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Today's lecture

* Belief-state value function
 Point-Based Value Iteration (PBVI)
* Predictive State Representations (PSRs)

 |earning PSRs
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Belief-state MDP

e Since the (hidden) state separates the past and the future
p(felhe, a=¢) = Zp(5t|ht)p(ft|5ta >t) = Z by (st)p([ft]St, a=t)
St St
> Its posterior distribution, a.k.a the Bayesian belief, is also a separator = state

 No advantage by the agent policy having further dependence on the past

Roy Fox | CS 295 | Winter 2020 | Lecture 12: Advanced Partial Observability Methods



Belief-state value function

Vi(br) = E[Rx¢|by]
= th St Clt|bt (St+1|5t,at)p(0t+1|5t+1)(T(5taat) T va(btﬂ))

St,dt,St+1,0t4+1

o With bi41(5¢41) = P(5e41/bt, Ag, 0p41)
» Note that V(b;) is linear in b,

 Therefore, optimal value satisfies

V*(b;) = max V(b)) = max byv

mell ve)

» Where for each w(a|b) we have V. (b;) Z by (54 )V
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Belief-state value function

e Plecewise-linear function:

value

belief

e Can be represented by set of supporting vectors )/
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First-action partitioning

t HlaXZ bt St at‘bt (5t+1‘5t7 at)p(0t+1‘5t+1)(r(5ta Cbt) + ”YV*(th))

St,aAt,St+1,0t+1

B H%SXZ bt(st) (T(Stp at) T 72p(3t+1|5t, at)p(OH—lSt‘Fl)v*(bt"‘l))

St St+1,0t+1

 The optimal value can be found by a deterministic action
> But the optimal policy can be stochastic, a mixture of optimal actions

e Optimal supporting set can be partitioned by first action

V=| V.
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So do we need stochastic policies?

 For some beliefs, the optimal policy may be stochastic

value

'..
..
b
-~

..
...
»

belief
* The value function is still supported by deterministic policies ("backward")

> But their "forward"” may lead to worse belief-states
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Value lteration in belief-state MDP

* Recalling that
Zst b¢(St)P(St41]Se, at)p(Ot41|St+1)

Zst,5t+1 bi(S¢)P(St+1|5¢5 @) P(Or41|5i41)

by 1(3t 1‘bt>at70t 1) —

we have
V* btaat th St ( Stvat) + sz(stﬂStaat)p(OtH5t+1)v*(bt+1)>

St4+1,0t41

_th st)7(St, ay +v2maxz be(5¢)p(Se41]5e, ar)p(0rs1]Sea1)V (S141)

Ot+41 StySt+1

Andse ) = {u<s> - 2p(ls, (01 ()] ¢ v}

V, = r( M@VQO V=V,
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Representing belief value by its support

. IO‘T_t
» Another curse of history: the support of V) has at worst | A] vectors
> For infinite horizon, value function may be uncomputable!

Do we need all of them?
> Some may be optimal only in unreachable beliefs
> Some may be optimal for beliefs not reached by an optimal policy
> Some may be optimal for beliefs with low probabillity of being reached

> Some may only be slightly better than others on likely beliefs
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Point-Based Value lteration (PBVI)

Only try to optimize the value for a finite set of belief points I3
That means having a small subset VB of all support vectors
As before we have

Vo, = Zp |s, a)p(d'|s")V'(s)

But now we optimize the policy sufflx for a specific belief point
b

a
/ VEVB

O a,o’

Then optimize the first action, and repeat for all belief points

VP = { argmaxb-1’|be B
{v8}a

e VP

v, =r(,a)+ WZ argmaxb - v’
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PBVI belief set expansion

« With fixed BB, repeat the approximate VI backward until near-convergence

 Then expand the belief set to improve belief-space coverage

> For each b € Band a, sample the following observation o, compute 0'(-|b, a, -)

» For each b € BB, add belief farthest from 3 in 14

+ Touse: m(b) = argmaxb - v’

a

- Proposition: let ¢ = max min |b — b||; be the density of I3, then
b reachable b’'eB

HV* - VBHOO < (1_17)2 Fax€
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Learning with partial observation

* Learning with partial observation is particularly challenging

» If we never see states, how do we know
- how to represent them?
- how many there are?

> New challenge of exploration

> New challenge of model-selection

- how to choose robust representations among equivalent ones?

- how to discover the causal structure?
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Learning: exponentially harder than planning

* |In MDPs, we had polynomial model-based learning (E3, R-max)
* |n POMDPs, learning can be exponentially harder than planning
 Password game: guess n bits, unobservable, reward on success

> Planning: with the dynamics known, password is known

> Learning: have to brute-force, exponentially many guesses
 What if we can pay to observe state?

> (Can be set up such that optimal policy cannot pay — only used in training

> Polynomial sample complexity in some classes
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Predictive State Representations (PSR)

 Model environment using just observable elements
» Jest: future action—observation sequence a;, 04411, ...,Q¢1k—1, Ot 1k

* History: past action—observation sequence a;_y,0¢_yp11,...,Q¢_1, Oy

» Predictive state: m(h) = {p(7,|h, 7,)|T € T}, for a set of core tests T

* m is a sufficient statistic (i.e. state)

> If and only if the probability of all tests can be computed from it
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Linear PSR

e Suppose that for every test 7 there exists a vector u.-with
Vh: p(1o|h, 74) = m(h) - u;
o Let U,y = {ua70/77‘7' S T}

* Then ug,, o,

:Uat,()t 1...U U

At+k—1,0t+k €

* \We can update the state using

plo, Tolh,a,7a)  m(h)-uayr  mh)(Use)s

m(h,a,o), = - _

p(o'|h,a) m(h) - Ug. o m(h)U, ot

» Core test set 7 is minimal if the tests are linearly independent

Roy Fox | CS 295 | Winter 2020 | Lecture 12: Advanced Partial Observability Methods



POMDPs are PSRs

* Every test is a linear function of the belief -
t+k—

p(0t+17 ey 0t+k‘hta Aty - - - @t+k—1) = Z bt(3t|ht) n P(St'+1|8t', at’)p(Ot’+1‘3t’+1)
t =t

havin
J t+k—1

w(se) = || psusilse, av)plopilsyir)

St41,--St4+k /=t

- If we find a set of |S| linearly independent tests consisting the columns of 11/

then m(h) = b(h)W u, = W,

 Model-based discovery of core tests using depth-first search
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Two PSRs problems

* Discovery: find an (approximately) spanning set of core tests
» Easy to do given the POMDP
> |n general, this is the hard part

 Learning: given the core tests, find m(OO), Ua,O/, and U,

» Can be estimated purely from observable interaction data
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What can the agent experience

+ Fix some partition of histories H, large set of tests 7 with U = {u,|r € T}
 Empirical probabillity of a test in initial history:
POO,T — p(7_0|0()7 Ta) — (m(OO)U)T

 Empirical joint probability of history and test:

P, = pe(h € Hi, To|7a) = p=(H) E[m(R)|h € H;]u, = (DSU);

- with D = diag(p.(H;)); and S; , = E[m(h),|h € H,;| in core tests

 Empirical one-step joint probability:

Pi,a,,o’,T — pﬂ'(h s 7_[2'7 0/7 7-0|CL7 TCL) — (DSUﬁ)@aT
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Transformed PSRs (TPSRs)

* Everything we observe is in the space of the large set of tests U
 We should make 7A' (and the history partition) diverse enough to span U
* |f we knew the core tests, multiplying by (7 " would recover them

» Otherwise, we can only recover the PSR up to invertible transform 1V
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Recovering the TPSR

» Recall: P, 7+ =m(og)U
Py = DSU
Pyooyr =DSUU

. With W = U'TW we can recover
m(og) = m(og)W = P, 7+ W
U=W1UW = (PysW) Pyoo W

» To recover the e-test "marginalizer", estimate P, = DSu,

and compute e = W, = (P%,TVAV)TP%
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How to find good transformed test basis

 Compute the singular value decomposition (SVD) of
Py 7 = DSU = V;2Vy

. and take TV = UV to include the right singular vectors in V5

» Most interesting and stable tests correspond to the largest singular values in 2.

Roy Fox | CS 295 | Winter 2020 | Lecture 12: Advanced Partial Observability Methods



Recap

* Belief-state value function is piecewise linear
> (Can be represented by supporting vectors
> But there are exponentially many

> We can approximate by using a subset of the supporting vectors
- PBVI: choose vectors by (recursive) optimality for beliefs we care about
 \We can learn partially observable models from just observable interaction
 PSR: how is the observable future distributed given the observable past
e Can discover (transformed) tests and learn state updates

* Use this in a model-based algorithm
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