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Today's lecture

* |nverse Imitation Learning (IRL):

> |earning a reward function from demonstrations
* Feature matching

 Maximum Entropy IRL

» Feature matching with entropy regularization

* GAIL
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Learning rewards from demonstrations

e |f we have demonstrations, why learn rewards”?
» Preference elicitation: better understand humans, animals, users, markets

> Imitation learning: transfer between action spaces (human — robot)

> Reinforcement learning: optimize for the intention of fallible teachers

> Rewards may be easier to model, generalize, transfer

> Teleology ("what'd you do that for"), theory of mind, are part of natural language

Roy Fox | CS 295 | Winter 2020 | Lecture 14: Inverse Reinforcement Learning



Inverse Reinforcement Learning (IRL)

» Given a dataset of demonstration trajectories D = {fz}z

e Find the demonstrator's reward function 79 : S — R

e The result Is underdetermined

> |If we only see positive examples, no telling how inclusive the reward should be

> How dense should the reward be (perhaps not uniformly?)

- Learning very dense rewards may not give benefits over IL

» Teacher can be fallible
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Feature matching

e Suppose we have an extractor of relevant state features f, € R4

« Assume a linear reward: 19(s) = 07 f,

 An agent gets the same reward as the teacher if ES,\,pW [ f 3] — ESND[f s]

> This Is also necessary, under mild conditions

e So let's optimize for the feature expectation max Eswpﬁ [9T f 5]

T

> But with what reward parameters?

e |dea: expert teacher should do max better than our learner on the true reward

miox(Ep[f7.] — max Ey [67])
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Modeling bounded teachers

 We'd like to have an expert teacher who optimizes the return

max e, |07 f¢| = max Eg,. |07 fs]
T T

e But suppose 7 has bounded ability to diverge from random behavior

max Eep,, |07 fe| + H{pr]

T

 The optimal trajectory distribution satisfies

po(§) = Ziepo(é) exp (07 f¢)
2o = g p, [exp(@ng)]

> Approximation: ignore dynamical constraints that can make this unachiavable
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MaxEnt IRL

1

po(§) = Zpo(f) exp (67 f¢)

2o = igp, [exp(@ng)]

* \We now optimize the empirical log likelihnood of demonstrations

Vologpe(§) = Ve(0T fe —log Zy) = [ 7 VQZQ
1

— fz 7 Fe,, lexp(07 fe) fel = fe — Eeo,, | fe)

* To compute the gradient, we need to take the forward expectation of py
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MaxkeEnt IRL — backward recursion

 Compute the partition function recursively backward

def
ZSt,CLt;Q — I

def
ZSt§9 = 1

L

PO [eXp(QTfSBt) |St7 at] — GXP(QTfSt) 138t+1\8t,at~p [ZSt+1;9]
Po [eXp(eTfé:?t) |St] — Iaat\StN’iTo [ZSt,at;e]

 Use it to compute local policy

L

ZSt,a,t;Q
ZSt;H

W@(Clt|3t) — Wo(&t‘st)

* Globally, this policy may be inconsistent pg # p,

> pbut MaxEnt IRL uses it as an approximation
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MaxEnt IRL

. Compute Zy = E¢,, |exp(0T f¢)] recursively backward

» Compute Iz, | f¢] recursively forwara

» Take a gradient step Vylogpy(&) = f & Eéfva@ S «S_]

e Repeat

—

- At the optimum we have feature matching ¢ p| fe| = Fevp,,

 Infact, we have approximated max H|mg| s.t. Eeop|fe] =1
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MaxEnt IRL limitations

* Approximation ignores dynamical constraints
e Policy estimation and visitation frequencies in each gradient step

e Model-based
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|IRL downstream tasks

e Our motivation: to learn a reward function for downstream tasks

such as RL

Inverse

demonstrations— BRG] (o= 11 =111
learning

reward N reinforcement

function learning policy

 [L=RLoIRL
» But our algorithms go through learning a policy anyway

> Let's optimize IRL for the overall IL tasks
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IL as RL o IRL

e Entropy-regularized RL:

max s _(7(s)| + H(7)

mell

e MaxEnt IRL, with reward-function regularizerw - R® 5 R:

max [Fg 5. |7(s)| — max(IEsps_|7(s)| + H(7m)) — 1 (r)

rcRS mell

» With respect to r, our objective is

V*(Pr — Dx) = max(pr — Px) - 17 — P(7)

reRS

» This function ™ : R — R is called the convex conjugate of Y
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Reward-function regularizers

U (Pr — Pr) = max(pr — Px) - 17— Y(1)

reRS

* No regularizer 1 = 0 — solution only exists when pr = P

> This is really what we want, but challenging to solve

0 r(s)=067f,

o0 otherwise
> Implies max-entropy feature matching (i.e. MaxEnt IRL)

» Hard linearity constraint: (1) =

> Great when the reward function really is linear in f , otherwise no guarantee
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Teacher-based reward-function regularizer

e Consider the regularizer

wGA(T) = |

e |t's convex conjugate Is

Vaa(Pr — Pr) = max(pr — px) - 17 — V(1)

reRS

[r(s) —log(1 — exp(—r(s)))]

= max Ey.p,[7(s) = 7(s) + log(1 — exp(=7(s)))] = Es~p,

reRS

» Ifweset D(s) = exp(—7(s))

then YA (Pr — Pr) =1




Generative Adversarial Networks

> |f generated instances are like actions, then ch s like a critic
Po(s)

po(s) + pr(s)
* The discriminator can be trained with the cross-entropy loss

mq?x Esp,|log D(s)| + FEsp.|log(l — D(s))]

e The generator tries to fool the discriminator max Es~p, |log D(s)]

» Dy(s) predicts the probability p(learner|s) =
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Generative Adversarial Imitation Learning (GAIL)

Input: demonstration dataset Dy ~ pr
repeat

D; < roll out my

take discriminator gradient ascent step

Esp, | Velog Dy(s)| + Eswp, [V log(l — Dy(s))]

take entropy-regularized policy gradient step with reward r(s) = —log D4(s)

 We've already seen one entropy-regularized PG algorithm: TRPO
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Recap

* To understand behavior, infer the intentions of observed agents

e If the teacher is optimized for a reward function
> The reward function should be such that an optimizer behaves like the teacher

» State (or state—action occupancy) of learner should match the teacher
* In this view, IRL is a game:
» Reward Is optimized to show how much better the teacher is than the learner

> Policy is optimized to be good too

> Reward is like a discriminator, policy like a generator
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Control as inference

e Consider soft "success" indicators

p(vt — 1‘St7 at) — €XP 6T(St7 at)
» What is the log-probability that an entire trajectory ¢ "succeeds"?

logp(V|€) = Zlogp(vt = 1|ss,a;) = ﬁZr(st,at) = OR

 What is the posterior distribution over trajectories, given success?

_ po(&)P(VIE) _ po(§) exp SR
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Pseudo-observations
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