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Today's lecture

 Course overview and general information
 What is reinforcement learning (RL) and why study it

 Basic RL concepts
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Course description for CS 295

* This course is an introduction to optimal control and reinforcement learning
 The course will consist mostly of lectures and assigned reading

* There will be assignments: reading, thinking, and some coding

 Grading based on assignments and participation

e Office hours: Fridays 9—-11am, DBH 4064

 Course announcements: piazza.com/uci/winter2020/cs295rl/home
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COU rse SChed U Ie (subject to updates)

Week Tuesday Thursday
(1) Jan 6 Introduction Imitation learning
(2) Jan 13 Optimal control Stochastic optimal control
(3) Jan 20 Planning Temporal-difference methods
(4) Jan 27 Partial observability RL with function approximation
(5) Feb 3 Policy-gradient methods Policy-gradient methods (cont.)
(6) Feb 10 Actor—critic methods Model-based methods
(7) Feb 17 Inverse RL Control as inference
(8) Feb 24 Structured control Multi-task and meta-learning
(9) Mar 2 No lecture (Super Tuesday) Exploration
(10) Mar 9 RL systems Open problems
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Resources

o Sergey Levine [course]: http://rail.eecs.berkeley.edu/deepricourse/

* Francois-Lavet et al. [book]: https://www.nowpublishers.com/article/Download/
MAL-071

o Bertsekas [course, 2017/19 books]: http://web.mit.edu/dimitrio/www/RLbook.html
o OpenAl [tutorial]: https://spinningup.openai.com/

 David Silver [course]: http://wwwO0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

o Sutton & Barto [book]: http://www.incompleteideas.net/book/RLbook2018.pdf

o Szepesvari [book]: https://sites.ualberta.ca/~szepesva/papers/RLAIgsInMDPs.pdf
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Compute resources

 Much of your development work can be handled by your laptop or desktop

> Always test your code on a smaller challenge that "should” work

 WWhen more compute resources are required:
> Campus-wide cluster: https://hpc.oit.uci.edu/
> Google Colab: https://colab.research.google.com/

> We may be able to help with AWS / Google Cloud credits
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What is Machine Learning

 Artificial Intelligence:

> Can we build a machine with a property we would call "intelligence"?

 Machine Learning:
> Can we build Al without explicitly figuring out all the details of its working?
- Solution = problem-agnostic algorithm + problem-specific data
> Learning = Statistics + Algorithms

» ML = Learning + Implementation + Data
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ML examples

Face recognition

Speech synthesis
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Fig. 1. Block diagram of the Tacotron 2 system architecture.
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What is Reinforcement Learning

* Intelligence appears in interaction with a complex system, not in isolation
 An agent interact with an environment

 Performs sequential decision making:
> Sense environment state s
> Take action a
> Repeat
* Success measured by the accumulation of reward r(s, a)

> As opposed to the "correct” action (that would be Imitation Learning)
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RL examples

Gameplay
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Spacial navigation
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Dextrous manipulation
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Basic RL concepts

+ Dynamics  p(St+1st, ar)
» Policy m(ag|sq)
* Trajectory p(s()? g, 51, U1, - - ) — p(SO) 1_[ T((St|at)p(8t 1‘8757 @t)

t

» Return R = thr(st, ay ) 0<vy<1
L

» Value V(s) = E|R|sy = s|
Q(s,a) = E|R|sy = s,a¢ = a
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Learning policies
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Programming Imitation Learning
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RL is ML... but special

e Test distribution of trajectories depends on the policy!
» Cannot avoid train—test mismatch
> Jo reduce it, learner interacts with the environment to collect data = exploration

» Balanced exploration is challenging
* Policy space Is strewn with local optima

» Actions In a seqguence need to be coordinated
* A good policy may require memory

» Learning to remember is hard!
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RL — the frontier

 How to perform better exploration?

 How to model / structure the agent's policy? in particular, its memory

> Hierarchical RL
 How to jointly learn multiple tasks?
« How to learn from more kinds of data?
> RL + imitation learning / NLP / vision / program synthesis

e How to interface with a human teacher?
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System state
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System = agent + environment

environment




Optimality principle

* Proposition: If € is a shortest path from s to st that goes through s’, then a suffix
of ¢ is a shortest path from s' to sy

e |t follows that for all s # s+
V(S) = mina { 1 + V(f(s, a)) }
 The optimal policy Is

r(s) = argmina { 1 + V(f(s, a)) }

Algorithm 1 Bellman-Ford
V(Sf) — 0
V(s) « Vs e S\{sf}
for / from 1 to |S| — 1 do
V(s) <« mingea{l + V(f(s,a))} Vs e S\{s¢}
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Horizon classes

* Finite: R= > r(sa)
t=0
1 T—1
e |nfinite: I = Th_IEo e ;} r(st, at)
» Discounted: R =) 7'r(sta)
t=0
T—1
» Episodic: R= ) r(st,a;)  s.t.sp=s;
t=0
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Recap

Week Tuesday Thursday
(1) Jan 6 Introduction Imitation learning
(2) Jan 13 Optimal control Stochastic optimal control
(3) Jan 20 Planning Temporal-difference methods
(4) Jan 27 Partial observability RL with function approximation
(5) Feb 3 Policy-gradient methods Policy-gradient methods (cont.)
(6) Feb 10 Actor—critic methods Model-based methods
(7) Feb 17 Inverse RL Control as inference
(8) Feb 24 Structured control Multi-task and meta-learning
(9) Mar 2 No lecture (Super Tuesday) Exploration
(10) Mar 9 RL systems Open problems
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