CS 295:
Optimal Control and

Reinforcement Learning
Winter 2020

Lecture 2: Imitation Learning

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences
University of California, Irvine



Today's lecture

* Behavior Cloning
 Modeling humans
 DAgQger

 DART

 HVIL
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The impact of inaccurate dynamics

Image: Sergey Levine
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A policy is a (stochastic) function

environment
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Image: Bojarski et al. 2016
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A policy is a (stochastic) function

environment
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Behavior Cloning
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But walt...

NVIDIA

Video
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How did they do it?

Recorded
steering
wheel angle : : ' '
g Adjust for shift Desired steering command
and rotation
Network
Left camera computed
_ steering v
. command  / \
Center camera > Zigdgtr;ﬁglﬂ > CNN > -
' Right camera % A
Back propagation | Eror

weight adjustment

Image: Bojarski et al. 2016
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Modeling humans is hard

+ Perhaps O; # O t
» Perhaps Ot 7 St, so p(0t+1‘0t7 Clt) 7 p(0t+1‘007 Ao, - - -5 Oty @t)
> Generally, this requires 779(@75‘0(), Ao, . - -, Ot)
» (Can use RNN, other models
> Modeling memory is hard — prior structure may help
* Perhaps there is insufficient data
> Demonstrating is a burden!
 Perhaps demonstrations are inconsistent

» Humans are fallible

> Some supervision is hard to give
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Modeling memory

environment
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Modeling memory

environment
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DAgger: Dataset Aggregation

Can we collect demonstration data for p,,(0;)?

Algorithm 1 DAgger

Collect dataset D of teacher demonstrations
(00, ag,01,a3,...) ~ Prs

Train m on D

Execute 7y to get (0g, ag,...) ~ P,

Ask teacher to label af|o; ~ 7*

Aggregate (0g, aj,01,a’,...) into D

* Repeat!
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DAgger demo
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Video: Stéphane Ross
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DAgger: Dataset Aggregation

Can we collect demonstration data for p,, (0;)?

Algorithm 1 DAgger

Collect dataset D of teacher demonstrations
(00, ag,01,a%,...) ~ Dy

Train m on D

Fxecute my to get (0g, ag,...) ~ Dr,

Ask teacher to label af|o; ~ 7*

Aggregate (09, aj,01,a,...) into D

» Repeat!
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DAgger: Dataset Aggregation

Can we collect demonstration data for p,, (0;)?

Algorithm 1 DAgger

Collect dataset D of teacher demonstrations
(00, ag,01,a%,...) ~ Dy

Train m on D

Fxecute my to get (0g, ag,...) ~ Dr,

Ask teacher to label af|o; ~ 7*

Aggregate (09, aj,01,a,...) into D

* Repeat!

DAgger can reduce the imitation loss from O(ETQ) to O(€T)

Roy Fox | CS 295 | Winter 2020 | Lecture 2: Imitation Learning




Goal-conditioned Behavior Cloning

 Can we train one policy to reach multiple goals? W@(&t|3t, gt)

 How can we know the goal?

» E.g., what is the goal in a demonstration (SO, ag, S1, 01, - - .)?
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Goal-conditioned Behavior Cloning

 Can we train one policy to reach multiple goals? 7T9(6Lt|8t, gt)
 How can we know the goal?
» E.g., what is the goal in a demonstration (SO, ag, S1, 01, - - .)?

» |dea: take each S; as the goal of the demonstration (Sg, ag, - . ., St—1, Gt—1, S¢)
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DART: Disturbances Augmenting Robot Training
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Image: Laskey et al. 2017



Optimize Noise

s
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Image: Michael Laskey
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Grasping task

Behavior Cloning
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Modeling memory

environment
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HVIL: Hierarchical Variational Imitation Learning

Move

Video: Fox et al. 2019
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Imitation Learning as inference

* Behavior Cloning with cross-entropy loss maximizes

log pr, (D) = Z log g (a;|o;) + const = log mg(alo) + const

» With latent execution structure m we have log my(alo) = logz (M, alo)

™

 Evidence Lower Bound (ELBO):

log mg(a|o) = Epjo,a~q, [10g Te(m, ajo) — log q4(m|a, 0)]
- Inference network q,(m|a, 0) samples execution structure m

> which guides training of the agent 7y (m, CL‘O)
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HVIL
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