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Today's lecture

e Abstractions in ML and RL

e Options framework

* Planning with options, within options
e Option discovery

* Multi-level hierarchies

e Feudal Networks

Roy Fox | CS 295 | Winter 2020 | Lecture 16: Structured Control



Abstractions in learning

* Input abstraction

> Allow downstream processing to ignore irrelevant input variation

» |n RL: state abstraction features
input H OUtpUt
~

e Qutput abstraction ~ -

G /
—yy, —

.

> Allow upstream processing to ignore extraneous output details

> In RL: action abstraction
 Can be programmed or learned

e Can improve sample efficiency, generalization, transfer
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Abstractions in sequential decision making

e Each decision can have state / action abstraction

| | I
> Spatial abstraction { - { -
;‘—}‘V

e Better: abstractions can be remembered

* Even better: abstraction dynamics can have a longer time-scale

> Temporal abstraction

> The abstract features can ignore fast-changing, short-term aspects

> Focus on long-term planning, shorten the effective horizon
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Options framework

e Option = persistant action abstraction

» High-level policy selects the active option h € ‘H

* The active option "fills in the details" by selecting concrete actions every step
mh(a|s)

 \WWhen to switch the active option?

» The option already attends to state details, and "knows" its subgoal
> So let the option detect when it achieved the subgoal (or failed to do so)

> Then the option will terminate; the high-level policy will select new option
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Four-room example

one of the 8 options:

4 stochastic
HALLWAYS — primitive actions
up
. Fail 33%
Ieft—'— ght of the time
/ 0 \\ Gl down
/NN
/ \\‘\ G, 8 multi-step options
/ o, (to each room's 2 hallways)
——
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Options framework: definition

» Option: tuple <Zy,, 7n, Bn)
~ The option can only be called in its initiation set s € 7,

> |t then takes actions according to policy Wh(a\s)

> After each step, the policy terminates with probability ﬁh(s)
» Equivalently, define policy over extended action set 7, : S — A(A U {1})
- Initiation set can be folded into option-selection meta-policy 7, : & — A(H)

» Together, 7, and {m, },c3 form the agent policy
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Planning with options

* Given a set of options, Bellman equation for the meta-policy

Vi(s) = maxra(s) + Eyponp, [Vi(5)

> such that with a7 = | at the time of option termination time

Th(St) =3 [Z ”Yt/ T St’ CLt/ St]

ph(sl‘st) = E[]l[ST=S’] VT_t‘St]

e Special case of primitive actions:

ro(s) =r(s,a)  pa(s'|s) = yp(s'|s, a)
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Four-room example

Primitive
options

Hallway
options

O=H

Initial Values lteration #1 lteration #2

 Options allow fast value backup

e Transfer to other tasks in same domain
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Memory structure of options agent

 Options are a pre-commitment, thus an uncontrolled part of the state

e Option terminate after variable time: Semi-Markov Decision Process (SMDP)

* Can be viewed as structured memory

> The option index Is committed to memory

- although it's not about past observations, it's about future actions

» Memory remains unchanged until option termination

> — memory Is interval-wise constant
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Planning within options

Vh(S) — INnax Qh(S, Cl) including or excluding termination?

a

Qh(sv CL) — T(Sv CL) T 7 Es’lsaa"“p[vhi(sl)]

Qn(s, L) =V (s) = max V£ (s)

» Problem: jointly finding V| and {V/},},,c is over-determined

* High-fitting: some 7}, tries to solve entire task, never terminates

» |t 713, IS expressive enough, this is guaranteed to happen

* Low-fitting: options terminate immediately, emulating primitive actions

> Now meta-policy carries the entire burden
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Option—-critic method

» For the critic, define V/,(s)

E)alsfwrgh [Qh (37 CL)]
 Then

Lo(s,hya,r,s") = (r+~v((1—=PBur(s)Vi(s") + Br(s’) maxV},

L.(s,h,a) = —Vy, logmy, (a|s)Qn(s,a)
[’5(57 h) — v¢h6¢h(8)(vh(5) — 1lax Vh’(s))

o Suffers badly from high- and low-fitting
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Subgoals

 Can we discover natural points to separate the high and low levels?
* |nsight: the high level defines the termination value for the low level
Qn(s, L) =Vi(s)

> Brings value back from a far future horizon to the low level's horizon

 \We can think of the terminal-state value function as a subgoal
> Defines in which states the option should try to terminate

» E.g. doorways in the four-room domain

 Can we discover good subgoals?
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Learning skill trees

— —
“-——’ ‘--——’

S «— {goal}

repeat
(7, ) < option for subgoal V| (s) = 7 - Ljses
7 < initiation set, on which (7, ) succeeds reaching subgoal
S—Sul

until s, € S
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Spectral methods

e Consider a state clustering into "good" and "bad" states
* The clustering indicator is a subgoal

* Let's use spectral clustering on the visitation graph

Ws,s’ — ]1[5’ is reachable from s
D(s) = Z W, ¢ = out-degree of s

1 1
* Normalized graph Laplacian [, = D™ 2 (D — W)D_§ finds connectivity

1 1
> Related to randomwalk D™ 2 (I — L)D2 = D™'W = {po(s'[s)} 4.

> Eigenvectors of least positive eigenvectors find nearly stationary state clusters
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Spectral subgoal discovery

0
|
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e Random walk

* Find eigenvectors of graph Laplacian
with small eigenvalues

e |earn options for these subgoals
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Option inference

* A (hierarchical) policy is a generator

po(he, arlhy—1,8:) = ((1 — Br,_, (5¢)) Lhy=hy 1] +Bh,_1 (80)T L (he|Se) )7, (a|S¢)

 Easy to compute when ¢ = hg, hq, ..

Vopo (&

v@ lngg(g) — pe(f)

= 2 Ene
t

. IS known; otherwise we can infer

) B PQ(C,S) o _
—ZC] G Vologpe(C,§) =1

1,ht|E~po [VQ 1Og pe(hta at‘ht—la St)]

3@‘\5%9 [VH log pe (Ca f)]

» In one-level hierarchy, py(h;_1, h:|£) can be computed exactly

» Forward-backward algorithm, similar to Baum-Welch in HMMs
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Expectation—-Gradient

 E-step: compute posterior over latent options

» G-step: compute policy gradient Cluster ’f

Improve

o Effectively, we jointly
> segment (successful) trajectories into homogenous control intervals
> cluster segments with similar behavior = options

> take a policy gradient step for the policy of each cluster
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Multi-level hierarchies

e Multi-level hierarchies useful for S
same reasons as one-level 1

> Many algorithms don't easily extend

conv net

o

Ot+1 Q¢4+1

conv net

o

.. | bidirectional RNN :

» Exact inference no longer possible = |
> use variational inference - l L | T
Po (€ &) g
10%]?9(5) = EC\§~q [k)g ] | || mask
’ q¢(C1E) [,
 Proposal distribution in training time }
can depend on past and future softmax

> Better data efficiency

\ C
C
U;
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Parametrized Hierarchical Procedures (PHPs)

Code Model

return
value

procedure @

Hierarchical control

—

| ae sub-procedure/ argument/
* Memory is a call-stack ﬁ:- o wmaPbserve /act/ return

| | termination value
e Can be trained with VI
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Feudal networks

Transition

policy gradient

)

Manager ﬁ goal
St = Rd _’[ _/ Mrnn } B gt = Rd -
$ :
_No gradient
[ ; / Mspace } WOI‘kCl‘
| —
= k=16 << d=256
L o 2 L d
X, @ Z, =R W, = RkxI
/ -4

Policy gradient

- l'i"'rn'n W - alxk
1 s ) UER

action
/ :

 Manager sets goals in learned latent space, every H steps

* \Worker uses the goals as hints for long-term valuable behavior
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Recap

e Abstractions: succinct representations; better data efficiency, generalization

* Hierarchical policy is foremost a memory structure

e Structure can be programmed, demonstrated, or discovered
* Subgoals can be represented by terminal-state value functions

 Many more hierarchical frameworks: HAMQ, MAXQ, HEXQ, HDQN, QRM, ...

 Many more opportunities for structure in control
> Multi-task learning

> Structured exploration
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