

CS 295: Optimal Control and Reinforcement Learning Winter 2020

Lecture 14: Inverse Reinforcement Learning

Roy Fox
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

- Inverse Imitation Learning (IRL):
 - learning a reward function from demonstrations
- Feature matching
- Maximum Entropy IRL
 - Feature matching with entropy regularization
- GAIL

Learning rewards from demonstrations

- If we have demonstrations, why learn rewards?
 - Preference elicitation: better understand humans, animals, users, markets
 - ► Imitation learning: transfer between action spaces (human → robot)
 - Reinforcement learning: optimize for the intention of fallible teachers
 - Rewards may be easier to model, generalize, transfer
 - ► Teleology ("what'd you do that for"), theory of mind, are part of natural language

Inverse Reinforcement Learning (IRL)

- Given a dataset of demonstration trajectories $\mathcal{D} = \{\xi_i\}_i$
- Find the demonstrator's reward function $r_{ heta}: \mathcal{S}
 ightarrow \mathbb{R}$
- The result is underdetermined
 - If we only see positive examples, no telling how inclusive the reward should be
 - How dense should the reward be (perhaps not uniformly?)
 - Learning very dense rewards may not give benefits over IL
 - Teacher can be fallible

Feature matching

- Suppose we have an extractor of relevant state features $f_s \in \mathbb{R}^d$
- Assume a linear reward: $r_{\theta}(s) = \theta^{\intercal} f_s$
- An agent gets the same reward as the teacher if $\mathbb{E}_{s\sim p_\pi}[f_s]=\mathbb{E}_{s\sim \mathcal{D}}[f_s]$
 - This is also necessary, under mild conditions
- So let's optimize for the feature expectation $\max_{\pi}\mathbb{E}_{s\sim p_{\pi}}[\theta^{\intercal}f_{s}]$
 - But with what reward parameters?
- Idea: expert teacher should do max better than our learner on the true reward

$$\max_{\theta} (\mathbb{E}_{s \sim \mathcal{D}}[\theta^{\intercal} f_s] - \max_{\pi} \mathbb{E}_{s \sim p_{\pi}}[\theta^{\intercal} f_s])$$

Modeling bounded teachers

We'd like to have an expert teacher who optimizes the return

$$\max_{\pi_T} \mathbb{E}_{\xi \sim p_T} [\theta^{\mathsf{T}} f_{\xi}] = \max_{\pi_T} \mathbb{E}_{s \sim p_T} [\theta^{\mathsf{T}} f_s]$$

• But suppose π_T has bounded ability to diverge from random behavior

$$\max_{\pi_T} \mathbb{E}_{\xi \sim p_T} [\theta^{\mathsf{T}} f_{\xi}] + \mathbb{H}[p_T]$$

The optimal trajectory distribution satisfies

$$p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_{0}(\xi) \exp(\theta^{\mathsf{T}} f_{\xi})$$
$$Z_{\theta} = \mathbb{E}_{\xi \sim p_{0}} [\exp(\theta^{\mathsf{T}} f_{\xi})]$$

Approximation: ignore dynamical constraints that can make this unachiavable

MaxEnt IRL

$$p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_{0}(\xi) \exp(\theta^{\mathsf{T}} f_{\xi})$$
$$Z_{\theta} = \mathbb{E}_{\xi \sim p_{0}} [\exp(\theta^{\mathsf{T}} f_{\xi})]$$

We now optimize the empirical log likelihood of demonstrations

$$\nabla_{\theta} \log p_{\theta}(\xi) = \nabla_{\theta}(\theta^{\mathsf{T}} f_{\xi} - \log Z_{\theta}) = f_{\xi} - \frac{1}{Z_{\theta}} \nabla_{\theta} Z_{\theta}$$
$$= f_{\bar{\xi}} - \frac{1}{Z_{\theta}} \mathbb{E}_{\bar{\xi} \sim p_{0}} [\exp(\theta^{\mathsf{T}} f_{\bar{\xi}}) f_{\bar{\xi}}] = f_{\xi} - \mathbb{E}_{\bar{\xi} \sim p_{\theta}} [f_{\bar{\xi}}]$$

• To compute the gradient, we need to take the forward expectation of $\,p_{ heta}$

MaxEnt IRL — backward recursion

Compute the partition function recursively backward

$$Z_{s_t,a_t;\theta} \stackrel{\text{def}}{=} \mathbb{E}_{p_0} \left[\exp(\theta^{\mathsf{T}} f_{\xi \geqslant t}) | s_t, a_t \right] = \exp(\theta^{\mathsf{T}} f_{s_t}) \, \mathbb{E}_{s_{t+1}|s_t,a_t \sim p} [Z_{s_{t+1};\theta}]$$
$$Z_{s_t;\theta} \stackrel{\text{def}}{=} \mathbb{E}_{p_0} \left[\exp(\theta^{\mathsf{T}} f_{\xi \geqslant t}) | s_t \right] = \mathbb{E}_{a_t|s_t \sim \pi_0} [Z_{s_t,a_t;\theta}]$$

Use it to compute local policy

$$\pi_{\theta}(a_t|s_t) = \pi_0(a_t|s_t) \frac{Z_{s_t,a_t;\theta}}{Z_{s_t;\theta}}$$

- Globally, this policy may be inconsistent $\,p_{\theta} \neq p_{\pi_{\theta}}\,$
 - but MaxEnt IRL uses it as an approximation

MaxEnt IRL

- Compute $Z_{ heta} = \mathbb{E}_{\xi \sim p_U} [\exp(heta^\intercal f_\xi)]$ recursively backward
- Compute $\mathbb{E}_{ar{\xi}\sim p_{\pi_{ heta}}}[f_{ar{\xi}}]$ recursively forward
- Take a gradient step $\nabla_{\theta} \log p_{\theta}(\xi) = f_{\xi} \mathbb{E}_{\bar{\xi} \sim p_{\pi_{\theta}}}[f_{\bar{\xi}}]$
- Repeat

- At the optimum we have feature matching $\mathbb{E}_{\xi\sim\mathcal{D}}[f_{\xi}]=\mathbb{E}_{\xi\sim p_{\pi_{\theta}}}[f_{\xi}]$
- In fact, we have approximated $\max_{\theta} \mathbb{H}[\pi_{\theta}]$ s.t. $\mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi_{\theta}}}[f_{\xi}]$

MaxEnt IRL limitations

- Approximation ignores dynamical constraints
- Policy estimation and visitation frequencies in each gradient step
- Model-based

IRL downstream tasks

Our motivation: to learn a reward function for downstream tasks

- IL = RL 0 IRL
- But our algorithms go through learning a policy anyway
 - Let's optimize IRL for the overall IL tasks

IL as RL o IRL

• Entropy-regularized RL:

$$\max_{\pi \in \Pi} \mathbb{E}_{s \sim \bar{p}_{\pi}} [r(s)] + \mathbb{H}(\pi)$$

• MaxEnt IRL, with reward-function regularizer $\psi: \mathbb{R}^{\mathcal{S}} o \mathbb{R}$:

$$\max_{r \in \mathbb{R}^{\mathcal{S}}} \mathbb{E}_{s \sim \bar{p}_T}[r(s)] - \max_{\pi \in \Pi} (\mathbb{E}_{s \sim \bar{p}_{\pi}}[r(s)] + \mathbb{H}(\pi)) - \psi(r)$$

• With respect to r, our objective is

$$\psi^*(\bar{p}_T - \bar{p}_\pi) = \max_{r \in \mathbb{R}^S} (\bar{p}_T - \bar{p}_\pi) \cdot r - \psi(r)$$

• This function $\psi^*:\mathbb{R}^{\mathcal{S}} \to \mathbb{R}$ is called the <u>convex conjugate</u> of ψ

Reward-function regularizers

$$\psi^*(\bar{p}_T - \bar{p}_\pi) = \max_{r \in \mathbb{R}^S} (\bar{p}_T - \bar{p}_\pi) \cdot r - \psi(r)$$

- No regularizer $\psi=0$ o solution only exists when $\bar{p}_T=\bar{p}_\pi$
 - This is really what we want, but challenging to solve

- Hard linearity constraint: $\psi(r) = \begin{cases} 0 & r(s) = \theta^{\mathsf{T}} f_s \\ \infty & \text{otherwise} \end{cases}$
 - Implies max-entropy feature matching (i.e. MaxEnt IRL)
 - Great when the reward function really is linear in f, otherwise no guarantee

Teacher-based reward-function regularizer

Consider the regularizer

$$\psi_{GA}(r) = \mathbb{E}_{s \sim \bar{p}_T}[r(s) - \log(1 - \exp(-r(s)))]$$

It's convex conjugate is

$$\psi_{GA}^*(\bar{p}_T - \bar{p}_\pi) = \max_{r \in \mathbb{R}^S} (\bar{p}_T - \bar{p}_\pi) \cdot r - \psi(r)$$

$$= \max_{r \in \mathbb{R}^S} \mathbb{E}_{s \sim \bar{p}_T} [r(s) - r(s) + \log(1 - \exp(-r(s)))] - \mathbb{E}_{s \sim \bar{p}_\pi} [r(s)]$$

• If we set $D(s) = \exp(-r(s))$

then
$$\psi_{GA}^*(\bar{p}_T - \bar{p}_\pi) = \mathbb{E}_{s \sim \bar{p}_\pi}[\log D(s)] + \mathbb{E}_{s \sim \bar{p}_T}[\log(1 - D(s))]$$

Generative Adversarial Networks

- Focus the training of a generative model $p_{ heta}(s)$ on failure modes
- Also train a discriminator $D_{\phi}(s) \in [0,1]$ to score instances
 - If generated instances are like actions, then D_ϕ is like a critic
- $D_{\phi}(s)$ predicts the probability $p(\text{learner}|s) = \frac{p_{\theta}(s)}{p_{\theta}(s) + p_{T}(s)}$
- The discriminator can be trained with the cross-entropy loss

$$\max_{\phi} \mathbb{E}_{s \sim p_{\theta}} [\log D(s)] + \mathbb{E}_{s \sim p_{T}} [\log(1 - D(s))]$$

• The generator tries to fool the discriminator $\max_{\theta} \mathbb{E}_{s \sim p_{\theta}}[\log D(s)]$

Generative Adversarial Imitation Learning (GAIL)

Input: demonstration dataset $\mathcal{D}_T \sim p_T$ repeat

 $\mathcal{D}_L \leftarrow \text{roll out } \pi_{\theta}$ take discriminator gradient ascent step

$$\mathbb{E}_{s \sim \mathcal{D}_L} [\nabla_{\phi} \log D_{\phi}(s)] + \mathbb{E}_{s \sim \mathcal{D}_T} [\nabla_{\phi} \log(1 - D_{\phi}(s))]$$

take entropy-regularized policy gradient step with reward $r(s) = -\log D_{\phi}(s)$

• We've already seen one entropy-regularized PG algorithm: TRPO

Recap

- To understand behavior, infer the intentions of observed agents
- If the teacher is optimized for a reward function
 - The reward function should be such that an optimizer behaves like the teacher
 - State (or state-action occupancy) of learner should match the teacher
- In this view, IRL is a game:
 - Reward is optimized to show how much better the teacher is than the learner
 - Policy is optimized to be good too
 - Reward is like a discriminator, policy like a generator

Control as inference

Consider soft "success" indicators

$$p(v_t = 1|s_t, a_t) = \exp \beta r(s_t, a_t)$$

• What is the log-probability that an entire trajectory ξ "succeeds"?

$$\log p(\mathcal{V}|\xi) = \sum_{t} \log p(v_t = 1|s_t, a_t) = \beta \sum_{t} r(s_t, a_t) = \beta R$$

• What is the posterior distribution over trajectories, given success?

$$p(\xi|\mathcal{V}) = \frac{p_0(\xi)p(\mathcal{V}|\xi)}{p_0(\mathcal{V})} = \frac{p_0(\xi)\exp\beta R}{Z}$$

Pseudo-observations

