CS 295: Optimal Control and Reinforcement Learning Winter 2020

Lecture 1: Introduction

Roy Fox
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

Course overview and general information

What is reinforcement learning (RL) and why study it

Basic RL concepts

Course description for CS 295

- This course is an introduction to optimal control and reinforcement learning
- The course will consist mostly of lectures and assigned reading
- There will be assignments: reading, thinking, and some coding
- Grading based on assignments and participation
- Office hours: Fridays 9–11am, DBH 4064
- Course announcements: piazza.com/uci/winter2020/cs295rl/home

Course schedule (subject to updates)

Week	Tuesday	Thursday
(1) Jan 6	Introduction	Imitation learning
(2) Jan 13	Optimal control	Stochastic optimal control
(3) Jan 20	Planning	Temporal-difference methods
(4) Jan 27	Partial observability	RL with function approximation
(5) Feb 3	Policy-gradient methods	Policy-gradient methods (cont.)
(6) Feb 10	Actor-critic methods	Model-based methods
(7) Feb 17	Inverse RL	Control as inference
(8) Feb 24	Structured control	Multi-task and meta-learning
(9) Mar 2	No lecture (Super Tuesday)	Exploration
(10) Mar 9	RL systems	Open problems

Resources

- Sergey Levine [course]: http://rail.eecs.berkeley.edu/deeprlcourse/
- François-Lavet et al. [book]: https://www.nowpublishers.com/article/Download/ MAL-071
- Bertsekas [course, 2017/19 books]: http://web.mit.edu/dimitrib/www/RLbook.html
- OpenAl [tutorial]: https://spinningup.openai.com/
- David Silver [course]: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- Sutton & Barto [book]: http://www.incompleteideas.net/book/RLbook2018.pdf
- Szepesvári [book]: https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Compute resources

- Much of your development work can be handled by your laptop or desktop
 - Always test your code on a smaller challenge that "should" work
- When more compute resources are required:
 - Campus-wide cluster: https://hpc.oit.uci.edu/
 - Google Colab: https://colab.research.google.com/
 - We may be able to help with AWS / Google Cloud credits

What is Machine Learning

- Artificial Intelligence:
 - Can we build a machine with a property we would call "intelligence"?
- Machine Learning:
 - Can we build AI without explicitly figuring out all the details of its working?
 - Solution = problem-agnostic algorithm + problem-specific data
 - Learning = Statistics + Algorithms
 - ML = Learning + Implementation + Data

ML examples

Face recognition

Speech synthesis

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Medical diagnosis

What is Reinforcement Learning

- Intelligence appears in interaction with a complex system, not in isolation
- An agent interact with an environment
- Performs sequential decision making:
 - Sense environment state s
 - Take action a
 - Repeat
- Success measured by the accumulation of reward r(s, a)
 - As opposed to the "correct" action (that would be Imitation Learning)

RL examples

Gameplay

Spacial navigation

Dextrous manipulation

Basic RL concepts

- Dynamics $p(s_{t+1}|s_t, a_t)$
- Policy $\pi(a_t|s_t)$
- Trajectory $p(s_0, a_0, s_1, a_1, \ldots) = p(s_0) \prod_t \pi(s_t | a_t) p(s_{t+1} | s_t, a_t)$
- Return $R = \sum_{t} \gamma^t r(s_t, a_t)$ $0 \leqslant \gamma' < 1$
- Value $V(s) \stackrel{\iota}{=} \mathbb{E}[R|s_0 = s]$ $Q(s,a) = \mathbb{E}[R|s_0 = s, a_0 = a]$

Learning policies

	Explicit	Implicit
	Programming	Imitation Learning
"how"		
	Specification	Reinforcement Learning
"what"	→ -	

RL is ML... but special

- Test distribution of trajectories depends on the policy!
 - Cannot avoid train-test mismatch
 - ► To reduce it, learner interacts with the environment to collect data = exploration
 - Balanced exploration is challenging
- Policy space is strewn with local optima
 - Actions in a sequence need to be coordinated
- A good policy may require memory
 - Learning to remember is hard!

RL — the frontier

- How to perform better exploration?
- How to model / structure the agent's policy? in particular, its memory
 - Hierarchical RL
- How to jointly learn multiple tasks?
- How to learn from more kinds of data?
 - RL + imitation learning / NLP / vision / program synthesis
- How to interface with a human teacher?

System state

System = agent + environment

Optimality principle

- **Proposition:** If ξ is a shortest path from s to s_f that goes through s', then a suffix of ξ is a shortest path from s' to s_f
- It follows that for all $s \neq s_f$

$$V(s) = min_a \{ 1 + V(f(s, a)) \}$$

The optimal policy is

$$\pi(s) = \operatorname{argmin}_{a} \{ 1 + V(f(s, a)) \}$$

Algorithm 1 Bellman-Ford

$$V(s_f) \leftarrow 0$$

 $V(s) \leftarrow \infty \quad \forall s \in S \setminus \{s_f\}$
for ℓ from 1 to $|S| - 1$ **do**
 $V(s) \leftarrow \min_{a \in A} \{1 + V(f(s, a))\} \quad \forall s \in S \setminus \{s_f\}$

Horizon classes

• Finite:

$$R = \sum_{t=0}^{T-1} r(s_t, a_t)$$

• Infinite:

$$R = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} r(s_t, a_t)$$

Discounted:

$$R = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

Episodic

$$R = \sum_{t=0}^{T-1} r(s_t, a_t) \qquad \text{s.t. } s_T = s_f$$

Recap

Week	Tuesday	Thursday
(1) Jan 6	Introduction	Imitation learning
(2) Jan 13	Optimal control	Stochastic optimal control
(3) Jan 20	Planning	Temporal-difference methods
(4) Jan 27	Partial observability	RL with function approximation
(5) Feb 3	Policy-gradient methods	Policy-gradient methods (cont.)
(6) Feb 10	Actor-critic methods	Model-based methods
(7) Feb 17	Inverse RL	Control as inference
(8) Feb 24	Structured control	Multi-task and meta-learning
(9) Mar 2	No lecture (Super Tuesday)	Exploration
(10) Mar 9	RL systems	Open problems