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Today's lecture

e Partially Observable Markov Decision Processes (POMDPSs)
* History- and memory-based policies

e Belief-state MDPs

* Recurrent Neural Networks (RNNSs)
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What does the policy depend on?

 Minimally, nothing
> Just an open-loop sequence of actions ag, a1, . . .

- EXcept, even this depends on a clock
» Typically, the current state m(a;|s;)
 What if the state is not fully observable to the agent's sensors?

> Completely unobservable — forced open loop

> Partially observable — W(@t|0t)?
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Partially Observable Markov Decision Process (POMDP)

+ States S

» Actions A

* Observations O

» Transitions p(S;41|St, az)
- Emissions p(o¢|s;)

» Rewards r(s;, a;)
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Agent—-environment interaction

environment St-1 St St+1

-)




T-maze domain

$$$

e Observation: current cell

e Memory is needed

start
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What does the policy depend on? (revisited)

 Maximally, the entire observable history W(at|ht = (00, g, - - -, Ot))

> Do we have to remember past actions??
- In a deterministic policy, only for computational reasons
- In a stochastic policy, yes
 Problem: we can't have unbounded memory

» Solution 1: keep a window of observable history 7T(Clt|0t S Ot—k)

» Solution 2: keep a statistic of the observable history W(at ‘mt) with W(mt | h)

» |deally, update the memory statistic sequentially W(mt \mt_l, Ot)
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Agent—-environment interaction

environment

* For simplicity, no edge from a;_1 to my

> Either make a;_1 explicitly observable in 0, or roll all the stochasticity into W(m'|m, 0)
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So what is memory?

 There's no Markov property in the observable process alone
> Past observations are informative of future actions
e Filter the observable past to provide more information about the hidden state
 No less important: plan for the future
> Previously, we needed to trade off short-term with long-term rewards
> Now we also need to trade off with information-gathering = active perception
e In multi-agent: state of the world is incomplete without other agent's memory

> Theory of mind
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Tiger domain

« 2 states: which door leads to a tiger (-100 reward) and which to $$$ (+10)

* You can stop and listen: p(0; = s;|s;) = 0.8 m
==

p(so = left) = 0.5;  E|r(sg,left)| = —45—> listen = 0; = right

= 0.2; E|r(sq,left)| = —12 - listen = 0y = left

(
(82, left)| = —45— listen = 03 = right
(

r(ss,left)| = —12— listen = 04 = right

— ' ~ 0.06; IE[r(sy,left)| ~ 3.5

p(ss = left) =~ 0.015; E|r(ss,left)| ~ 8.3
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Sufficient statistics

o A statistic of h is independent of all else given h
- Satisfying the Markov chain s — h — m, and so by the DPI II|s;m| < I|s; h|
o A sufficient statistic of h for s additionally has s — m — h

> Equivalently, p(3|m) — p(s\h)

» A belief is a distribution over the state b(s)

» The Bayesian belief b(s) = p(s|h) is a sufficient statistic of / for s
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Computing the Bayesian belief

* |In the linear—-Gaussian case: the Kalman filter
> Bayesian belief is Gaussian, precomputed covariance and updated mean

A A/ A/ A/ 4
Ty = Ty + Kiey e; =y — O, T, = Ary 1 + Buy_

 More generally:

by (S141|b, ar) = Z be(st)p(St11]8¢, at)

bt (stfor) = bi(s)plodse) - bilse)plos)
T o) T S, tsop(ads)

* This Is a deterministic belief-state update, given the observations
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Belief-state MDP

* |In the linear—quadratic-Gaussian case: certainty equivalence
> Plan using Z; as if it was ;
 More generally, though vastly less useful: belief-state MDP

» States: A(S) Actions: A Rewards: 7(b;, a;) th s¢)r(se, ay)

* [ransitions: each possible observation oy 1 Contrlbutes Its probabillity

plorsalbiar) = S by(s0)p(sts1l50 a)p(opea|sesn)

St,St+1

to the total probability that the belief that follows (b;, a;) is

bt—l—l(st—l—l) — p(St—l—l |bt7 ah Ot—l—l) — Zst bt(St)p(St'l_l‘St’a’t)p(ot+1‘St+1)/p(0t+1‘bt,at)
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Why Is this hard

* Belief space is continuous, as high-dimensional as the state space

> Curse of dimensionality

> Beliefs can be multi-modal — how do we even represent them?
 The number of reachable beliefs may grow exponentially with time
> Curse of history
 As we'll see, belief-value function very complex, hard to approximate

 There may not exist optimal stationary deterministic policy
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Stationary deterministic policy counterexample

 Assume no observability S

* No stationary deterministic policy gets any reward 51 S|

* Non-stationary policy: 1, T; expected return: +1 i 2L
+1

> But non-stationary = observability of a clock

e Stationary stochastic policy: 1 / T with equal prob.; expected return: +0.25

* Open problem: advantage of non-stationarity — instability of Bellman backup
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Filtering with function approximation

* Instead of the Bayesian belief, compute a memory update m; = W@(mt_l, Ot)
» Then the action policy can be my(as|m;) = mo(as|hy)

> With sequential structure of the history dependence: Recurrent Neural Network
 \We can back-propagate gradients through the whole sequence

* Unfortunately, gradients tend to vanish / explode for such deep structures
> Reflecting the challenge of long term coordination of memory updates + actions

> RNN must remember information to use it, but no memory gradient unless used
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Deep RL with RNN policies

* Most Deep RL approaches don't use RNNs

> Hoping that the current or k recent observations are informative enough

* In principle: RNNs are easy to use with on-policy methods
> Roll out a complete episode

» Compute Vy 1og Wg(at \ ht), with backprop all the way to start of episode
e |n practice: episodes may not fit memory, gradients may vanish / explode

e For off-policy methods, using replay buffer or offline data:

> Use n-step experience, initialize RNN state from buffer (ignoring off-policy effects)
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Deep RL as partial observability

« Memory-based policies fail us in Deep RL, where we need them most:

> Deep RL is inherently partially observable

» Consider what deeper layers get as input

> High-level / action-driven state features are not Markov!

« Memory management is a huge open problem in Deep RL

> Actually, in other areas of ML: NLP, time-series analysis, video processing, ...
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Recap

* Let policies depend on observable history through memory
 Memory update: Bayesian, approximate, or learned

> Learning to update memory is one of the biggest open problems in all of ML
* Let policy be stochastic

> Should memory be stochastic? interesting research question...

e et policies be non-stationary if possible, otherwise learning may be unstable
> Time-dependent policies for finite-horizon tasks

> Periodic policies for periodic tasks
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