
CS 295: Optimal Control and Reinforcement Learning
Winter 2020

Assignment 4

due Monday, March 23 2020, 11pm

Part I

1. Consider a model-based reinforcement learning algorithm that estimates a model p̂ of
the true dynamics p, and then uses it for planning. In all parts of this question, we
assume that we can plan optimally in the estimated model, with the true non-negative
reward function.

(a) Suppose that the estimated model is guaranteed to have

}pps1|s, aq ´ p̂ps1|s, aq}1 ď ε,

for all s and a, and that the initial distribution pps0q is known.
Show that |Epπ rrts ´ Ep̂π rrts| ď εtrmax, for any policy πpa|sq.
Hint: show by induction that }pπpstq ´ p̂πpstq}1 ď εt.
Bonus: show the tighter bound |Epπ rrts ´ Ep̂π rrts| ď 1

2
εtrmax.

(b) Conclude that planning in p̂ is near-optimal: Epπ rRs ´Epπ̂ rRs ď 2 γ
p1´γq2

εrmax (or
without the 2, given the bonus question above), where π is optimal for p and π̂ is
optimal for p̂. Note that

ř

t γ
tt “ γ

p1´γq2
.

(c) Suppose that the state space is continuous, and that both the true dynamics f
and the model f̂ are deterministic, with a known initial state s0. Determinism
implies that there exists an optimal open-loop policy, i.e. a sequence of actions.
Suppose that the true dynamics, the model, and the reward function are all
Lipschitz, i.e. there exists a constant L such that }fps, aq ´ fpŝ, aq} ď L}s ´ ŝ},
for all s, ŝ, and a, and similarly for f̂ ; and for r, i.e. |rps, aq ´ rpŝ, aq| ď L}s´ ŝ}.
Suppose L ą 1. Suppose further that the estimated model is guaranteed to have

}fps, aq ´ f̂ps, aq} ď ε,

for all s and a.
Let rt and r̂t be the rewards in step t when the same sequence of actions is taken
in f and, respectively, in f̂ . Show that |rt ´ r̂t| ď Lt´1

L´1
Lε.
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2. A finite-state controller (FSC) is a finite-state machine with state space M; an internal
state update distribution, upon observing ot, from internal state mt´1 to mt with
probability πpmt|mt´1, otq; and an action emission distribution πpat|mtq.

Given a FSC and POMDP dynamics ppst`1|st, atq and ppot|stq, write down a forward
recursion for computing the joint distribution of mt´1 and st; that is, show how to
compute pπpmt, st`1q using p, π, and pπpmt´1, stq. Show how to recover from this joint
distribution the predictive belief ppst|mt´1q.

Given also a reward function rpst, atq, write down a backward recursion for evaluating
Vπpst,mtq; that is, show how to compute Vπpst,mtq using p, π, r, and Vπpst`1,mt`1q.

3. Recall that in the A2C algorithm we have an actor πθ and a critic Vφ. For on-policy
experience ps, a, r, s1q, with advantage Aφ “ r ` γVφ̄ps

1q ´ Vφpsq, we have a value loss
Lφ “ A2

φ and a policy gradient ∇θ log πθpa|sqAφ.

Also recall that, in the “control as inference” framework, we optimally have that the
policy is πpa|sq “ π0pa|sq expβQps,aq

expβV psq
, and therefore

Qps, aq “ V psq `
1

β
log

πpa|sq

π0pa|sq
. (1)

In the SQL algorithm, the loss is the square Bellman error pr ` γVθ̄ps1q ´Qθps, aqq
2.

Consider implementing the SQL algorithm by parametrizing Qθ,φ as the function (1)
of an actor πθ and a critic Vφ. Write down the SQL loss for on-policy experience
ps, a, r, s1q, in terms of this Qθ,φ. Expand the expression of its gradient, to show that
it is equivalent to the gradient in A2C.

What is the equivalent of β in A2C?
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