

CS 295: Optimal Control and Reinforcement Learning Winter 2020

Lecture 12: Advanced Partial Observability Methods

Roy Fox
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

- Belief-state value function
- Point-Based Value Iteration (PBVI)
- Predictive State Representations (PSRs)
- Learning PSRs

Belief-state MDP

Since the (hidden) state separates the past and the future

$$p(f_t|h_t, a_{\geq t}) = \sum_{s_t} p(s_t|h_t) p(f_t|s_t, a_{\geq t}) = \sum_{s_t} b_t(s_t) p(f_t|s_t, a_{\geq t})$$

- its posterior distribution, a.k.a the Bayesian belief, is also a separator = state
- No advantage by the agent policy having further dependence on the past

Belief-state value function

$$V_{\pi}(b_t) = \mathbb{E}[R_{\geqslant t}|b_t]$$

$$= \sum_{s_t, a_t, s_{t+1}, o_{t+1}} b_t(s_t) \pi(a_t|b_t) p(s_{t+1}|s_t, a_t) p(o_{t+1}|s_{t+1}) (r(s_t, a_t) + \gamma V_{\pi}(b_{t+1}))$$

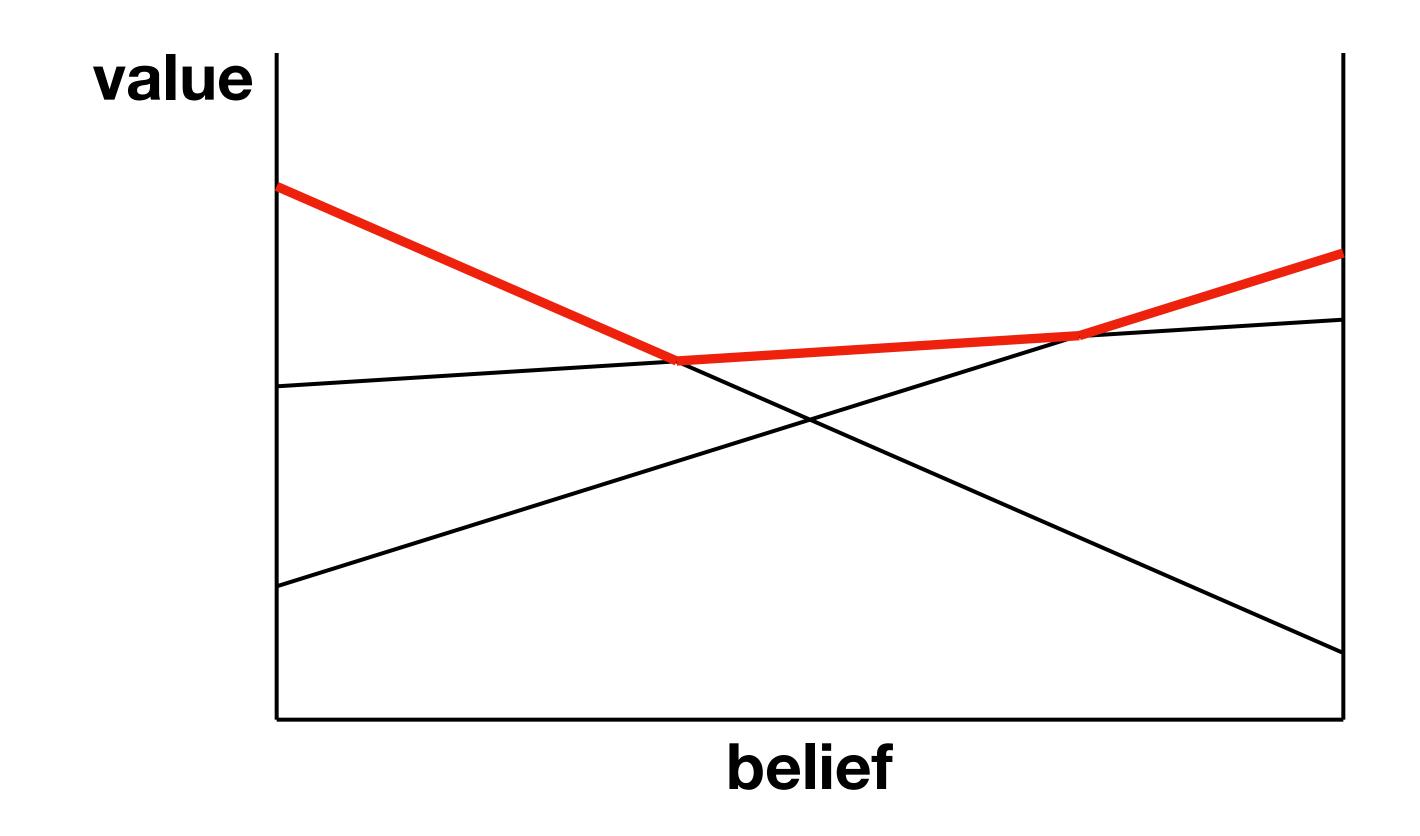
- With $b_{t+1}(\bar{s}_{t+1}) = p(\bar{s}_{t+1}|b_t, a_t, o_{t+1})$
- Note that $V_{\pi}(b_t)$ is linear in b_t
- Therefore, optimal value satisfies

$$V^*(b_t) = \max_{\pi \in \Pi} V_{\pi}(b_t) = \max_{\nu \in \mathcal{V}} b_t \nu$$

• Where for each
$$\pi(a|b)$$
 we have $V_{\pi}(b_t) = \sum_{s_t} b_t(s_t) \nu(s_t)$

Belief-state value function

Piecewise-linear function:



ullet Can be represented by set of supporting vectors ${\mathcal V}$

First-action partitioning

$$V^*(b_t) = \max_{\substack{s_t, a_t, s_{t+1}, o_{t+1}}} \sum_{s_t, a_t, s_{t+1}, o_{t+1}} b_t(s_t) p(s_{t+1}|s_t, a_t) p(o_{t+1}|s_{t+1}) (r(s_t, a_t) + \gamma V^*(b_{t+1}))$$

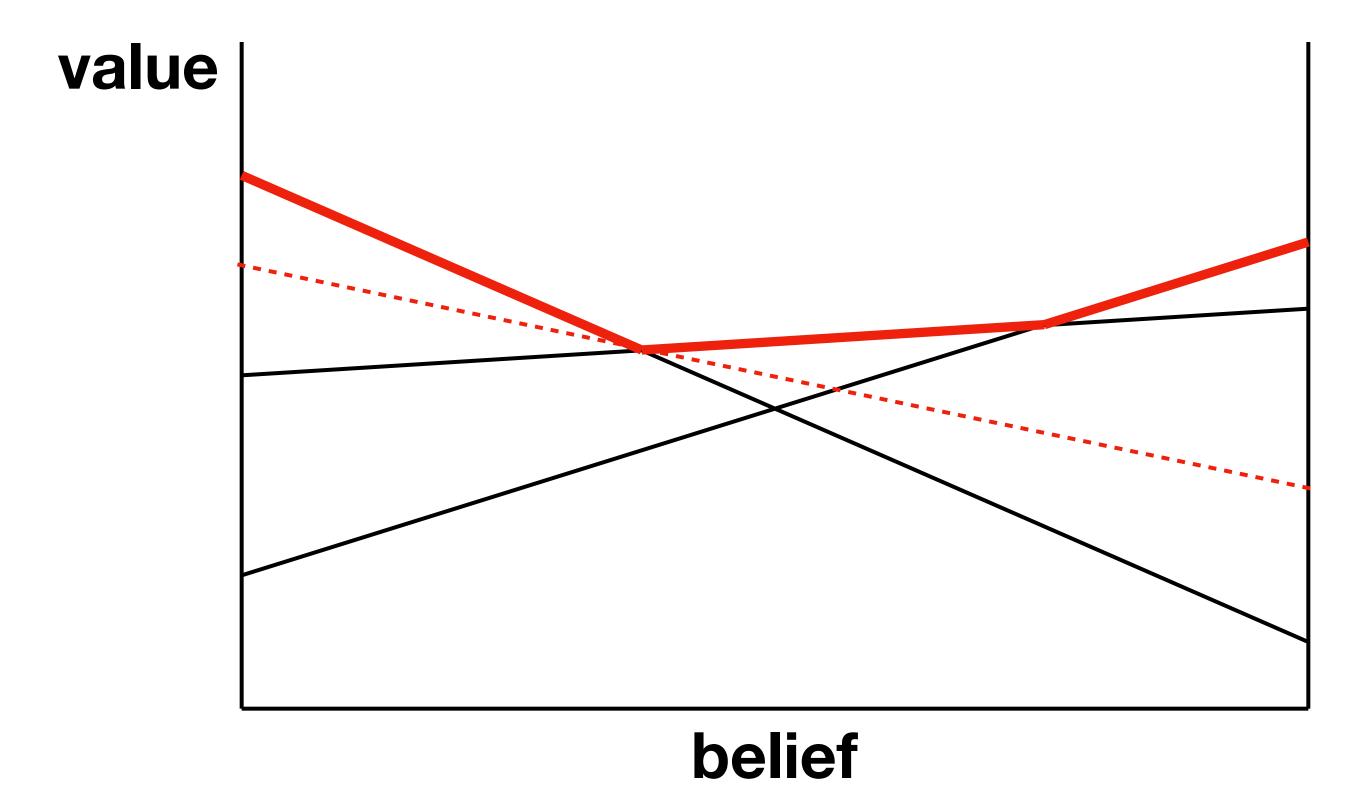
$$= \max_{a_t} \sum_{s_t} b_t(s_t) \left(r(s_t, a_t) + \gamma \sum_{s_{t+1}, o_{t+1}} p(s_{t+1}|s_t, a_t) p(o_{t+1}|s_{t+1}) V^*(b_{t+1}) \right)$$

- The optimal value can be found by a deterministic action
 - But the optimal policy can be stochastic, a mixture of optimal actions
- Optimal supporting set can be partitioned by first action

$$\mathcal{V} = \bigcup_{\alpha} \mathcal{V}_{\alpha}$$

So do we need stochastic policies?

For some beliefs, the optimal policy may be stochastic



- The value function is still supported by deterministic policies ("backward")
 - But their "forward" may lead to worse belief-states

Value Iteration in belief-state MDP

Recalling that

$$b_{t+1}(s_{t+1}|b_t, a_t, o_{t+1}) = \frac{\sum_{s_t} b_t(s_t) p(s_{t+1}|s_t, a_t) p(o_{t+1}|s_{t+1})}{\sum_{s_t, \bar{o}_{t+1}} b_t(s_t) p(s_{t+1}|s_t, a_t) p(\bar{o}_{t+1}|s_{t+1})}$$

we have

$$V^*(b_t, a_t) = \sum_{s_t} b_t(s_t) \left(r(s_t, a_t) + \gamma \sum_{s_{t+1}, o_{t+1}} p(s_{t+1}|s_t, a_t) p(o_{t+1}|s_{t+1}) V^*(b_{t+1}) \right)$$

$$= \sum_{s_t} b_t(s_t) r(s_t, a_t) + \gamma \sum_{o_{t+1}} \max_{\nu'} \sum_{s_t, s_{t+1}} b_t(s_t) p(s_{t+1}|s_t, a_t) p(o_{t+1}|s_{t+1}) \nu'(s_{t+1})$$

• And so
$$\mathcal{V}_{a,o'} = \left\{ \left. \nu(s) = \sum_{s'} p(s'|s,a) p(o'|s') \nu'(s') \right| \nu' \in \mathcal{V} \right\}$$

$$\mathcal{V}_a = r(\cdot,a) + \gamma \bigoplus_{o'} \mathcal{V}_{a,o'} \qquad \mathcal{V} = \bigcup_a \mathcal{V}_a$$

Representing belief value by its support

- Another curse of history: the support of $\,\mathcal{V}\,$ has at worst $\,|\mathcal{A}|^{|\mathcal{O}|^{T-t}}\,$ vectors
 - For infinite horizon, value function may be uncomputable!
- Do we need all of them?
 - Some may be optimal only in unreachable beliefs
 - Some may be optimal for beliefs not reached by an optimal policy
 - Some may be optimal for beliefs with low probability of being reached
 - Some may only be slightly better than others on likely beliefs

Point-Based Value Iteration (PBVI)

- Only try to optimize the value for a finite set of belief points ${\cal B}$
- That means having a small subset $\mathcal{V}^{\mathcal{B}}$ of all support vectors
- As before we have $\mathcal{V}_{a,o'}^{\mathcal{B}} = \left\{ \left. \nu(s) = \sum_{s'} p(s'|s,a) p(o'|s') \nu'(s') \right| \nu' \in \mathcal{V}^{\mathcal{B}} \right\}$
- But now we optimize the policy suffix for a specific belief point

$$\nu_a^b = r(\cdot, a) + \gamma \sum_{o'} \underset{\nu' \in \mathcal{V}_{a,o'}^{\mathcal{B}}}{\operatorname{argmax}} b \cdot \nu'$$

Then optimize the first action, and repeat for all belief points

$$\mathcal{V}^{\mathcal{B}} = \left\{ \left. \underset{\{\nu_a^b\}_a}{\operatorname{argmax}} b \cdot \nu_a^b \right| b \in \mathcal{B} \right\}$$

PBVI belief set expansion

- With fixed \mathcal{B} , repeat the approximate VI backward until near-convergence
- Then expand the belief set to improve belief-space coverage
 - For each $b \in \mathcal{B}$ and a, sample the following observation o', compute $b'(\cdot|b,a,\cdot)$
 - For each $b \in \mathcal{B}$, add belief farthest from \mathcal{B} in L_1
- To use: $\pi(b) = \operatorname*{argmax} b \cdot \nu_a^b$
- Proposition: let $\epsilon = \max_{b \text{ reachable } b' \in \mathcal{B}} \|b' b\|_1$ be the density of \mathcal{B} , then

$$||V^* - V^{\mathcal{B}}||_{\infty} \leqslant \frac{1}{(1-\gamma)^2} R_{\max} \epsilon$$

Learning with partial observation

- Learning with partial observation is particularly challenging
 - If we never see states, how do we know
 - how to represent them?
 - how many there are?
 - New challenge of exploration
 - New challenge of model-selection
 - how to choose robust representations among equivalent ones?
 - how to discover the causal structure?

Learning: exponentially harder than planning

- In MDPs, we had polynomial model-based learning (E3, R-max)
- In POMDPs, learning can be exponentially harder than planning
- Password game: guess n bits, unobservable, reward on success
 - Planning: with the dynamics known, password is known
 - Learning: have to brute-force, exponentially many guesses
- What if we can pay to observe state?
 - Can be set up such that optimal policy cannot pay → only used in training
 - Polynomial sample complexity in some classes

Predictive State Representations (PSR)

- Model environment using just observable elements
- Test: future action-observation sequence $a_t, o_{t+1}, \ldots, a_{t+k-1}, o_{t+k}$
- History: past action–observation sequence $a_{t-\ell}, o_{t-\ell+1}, \ldots, a_{t-1}, o_t$
- Predictive state: $m(h) = \{p(\tau_o|h, \tau_a) | \tau \in \mathcal{T}\}$, for a set of *core tests* \mathcal{T}
- m is a sufficient statistic (i.e. state)
 - if and only if the probability of all tests can be computed from it

Linear PSR

• Suppose that for every test au there exists a vector $u_{ au}$ with

$$\forall h: p(\tau_o|h,\tau_a) = m(h) \cdot u_\tau$$

- Let $U_{a,o'} = \{u_{a,o',\tau} | \tau \in \mathcal{T}\}$
- Then $u_{a_t,o_{t+1},\dots,a_{t+k-1},o_{t+k}} = U_{a_t,o_{t+1}} \cdots U_{a_{t+k-1},o_{t+k}} u_{\epsilon}$
- We can update the state using

$$m(h, a, o')_{\tau} = \frac{p(o', \tau_o | h, a, \tau_a)}{p(o' | h, a)} = \frac{m(h) \cdot u_{a,o',\tau}}{m(h) \cdot u_{a,o'}} = \frac{m(h)(U_{a,o'})_{\tau}}{m(h)U_{a,o'}u_{\epsilon}}$$

ullet Core test set ${\mathcal T}$ is **minimal** if the tests are linearly independent

POMDPs are PSRs

Every test is a linear function of the belief

$$p(o_{t+1}, \dots, o_{t+k} | h_t, a_t, \dots, a_{t+k-1}) = \sum_{s_t, \dots, s_{t+k}} b_t(s_t | h_t) \prod_{t'=t}^{t+k-1} p(s_{t'+1} | s_{t'}, a_{t'}) p(o_{t'+1} | s_{t'+1})$$

having

$$w_{\tau}(s_t) = \sum_{\substack{s_{t+1}, \dots, s_{t+k} \\ s_{t+1} \neq s_{t+1}}} \prod_{\substack{t'=t \\ t'=t}}^{t+k-1} p(s_{t'+1}|s_{t'}, a_{t'}) p(o_{t'+1}|s_{t'+1})$$

ullet If we find a set of $|\mathcal{S}|$ linearly independent tests consisting the columns of W

then

$$m(h) = b(h)W \qquad u_{\tau} = W^{-1}w_{\tau}$$

• Model-based discovery of core tests using depth-first search

Two PSRs problems

- Discovery: find an (approximately) spanning set of core tests
 - Easy to do given the POMDP
 - ► In general, this is the hard part
- Learning: given the core tests, find $m(o_0)$, $U_{a,o'}$, and u_ϵ
 - Can be estimated purely from observable interaction data

What can the agent experience

- Fix some partition of histories \mathcal{H} , large set of tests $\hat{\mathcal{T}}$ with $\hat{U}=\{u_{\tau}|\tau\in\hat{\mathcal{T}}\}$
- Empirical probability of a test in initial history:

$$P_{o_0,\tau} = p(\tau_o|o_0, \tau_a) = (m(o_0)\hat{U})_{\tau}$$

• Empirical joint probability of history and test:

$$P_{i,\tau} = p_{\pi}(h \in \mathcal{H}_i, \tau_o | \tau_a) = p_{\pi}(\mathcal{H}_i) \mathbb{E}[m(h) | h \in \mathcal{H}_i] u_{\tau} = (DS\hat{U})_{i,\tau}$$

- with $D=\mathrm{diag}(p_\pi(\mathcal{H}_i))_i$ and $S_{i,\tau}=\mathbb{E}[m(h)_\tau|h\in\mathcal{H}_i]$ in core tests
- Empirical one-step joint probability:

$$P_{i,a,o',\tau} = p_{\pi}(h \in \mathcal{H}_i, o', \tau_o | a, \tau_a) = (DSU\hat{U})_{i,\tau}$$

Transformed PSRs (TPSRs)

- Everything we observe is in the space of the large set of tests \hat{U}
- We should make $\hat{\mathcal{T}}$ (and the history partition) diverse enough to span U
- If we knew the core tests, multiplying by \hat{U}^{\dagger} would recover them
- ullet Otherwise, we can only recover the PSR up to invertible transform W

Recovering the TPSR

• Recall:

$$P_{o_0,\mathcal{T}} = m(o_0)\hat{U}$$

$$P_{\mathcal{H},\mathcal{T}} = DS\hat{U}$$

$$P_{\mathcal{H},a,o',\mathcal{T}} = DSU\hat{U}$$

- With $\hat{W}=\hat{U}^{\dagger}W$ we can recover

$$\tilde{m}(o_0) = m(o_0)W = P_{o_0,\mathcal{T}}\hat{W}$$

$$\tilde{U} = W^{-1}UW = (P_{\mathcal{H},\mathcal{T}}\hat{W})^{\dagger}P_{\mathcal{H},a,o',\mathcal{T}}\hat{W}$$

• To recover the $\epsilon\text{-test}$ "marginalizer", estimate $P_{\mathcal{H}}=DSu_{\epsilon}$

$$\tilde{u}_{\epsilon} = W^{-1} u_{\epsilon} = (P_{\mathcal{H}, \mathcal{T}} \hat{W})^{\dagger} P_{\mathcal{H}}$$

How to find good transformed test basis

• Compute the singular value decomposition (SVD) of

$$P_{\mathcal{H},\mathcal{T}} = DS\hat{U} = V_1\Sigma V_2^{\mathsf{T}}$$

- and take $\hat{W}=\hat{U}^{\dagger}W$ to include the right singular vectors in V_2
 - Most interesting and stable tests correspond to the largest singular values in Σ

Recap

- Belief-state value function is piecewise linear
 - Can be represented by supporting vectors
 - But there are exponentially many
 - We can approximate by using a subset of the supporting vectors
 - PBVI: choose vectors by (recursive) optimality for beliefs we care about
- We can learn partially observable models from just observable interaction
 - PSR: how is the observable future distributed given the observable past
 - Can discover (transformed) tests and learn state updates
 - Use this in a model-based algorithm