CS 295: Optimal Control and Reinforcement Learning Winter 2020

Lecture 2: Imitation Learning

Roy Fox
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

- Behavior Cloning
- Modeling humans
- DAgger
- DART
- HVIL

The impact of inaccurate dynamics

$$\sum |p^1(s'|s) - p^2(s'|s)| \le \epsilon$$

$$\sum_{s_t} |p^1(s_t) - p^2(s_t)| \le \epsilon t$$

Image: Sergey Levine

A policy is a (stochastic) function

A policy is a (stochastic) function

Behavior Cloning

$$p_{\pi}(s_{t+1}|s_t) = \sum_{o_t, a_t} p(o_t|s_t) \pi(a_t|o_t) p(s_{t+1}|s_t, a_t)$$

$$\pi_{\theta}(a_t|o_t) \approx \pi^*(a_t|o_t)$$

$$p_{\pi_{\theta}}(s_{t+1}|s_t) \approx p_{\pi^*}(s_{t+1}|s_t)$$

But wait...

How did they do it?

Modeling humans is hard

- Perhaps $o_t \neq o^*t$
- Perhaps $o_t \neq s_t$, so $p(o_{t+1}|o_t, a_t) \neq p(o_{t+1}|o_0, a_0, \dots, o_t, a_t)$
 - Generally, this requires $\pi_{ heta}(a_t|o_0,a_0,\ldots,o_t)$
 - Can use RNN, other models
 - Modeling memory is hard → prior structure may help
- Perhaps there is insufficient data
 - Demonstrating is a burden!
- Perhaps demonstrations are inconsistent
 - Humans are fallible
 - Some supervision is hard to give

Modeling memory

Modeling memory

DAgger: Dataset Aggregation

Can we collect demonstration data for $p_{\pi_{\theta}}(o_t)$?

Algorithm 1 DAgger

Collect dataset \mathcal{D} of teacher demonstrations

$$(o_0, a_0^*, o_1, a_1^*, \ldots) \sim p_{\pi^*}$$

Train π_{θ} on \mathcal{D}

Execute π_{θ} to get $(o_0, a_0, \ldots) \sim p_{\pi_{\theta}}$

Ask teacher to label $a_t^*|o_t \sim \pi^*$

Aggregate $(o_0, a_0^*, o_1, a_1^*, \ldots)$ into \mathcal{D}

Repeat!

DAgger demo

Video: Stéphane Ross

DAgger: Dataset Aggregation

Can we collect demonstration data for $p_{\pi_{\theta}}(o_t)$?

Algorithm 1 DAgger

Collect dataset \mathcal{D} of teacher demonstrations

$$(o_0, a_0^*, o_1, a_1^*, \ldots) \sim p_{\pi^*}$$

Train π_{θ} on \mathcal{D}

Execute π_{θ} to get $(o_0, a_0, \ldots) \sim p_{\pi_{\theta}}$

Ask teacher to label $a_t^*|o_t \sim \pi^*$

but how?

Aggregate $(o_0, a_0^*, o_1, a_1^*, \ldots)$ into \mathcal{D} Repeat!

DAgger: Dataset Aggregation

Can we collect demonstration data for $p_{\pi_{\theta}}(o_t)$?

Algorithm 1 DAgger

Collect dataset \mathcal{D} of teacher demonstrations

$$(o_0, a_0^*, o_1, a_1^*, \ldots) \sim p_{\pi^*}$$

Train π_{θ} on \mathcal{D}

Execute π_{θ} to get $(o_0, a_0, \ldots) \sim p_{\pi_{\theta}}$

Aggregate $(o_0, a_0^*, o_1, a_1^*, \ldots)$ into \mathcal{D}

Ask teacher to label $a_t^*|o_t \sim \pi^*$

but how?

Repeat!

DAgger can reduce the imitation loss from $\,O(\epsilon T^2)$ to $\,O(\epsilon T)$

Goal-conditioned Behavior Cloning

- Can we train one policy to reach multiple goals? $\pi_{ heta}(a_t|s_t,g_t)$
- How can we know the goal?
 - E.g., what is the goal in a demonstration $(s_0, a_0, s_1, a_1, \ldots)$?

Goal-conditioned Behavior Cloning

- Can we train one policy to reach multiple goals? $\pi_{ heta}(a_t|s_t,g_t)$
- How can we know the goal?
 - E.g., what is the goal in a demonstration $(s_0, a_0, s_1, a_1, \ldots)$?
- Idea: take each s_t as the goal of the demonstration $(s_0, a_0, \ldots, s_{t-1}, a_{t-1}, s_t)$

DART: Disturbances Augmenting Robot Training

DART

Image: Michael Laskey

Grasping task

Behavior Cloning

DART

Modeling memory

HVIL: Hierarchical Variational Imitation Learning

Imitation Learning as inference

Behavior Cloning with cross-entropy loss maximizes

$$\log p_{\pi_{\theta}}(\mathcal{D}) = \sum_{i} \log \pi_{\theta}(a_i|o_i) + \text{const} = \log \pi_{\theta}(a|o) + \text{const}$$

- With latent execution structure m we have $\log \pi_{\theta}(a|o) = \log \sum_{m} \pi_{\theta}(m,a|o)$
- Evidence Lower Bound (ELBO):

$$\log \pi_{\theta}(a|o) \geqslant \mathbb{E}_{m|o,a \sim q_{\phi}}[\log \pi_{\theta}(m,a|o) - \log q_{\phi}(m|a,o)]$$

- Inference network $q_{\phi}(m|a,o)$ samples execution structure m
 - which guides training of the agent $\pi_{\theta}(m,a|o)$

HVIL

Recap

