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1 Continuous time
Consider a continuous-time MDP with time in a finite interval t P r0, T s, state vector xt P Rn,
and control vector ut P Rm. Let’s assume deterministic dynamics, such that the velocity
Bt xt “ 9xt P Rn is given by 9xt “ ftpxt, utq. Let the instantaneous reward be rtpxt, utq P R,
and we’d like to maximize the total cost

J puq “
ż T

0

rtpxt, utqdt,

subject to the trajectory x following the dynamics f for the control u, and also having a
given fixed start and end positions x0, xT .

Following the work of Pontryagin, we can consider the Lagrangian of this optimization
problem, with a Lagrange multiplier νt P Rn

J puq “
ż T

0

prt ` νtpft ´ 9xtqqdt.

Integrating in parts, we get

´

ż T

0

νt 9xtdt “ ´νTxT ` ν0x0 `

ż T

0

xt 9νtdt,

so that

J puq “
ż T

0

prt ` νtft ` xt 9νtqdt´ νTxT ` ν0x0.

Now consider an optimal control u˚, and a perturbed control upεq “ u˚ ` εh, with h a
fixed perturbation and ε its variable magnitude. We have

J pεq “
ż T

0

prtpxtpεq, utpεqq ` νtftpxtpεq, utpεqq ` xtpεq 9νtqdt´ νTxT ` ν0x0.
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Since J pεq is maximized at ε “ 0, we have

0 “ Bε J pεq “
ż T

0

ppBxt rt ` νt Bxt ft ` 9νtq Bε xt ` pBut rt ` νt But ftqhqdt.

For this to hold for any perturbation, we need

9νt “ ´pBxt rt ` νt Bxt ftq (1)
But rt ` νt But ft “ 0. (2)

If we consider the Hamiltonia

Htpxt, ut, νtq “ rtpxt, utq ` νtftpxt, utq,

we get that

9xt “ Bνt Ht pby 9xt “ ftpxt, utqq

9νt “ ´Bxt Ht pby (1)q
But Ht “ 0 pby (2)q.

We return to the Hamiltonian in the context of discrete time in Section 3

2 Linear–Quadratic Regulation (LQR)
We now turn to discrete time, but still consider continuous state and action spaces. Such
spaces are hard to deal with in practice. It’s not always clear how to even represent, let
alone optimize, the relevant functions over these spaces.

In this lecture and the next we’ll see a family of models over continuous spaces with
some particularly nice properties. It arises naturally in theoretical physics and in engineer-
ing applications. It gives insight into the behavior of dynamic systems. And it will be
computationally easy to represent and optimize.

As in the previous section, we start with a fully observable, deterministic dynamics
model. This time we consider special (time-invariant) transitions that are linear, that is
xt`1 “ fpxt, utq “ Axt ` But, with some matrices A P Rnˆn and B P Rnˆm. We also
consider special costs that are quadratic, that is cpxt, utq “ 1

2
xᵀtQxt `

1
2
uᵀtRut, with some

positive semidefinite 0 ĺ Q P Rnˆn and some positive definite 0 ă R P Rmˆm. The linear
dynamics and quadratic costs is where this model gets its name.

Sometimes this model can be a good approximation of more general dynamics and costs,
and we can simply take the first-order approximation of the dynamics and the second-order
approximation of the costs. In this case, the transitions and the cost could become time-
variant, that is, we’d have At, Bt, Qt and Rt vary with time. We would also add lower-order
terms: a constant drift in f and linear and constant cost terms in c. These extensions
complicate the introduction but don’t add much insight, so we’ll ignore them here.

We say that a symmetric matrix Q is positive semidefinite, and denote it Q ľ 0, if for
any x P Rn we have xᵀQx ě 0. We say that a symmetric matrix R is positive definite, and
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denote it R ą 0, if for any u P Rm other than 0 we have uᵀRu ą 0. If either of these don’t
hold the model becomes degenerate. If Q or R are not positive semidefinite, then there’s
a direction of x or u where the cost diverges to ´8. If R is positive semidefinite but not
positive definite, then there’s a subspace of the control space with no cost, where we can
optimize for the long term without considering the immediate cost. This is uninteresting,
and it complicates the math a bit, so we’ll require R to be positive definite.

The total cost in state x0 and with control sequence u0, u1, . . . is

J px0, uq “
ÿ

t

cpxt, utq “
ÿ

t

p1
2
xᵀtQxt `

1
2
uᵀtRutq

s.t. xt`1 “ fpxt, utq “ Axt `But @t ě 0.

Often we use a finite horizon here, sometimes an infinite horizon. It’s uncommon to see a
discount in this context. In the specific case here that the dynamics are deterministic, we
can talk about an episodic horizon, because the state x “ 0 is absorbing, in a sense: once
it’s reached no further control is needed, and the cost-to-go (another term for future return,
i.e. total future cost) is 0. If there exists a control policy that reaches x “ 0 from any initial
state, we call the dynamics pA,Bq controllable.

We can unfold the state recursion as

xt “ Atx0 ` A
t´1Bu0 ` ¨ ¨ ¨ ` ABut´2 `But´1,

or

xt ´ A
tx0 “

“

B AB ¨ ¨ ¨ At´1B
‰

»

—

—

–

ut´1

ut´2...
u0

fi

ffi

ffi

fl

.

Suppose A has rank n, so that the process doesn’t degenerate into a subspace. Then the
uncontrolled dynamics can lead to any state Atx0. For there to exist a sequence u0, . . . , ut´1

that leads to xt “ 0, the entire space needs to be spanned by the columns of the controllability
matrix

C “
“

B AB ¨ ¨ ¨ An´1B
‰

.

There’s no point in taking more than n terms in this matrix, because the matrix A satisfies
the characteristic polynomial of degree n, by the Cayley-Hamilton theorem.

We can use Dynamic Programming to find an optimal control policy, one that minimizes
the total cost J . To do that, we need to be able to represent the optimal cost-to-go J ˚

t

in time t in a finite way. Since we were able to express xt as a linear function of x0 and
the control sequence, so that each cpxt, utq is quadratic in those variables, so is the total
cost J puq. But we need to represent the optimal cost-to-go J ˚

t pxtq, and we may make an
educated guess that this function is quadratic as well. We’ll see in a moment that this is
true, and part of what makes this setting solvable.

The Bellman equation for T -step finite-horizon LQR is

J ˚
t pxtq “ min

ut
pcpxt, utq ` J ˚

t`1pfpxt, utqqq “ min
ut
p1
2
xᵀtQxt `

1
2
uᵀtRut ` J ˚

t`1pAxt `Butqq.
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In the continuous-time limit, this equation is called the Hamilton–Jacobi–Bellman equation.
In the discrete-time case, we’ll solve it at the same time that we prove by induction that J ˚

t

is quadratic. This holds by definition for J ˚
T “ 0. Now suppose it holds for J ˚

t`1, that is

J ˚
t`1pxt`1q “

1
2
xᵀt`1St`1xt`1,

for some positive semidefinite Hessian 0 ĺ St`1 P Rnˆn. So

J ˚
t pxtq “ min

ut
p1
2
xᵀtQxt `

1
2
uᵀtRut `

1
2
pAxt `Butq

ᵀSt`1pAxt `Butqq.

The optimal control is the ut for which the objective has gradient 0 with respect to uᵀt

Ru`BᵀSt`1pAxt `Butq “ 0,

which we rearrange to get

ut “ ´pR `B
ᵀSt`1Bq

´1BᵀSt`1Axt.

We plug this back into the target function to get

J ˚
t pxtq “

1
2
xᵀt pQ` A

ᵀSt`1Aqxt ` u
ᵀ
tB

ᵀSt`1Axt `
1
2
uᵀt pR `B

ᵀSt`1Bqut

“ 1
2
xᵀt pQ` A

ᵀSt`1Aqxt ` u
ᵀ
tB

ᵀSt`1Axt ´
1
2
uᵀtB

ᵀSt`1Axt

“ 1
2
xᵀt pQ` A

ᵀSt`1Aqxt ´
1
2
xᵀtA

ᵀSt`1BpR `B
ᵀSt`1Bq

´1BᵀSt`1Axt

“ 1
2
xᵀtStxt,

with the symmetric matrix

St “ Q` Aᵀ
pSt`1 ´ St`1BpR `B

ᵀSt`1Bq
´1BᵀSt`1qA.

The form of this equation is called a discrete-time Ricatti equation.
Since we found that J ˚

t pxtq is quadratic, it shouldn’t be surprising that its Hessian St
is independent of xt, and that it can be computed without knowing any of the states or
the control signals, using the above backward recursion. To show that St is also positive
semidefinite, we could use the Woodbury matrix identity (not shown here), or just note
that, like the immediate cost, the optimal cost-to-go cannot decrease without bound in any
direction of the state space.

We see that in the finite-horizon case the optimal time-variant control policy is also linear

ut “ Ltxt,

with the feedback gain matrix

Lt “ ´pR `B
ᵀSt`1Bq

´1BᵀSt`1A.
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3 The co-state and the Hamiltonian
For deterministic dynamics xt`1 “ fpxt, utq and cost rate cpxt, utq, we can ask how sensitive
the total cost J puq is to small perturbations in the state. More precisely, we can look at the
gradient of

Jtpxt, uq “ cpxt, utq ` Jt`1pfpxt, utq, uq

with respect to xt. This gradient is a row vector called the co-state νt P Rn, and is given by

νt “ ∇xtJt “ ∇xtct `∇xt`1Jt`1 ¨∇xtft “ ∇xtct ` νt`1∇xtft, (3)

where ∇xtft P Rnˆn is the Jacobian of the dynamics. This is a linear backward recursion,
initialized by

νT “ 0.

We can now define the discrete-time Hamiltonian

Ht “ cpxt, utq ` νt`1fpxt, utq.

The Hamiltonian in control theory is related to the one in physics, but is not the same. Our
Hamiltonian is, in a sense, a first-order approximation of the total cost Jt. It has the correct
immediate-cost term cpxt, utq, and an approximation of the future cost Jt`1 to first order in
xt`1 “ fpxt, utq. The Hamiltonian defines at the same time the backward dynamics of the
co-state

νt “ ∇xtHt, (4)

by (3), and the forward dynamics of the state

xt`1 “ ∇νt`1Ht. (5)

We can also write our total cost objective as

J “

T´1
ÿ

t“0

pHt ´ νt`1xt`1q.

In this equation, when the Hamiltonian is plugged in, the co-state νt`1 plays the role of a
Lagrange multiplier for the constraint xt`1 “ fpxt, utq. It shows that

∇utJ “ ∇utHt,

so that the optimal control is obtained when for all t ě 0

∇utHt “ 0. (6)

The system of the nT variables xt, the mT variables ut, and the nT variables νt may be
determined by the nT equations (4), the nT equations (5), and themT equations (6). In gen-
eral these equations are nonlinear, and there may be more than one solution, corresponding
to local minima.
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In the linear–quadratic case, the Hamiltonian is quadratic

Ht “
1
2
xᵀtQxt `

1
2
uᵀtRut ` νt`1pAxt `Butq,

and the equations get the linear form

xt`1 “ Axt `But

νt “ νt`1A` x
ᵀ
tQ

Rut `B
ᵀνᵀt`1 “ 0,

with the mixed (initial and terminal) boundary conditions of a given x0 and νT “ 0. Let’s
show by induction that the unique solution to these equations is

νᵀt “ Stxt

ut “ Ltxt.

This holds for time T , since ST “ 0. Now assume it holds for time t` 1, and prove for time
t. We have

0 “ Rut `B
ᵀνᵀt`1 “ Rut `B

ᵀSt`1xt`1 “ pR `B
ᵀSt`1Bqut `B

ᵀSt`1Axt,

so ut “ Ltxt and

νᵀt “ Aᵀνt`1 `Qxt “ AᵀSt`1xt`1 `Qxt

“ pQ` AᵀSt`1Aqxt ` A
ᵀSt`1But

“ pQ` AᵀSt`1A´ A
ᵀSt`1BpR `B

ᵀSt`1Bq
´1BᵀSt`1Aqxt “ Stxt,

as required.
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