (δθ)⊺ ∇θℒθ + o(∥δθ∥2)

δθ ∇θℒθ

−∇θℒθ
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Gradient Descent

• Initialize 


• Do


‣ 


• While 


• Learning rate: 


‣ Can change in each iteration

θ

θ ← θ − α∇θℒθ

∥α∇θℒθ∥ ≤ ϵ

α

ℒθ

θ
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Gradient for the MSE loss

• MSE: 


• 


‣ 


‣ 


• 


• Can also be seen directly from


ℒθ = 1
m ∑

j

(ϵ( j))2 = 1
m ∑

j

(y( j) − θ⊺x( j))2

∂θi
ℒθ = 1

m ∑
j

∂θi
(ϵ( j))2 = 1

m ∑
j

2ϵ( j)∂θi
ϵ( j)

∂θi
(y( j) − θ⊺x( j)) = − ∂θi

θix
( j)
i + 0 in the other terms = x( j)

i

∂θi
ℒθ = − 2

m ∑
j

ϵ( j)x( j)
i = − 2

m (y − θ⊺X)X⊺
i

∇θℒθ = − 2
m (y − θ⊺X)X⊺

ℒθ = 1
m (y − θ⊺X)(y − θ⊺X)⊺ = 1

m (θ⊺XX⊺θ − 2yX⊺θ + yy⊺)

error

sensitivity to θ
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Gradient Descent — further considerations
• GD is a very general algorithm


‣ We'll use it often


‣ Much of the engine for recent advances in ML


• Issues:


‣ Can get stuck in local minima


- Worse — can get stuck in saddle points,  with improvement direction


‣ Can be slow to converge, sensitive to initialization


‣ How to choose step size / learning rate?


- Constant? 1/iteration? Line search? Newton's method?

∇θℒθ = 0

ℒθ
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Logistics

staff

• Emad Naeini is joining the course staff


• Emad's office hours:


• https://calendly.com/ekasaeya/cs-273a-emad-s-office-hour

assignments
• Assignment 1 due today


• Assignment 2 to be published next week

https://calendly.com/ekasaeya/cs-273a-emad-s-office-hour

