CS 295:
Optimal Control and

Reinforcement Learning
Winter 2020

Lecture 10: Model-Based Methods

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences
University of California, Irvine



Today's lecture

* Motivating model-based methods
 Model-free RL with a model

* Optimal exploration for model learning
e |ssues with approximate models

* Fitting models locally
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What are model-based methods?

 Any method where we "explicitly” maintain an estimator of the dynamics p

e |n table representation: just count parameters

» Model-free is O(|.S| - | A|) while stochastic model-based is Q(\S\Q - |Al)
o |f features in a Q-network are informative of next state, is that "model-free”

* Not to be confused with ML terminology calling anything learned a "model"
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Why model-based methods?

 Dynamics has more parameters, isn't it harder to learn? Usually, no
> Dynamics can have simpler form and generalize better; and
» Learned locally, unlike policy or value which encode global knowledge
 Model-based methods produce transferable knowledge
> |If only the task changes, i.e. " changes but not p

> (Can generalize across environment changes, e.g. friction or arm length
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How to learn a model

e Interact with environment to get trajectory data — can be off-policy!
> Often random policy is used

* Deterministic dynamics / reward: MSE loss

Lo(s,a,r,s") = |s" = fo(s,a)lz + (r —ro(s,a))’

e Stochastic dynamics: NLL loss

Lo(s,a,8) =—logpys(s]s,a)

* Another possibility discussed later
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How to use a learned model

* As a fast simulator
* As an arbitrary-reset simulator

e As a differentiable model
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Policy Gradient through the model

e Model is often learned with SGD — must be differentiable
Jo = Y el u) Zv e(f(- - flzo,mo(zo)) - mo(2em1)), mo(ws))
t

* This loss function is |II—Cond|t|oned for SGD
> Actions should ideally be coordinated across time steps
> Perturbing one action individually may change /p unreasonabily little / much

- Vanishing / exploding gradients

» Second-order methods can help, but for the same reason the Hessian is nasty
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PG with a model

* Luckily, we have the Policy Gradient Theorem

VoJs = Eevp, | D7 Volog ma(arse)Qo(se, ar)
t

e Using the model just to compute Qg(st, az), e.g. by MC

> Avoids complications of gradients through the model
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How to use a learned model

* As an arbitrary-reset simulator
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Model-free RL with a model

e (General scheme:

collect data

train model p, 7

repeat
sample s from the replay buffer
sample a|s from the learner’s policy (or anything else)
simulate r = 7(s,a) and s'|s,a ~ p
perform model-free RL with (s, a,r,s’)
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Model-free RL with a model

e N-step on-policy version:

collect data

train model p, 7

repeat
sample s from the replay buffer
roll out the learner’s policy for n steps in the simulator
perform n-step model-free RL
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Dyna

collect data
train model p, 7
repeat
sample (s,a) from the replay buffer

AQ(s,a) < 7(s,a) + v Ey s qoup|maxy Q(s', a’)]

 Usually a fraction of samples taken from exploration in the real environment
> Originally: to train the model as we go

> With function approximation: to feed the replay buffer and reduce covariate shift
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Why be model-free if we have the model?

e | earning to control is inherently model-free
> Remember imitation learning?
» As opposed to planning
 The model still gives benefits
> It can diversify the experience data, like a replay buffer but more so

> Incidental: generalization, transfer
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 How to explore optimally for learning the model?
* Explicit Explore or Exploit (E3):
> Maintain set S; of sufficiently explored states

> The model M has the empirical transitions and rewards on Sy

> Other states collapsed to single absorbing state with reward 7,4,

* Principle of optimism under uncertainty
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Explicit Explore or Exploit (E3)

Sp—
repeat
m «— plan in M
if Pr(m reaches absorbing state) < ¢ then
terminate
Otherwise
execute 7
if s ¢ S, reached then
take least tried action
if each action tried K times then
empirically estimate p(-|s,-), 7(s, )

add s to Sk

 When probabillity to explore is low, optimal policy In M is truly near-optimal
« For provable guarantees, € and K can be determined from |S

> Or updated every time the number of visited states is doubled
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R-max

* The model M has all states, plus an optimistic absorbing state
* Sufficiently explored states have empirical transitions and rewards

* Others lead w.p. 1 and reward 7,4 t0 the absorbing state

mark all states unknown
repeat
m <« plan in M
execute 7
record (s,a,r,s’) in unknown states
if N(s) = K then
empirically estimate p(-|s,-), 7(s, -)
mark s known

* Implicit explore or exploit
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Issues with approximate models (1)

* |In large state / action spaces, we can only approximate the dynamics

 No guarantees outside of training distribution

> As in model-free RL, we can't be too far off-policy

e Solution: keep interacting using learner policy and updating the model
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Issues with approximate models (2)

 Model inaccuracy accumulates
* If [ps(s']s,a) —p(s']s,a)|y < e

then |p(s:) — p(si)|: < et

* We have to plan far enough ahead to realize the consequences of actions

 But we don't have to execute those plans far ahead!

* Model Predictive Control (MPC): D <« collect data
repeat
M < train model D, 7 from D
repeat
m «— plan in M from current state s to horizon H
take one action a according to 7
add empirical (s,a,r,s") to D
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How to use a learned model

e As a differentiable model
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Local models

e Can we use a learned model for iLQR?
> Option 1: learn global model, linearize locally — wasteful

> Option 2: directly learn local linearizations:

initialize a policy 7(u¢|x;)
repeat
roll out 7 to horizon 7" for N trajectories

fit p(xsq1|oe, uy)
plan new policy
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How to fit local dynamics

e Option 1: linear regression
» Find (A, By); o suchthat =y 1 ~ Az, + By
> Do we care about error / noise?
- |f we assume it's Gaussian, doesn't affect policy; but could help evaluate the method
* Option 2: Bayesian linear regression
> Use global model as prior

> More data efficient across time steps and across iterations
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How to plan with local models

A

 Option 1: as in ILQR, find optimal control sequence u
» Problem: model errors will cause actual trajectory to diverge
* Option 2: execute the optimal policy j}t5xt + 2,5 + u, directly in the world

> Problem: need spread for linear regression, dynamics may be too deterministic

* Option 3: make control stochastic lALt(Swt + l@ + Uy + €
- Idea: have €, ~ N (0, R™')

- Optimal for the incurred costs, not for the spread needed for regression
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Recap

 Roughly two schemes:
> Plan in a learned model

> Improve model-free RL using a learned model

 Good theory for how to explore optimally for learning a model
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