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1 LQR with Gaussian process noise
In the stochastic control setting, the state transition is not deterministic, but stochastic.
Since the space is continuous, the distribution of xt`1 given xt and ut should be continuous
as well, with some density function ppxt`1|xt, utq. To continue looking at a family of models
that is principled in physics and engineering, and that has nice computational properties,
we consider the Gaussian distribution.

Suppose that

xt`1 “ Axt `But ` ωt,

where ωt is Gaussian noise with mean 0 and covariance Σω (again we omit any drift in the
mean of the noise for the sake of simplicity). The variables ωt for different times are taken to
be independent and identically distributed, similar to the Markov property of MDPs. The
noise corresponds to fluctuation in the state transition, i.e. uncertainty that results from the
state being described at some intermediate level of accuracy, and not in full physical detail.
In the continuous-time limit, this state transition equation becomes the Langevin equation,
with Bu as an external field.

Now we are interested in minimizing the expected cost-to-go

Jtpxt, uq “
T´1
ÿ

t1“t

Ercpxt1 , ut1q|xt, us “
T´1
ÿ

t1“t

Er1
2
xᵀt1Qxt1 `

1
2
uᵀt1Rut1 |xt, us

“ Er1
2
xᵀtQxt `

1
2
uᵀtRut ` Jt`1pxt`1, uq|xt, uts.

The Bellman equation becomes

J ˚
t pxtq “ min

ut
Ext`1|xt,ut„N pAxt`But,Σωqrcpxt, utq ` J ˚

t`1pxt`1qs

“ min
ut
Eωt„N p0,Σωqr

1
2
xᵀtQxt `

1
2
uᵀtRut ` J ˚

t`1pAxt `But ` ωtqs.
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Again we’ll solve it for a T -step finite horizon, at the same time that we prove by induction
that J ˚

t is quadratic, this time with a constant term. Again J ˚
T “ 0. Suppose that

J ˚
t`1pxt`1q “

1
2
xᵀt`1St`1xt`1 ` J ˚

t`1p0q,

with some positive semidefinite Hessian St`1.
An important fact about a random vector x with mean µx and covariance Σx is that for

any matrix S

ErxᵀSxs “ µᵀ
xSµx ` trpS Σxq.

So

J ˚
t pxtq “ min

ut
Ext`1|xt,ut„N pAxt`But,Σωqr

1
2
xᵀtQxt `

1
2
uᵀtRut `

1
2
xᵀt`1St`1xt`1 ` J ˚

t`1p0qs

“ min
ut
p1

2
xᵀtQxt `

1
2
uᵀtRut `

1
2
pAxt `Butq

ᵀSt`1pAxt `Butqq `
1
2

trpSt`1 Σωq ` J ˚
t`1p0q.

The minimization objective is the same as in the deterministic case, so the control policy is
the same, and so is the Hessian St. The only difference is that now J ˚

t has an additional
constant term

J ˚
t pxtq “

1
2
xᵀtStxt `

T
ÿ

t1“t`1

1
2

trpSt1 Σωq.

This constant is a noise–cost term, representing the cost-to-go of the process noise. It cannot
be controlled by the immediate control signal ut, although its magnitude is determined by
St1 , which assumes future optimal control.

In the infinite-horizon setting, under some conditions, the Hessian will converge to a self-
consistent solution of the Ricatti equation, which is then called an algebraic Ricatti equation

S “ Q` Aᵀ
pS ´ SBpR `BᵀSBq´1BᵀSqA.

Then the relative weight of the term 1
2
xᵀSx in the cost-to-go tends to 0, and the average

cost becomes 1
2

trpS Σωq. Note how the average infinite cost doesn’t depend on the state in
any finite time.

2 Linear–Quadratic Estimation (LQE)
In a continuous space problem, when observability is partial, the agent’s belief of what
the state may be is a continuous distribution over the world state given the agent’s past
observations. We again focus on the simplest interesting case, where the dynamics are linear
and the distributions Gaussian, and for now we assume that the system is uncontrollable.
This model is a special case of a Hidden Markov Model (HMM), but with continuous state
and observation spaces, instead of discrete ones.

In addition to the Gaussian process noise, we now also have Gaussian observation noise.
Let the observation in time t, denoted by yt P Rk, be given by yt “ Cxt`ψt, where C P Rkˆn,
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and the observation noise ψt is Gaussian with mean 0 and covariance matrix Σψ. All the
noises ωt, ψt are independent random variables (they have no parents in the Bayesian network
describing the process).

The whole stochastic process of states and observations can be expressed as a giant linear
transformation of x0, plus some high-dimensional Gaussian noise. The process is therefore a
Gaussian process : all the variables are jointly Gaussian, while also keeping their Markovian
independence properties.

An important property of jointly Gaussian variables, is that their conditional distribu-

tions are also Gaussian. If x and y are jointly Gaussian with mean
„

µx
µy



and covariance
„

Σx Σxy

Σyx Σy



, where Σy has full rank, we have the following formula for the mean and the

covariance of x when y “ y0 is given:

µx|y0 “ Erx|y0s “ µx ` Σxy Σ´1
y py0 ´ µyq

Σx|y0 “ covrx|y0s “ Σx´Σxy Σ´1
y Σyx .

One way to prove this is by direct computation from the density function of the Gaussian
distribution. An easier way is to see that the Gaussian variable z “ x ` Σxy Σ´1

y py0 ´ yq,
representing “x|y0”, is independent of y:

covrz, ys “ covrx` Σxy Σ´1
y py0 ´ yq, ys “ covrx, ys ´ Σxy Σ´1

y covrys “ 0.

This means that

µx|y0 “ Erx|y0s “ Erz ´ Σxy Σ´1
y py0 ´ yq|y “ y0s “ Erz|y0s

“ Erzs “ Erxs ` Σxy Σ´1
y py0 ´ Erysq “ µx ` Σxy Σ´1

y py0 ´ µyq,

and

Σx|y0 “ covrx|y0s “ covrz ´ Σxy Σ´1
y py0 ´ yq|y “ y0s “ covrz|y0s

“ covrzs “ covrxs ´ covrx, ysΣ´1
y Σyx´Σxy Σ´1

y covry, xs ` Σxy Σ´1
y covrysΣ´1

y Σyx

“ Σx´Σxy Σ´1
y Σyx,

and similarly higher normalized moments are 0, as required.
The algorithm that performs belief propagation, that is, updates the belief with each new

observation, is called the Kalman filter in this case (in continuous time: the Kalman-Bucy
filter), and the belief it keeps is called a Linear–Quadratic estimator (LQE).

The posterior distribution btpxt|yďtq, and similarly the predictive distribution b1tpxt|yătq,
are Gaussian. This means that they can be represented by their means x̂t and x̂1t, and
their covariances Σt and Σ1t, respectively. We can compute these sequentially with Bayesian
inference, but we need to see that the computation is practical.

The prediction step is

x̂1t`1 “ Erxt`1|yďts “ ErAxt ` ωt|yďts “ Ax̂t

Σ1t`1 “ covrxt`1|yďts “ covrAxt ` ωt|yďts “ AΣtA
ᵀ
` Σω .
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The update step computes the mean

x̂t “ Erxt|yďts “ Erpxt|yătq|pyt|yătqs

“ Erxt|yăts ` covrxt, yt|yăts covryt|yăts
´1
pyt ´ Eryt|yătsq

“ Erxt|yăts ` covrxt|yătsC
ᵀ
pC covrxt|yătsC

ᵀ
` Σψq

´1
pyt ´ C Erxt|yătsq

“ x̂1t ` Σ1tC
ᵀ
pC Σ1tC

ᵀ
` Σψq

´1
pyt ´ Cx̂

1
tq.

Recall our assumption that Σψ is full-rank, otherwise the observation can be represented in
a lower dimension. The term et “ yt ´ Cx̂1t is the prediction error (also called innovation),
i.e. the error in predicting yt based on previous observations. To update the covariance we
compute

Σt “ covrxt|yďts “ covrpxt|yătq|pyt|yătqs

“ covrxt|yăts ´ covrxt, yt|yăts covryt|yăts
´1 covryt, xt|yăts

“ covrxt|yăts ´ covrxt|yătsC
ᵀ
pC covrxt|yătsC

ᵀ
` Σψq

´1C covrxt|yăts

“ Σ1t´Σ1tC
ᵀ
pC Σ1tC

ᵀ
` Σψq

´1C Σ1t .

Again we see that the Bayesian belief can be computed sequentially, using only the
previous estimator and the current observation. It involves simple linear algebra, with the
most computation-intensive operator being matrix inversion. The inference step consists of
updating the mean vector linearly

x̂t “ Ax̂t´1 `Ktet “ pI ´KtCqAx̂t´1 `Ktyt,

where Kt is the Kalman gain

Kt “ Σ1tC
ᵀ
pC Σ1tC

ᵀ
` Σψq

´1,

and updating the predictive covariance matrix with a Ricatti equation

Σ1t`1 “ ApΣ1t´Σ1tC
ᵀ
pC Σ1tC

ᵀ
` Σψq

´1C Σ1tqA
ᵀ
` Σω .

Note that no actual observations are needed to compute the estimator covariance. The
prior mean is 0 and the prior covariance is

Σxt`1 “ AΣxt A
ᵀ
` Σω .

Obviously the estimator is improved and the covariance reduced by considering the observa-
tions. But we don’t need the observations in order to compute by how much the estimator
is improved. In an infinite horizon, the covariance is the solution to the algebraic Ricatti
equation

Σ1 “ ApΣ1´Σ1Cᵀ
pC Σ1Cᵀ

` Σψq
´1C Σ1qAᵀ

` Σω,

which can be hard-coded into the agent, eliminating the need to invert matrices in real time
during execution.
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The mean x̂t is an unbiased estimator for xt, so

x̂t “ xt ` εt,

where εt is some Gaussian estimation noise with mean 0 and covariance Σεt . The Bayesian
estimator is a sufficient statistic of the observable history for this hidden state, which implies
that it minimizes the variance xᵀt Σt xt along any component xt, and so it minimizes the
estimator covariance Σx̂t , i.e. the estimation noise Σεt .

In fact, there’s a deep connection between inference and control, and in particular between
sufficient inference and optimal control. Let’s take another look at the recursions for the
estimator covariance and the cost Hessian

Σ1t`1 “ ApΣ1t´Σ1tC
ᵀ
pC Σ1tC

ᵀ
` Σψq

´1C Σ1tqA
ᵀ
` Σξ

St “ Q` Aᵀ
pSt`1 ´ St`1BpR `B

ᵀSt`1Bq
´1BᵀSt`1qA.

Obviously they have a common structure, so that one problem can be mapped to the other by
mapping their components. This is a classic demonstration of the duality between inference
and control, summed up in the following table.

LQR LQE
backward forward
ST´t Σ1t
A Aᵀ

B Cᵀ

Q Σξ

R Σψ

A different view of the duality can be obtained through a variant of the Kalman filter
called the information filter, where instead of the estimator covariance Σ1t we compute its
inverse, the estimator precision. The resulting duality between S and pΣ1q´1 is actually the
better one to consider.

3 The full Linear–Quadratic–Gaussian (LQG) setting
Putting together inference and control, we get a Partially Observable Markov Decision Pro-
cess (POMDP). The family of continuous-space POMDPs with linear dynamics, quadratic
cost rate and Gaussian noises is called LQG. LQG is the only widely-applicable class of
POMDPs for which we have a complete analytic solution.

The dynamics now include the control signal

xt`1 “ Axt `But ` ωt ωt „ N p0,Σωq.

This is like stochastic control, but observability is now partial

yt “ Cxt ` ψt ψt „ N p0,Σψq.
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So we need both an inference policy, which we already suspect will optimally be linear

x̂t “ Gtx̂t´1 `Ktyt,

and a control policy, which we also suspect will optimally be linear, but can now only depend
on the belief, not directly on the hidden state

ut “ Ltx̂t.

This set of 4 equations completely determines the stochastic dynamics of the entire system,
and our objective is to minimize a total cost with the same rate

cpxt, utq “
1
2
xᵀtQxt `

1
2
uᵀtRut.

The sufficient Bayesian inference is just like before, except we have an additional control
term But to take into account. When the control signal is given, either nominally or as a
function of the estimator, it adds a constant drift to the process, affecting the mean but not
the posterior covariance. We now have the prediction

x̂1t`1 “ Ax̂t `But

and the update

x̂t “ Ax̂t´1 `But´1 `Ktet “ pI ´KtCqpAx̂t´1 `But´1q `Ktyt,

with the same Kt and Σ1t as before.
The cost-to-go J can be expressed in terms of the state of the system, which consists of

both the world state xt and the memory state, the estimator x̂t. In principle, the memory
state is a belief state, so it also includes the posterior covariance Σ1t. However, we saw that
Σ1t doesn’t depend on any actual states or observations, so it’s not a random variable, and
any dependence on it is just in the form of the cost-to-go function J , which is now

Jtpxt, x̂t, uq “
T´1
ÿ

τ“t

Ercpxτ , uτ q|xt, x̂ts “ Ercpxt, utq ` Jt`1pxt`1, x̂t`1, uq|xt, x̂ts.

There’s a delicate point here which is often glossed over. It’s important that we took
the full system state in this recursive equation. Given pxt, x̂tq, the past and the future of
the process are completely independent, so the recursive term ErJt`1pxt`1, x̂t`1, uq|xt, x̂ts
properly describes the dynamics of the process. If we tried, for example, to write down a
recursive equation for the expected cost given only the world state, we would get

ErJtpxt, x̂t, uq|xts “ Ercpxt, utq ` Jt`1pxt`1, x̂t`1, uq|xts.

We can’t directly compute the last term from the recursive term ErJt`1pxt`1, x̂t`1, uq|xt`1s,
because xt and x̂t`1 are not independent given xt`1.

On the other hand, taking the full state in the Bellman equation for J ˚ is incorrect as
well. The minimum in the Bellman equation is taken given the specific state for which we
optimize, but ut can’t be optimized for pxt, x̂tq, because it can only depend on x̂t.
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The trick is that the cost recursion can be written in terms of x̂t alone, when the inference
is sufficient. We have

J̄tpx̂t, uq “ ErJtpxt, x̂t, uq|x̂ts “ Ercpxt, utq ` Jt`1pxt`1, x̂t`1, uq|x̂ts

“ Ercpxt, utq ` J̄t`1px̂t`1q|x̂ts,

where the last step follows from the fact that x̂t`1 is a sufficient statistic of the observable
history for xt`1, and so xt`1 only depends on the previous estimator x̂t through the updated
estimator x̂t`1.

The Bellman equation is now

J ˚
t px̂tq “ min

ut
E xt|x̂t„N px̂t,Σtq
et`1|x̂t„N p0,C Σ1t`1 C

ᵀ`Σψq

rcpxt, utq ` J ˚
t`1px̂t`1qs.

As we did in LQR, we’ll assume and prove by induction that

J ˚
t px̂tq “

1
2
x̂ᵀtStx̂t ` J ˚

t p0q.

Then

J ˚
t px̂tq “min

ut
E xt|x̂t„N px̂t,Σtq
et`1|x̂t„N p0,C Σ1t`1 C

ᵀ`Σψq

r1
2
xᵀtQxt `

1
2
uᵀtRut ` J ˚

t`1pAx̂t `But `Kt`1et`1qs

“ min
ut
p1

2
x̂ᵀtQx̂t `

1
2
uᵀtRut `

1
2
pAx̂t `Butq

ᵀSt`1pAx̂t `Butqq

` 1
2

trpQΣtq `
1
2

trpSt`1Kt`1pC Σ1t`1C
ᵀ
` ΣψqK

ᵀ
t`1q ` J ˚

t`1p0q.

Interestingly, we have the same optimal control as in LQR, this time as a function of the
estimator x̂t instead of the actual (now hidden) state xt

ut “ Ltx̂t

Lt “ ´pR `B
ᵀSt`1Bq

´1BᵀSt`1A.

The cost Hessian St is also the same, obtained recursively by the same Ricatti equation as
in LQR

St “ Q` Aᵀ
pSt`1 ´ St`1BpR `B

ᵀSt`1Bq
´1BᵀSt`1qA.

The only difference is that we have an additional constant uncontrollable noise–cost term

J ˚
tp0q “

1
2

T
ÿ

τ“t

ptrpQΣτ q ` trpSτ`1Kτ`1pC Σ1τ`1C
ᵀ
` ΣψqK

ᵀ
τ`1qq.

Substituting the optimal control in the equations for sufficient inference, we get the linear
inference step

Gt “ pI ´KtCqpA`BLtq

Kt “ Σ1tC
ᵀ
pC Σ1tC

ᵀ
` Σψq

´1,

7



with the same Σ1t as in LQE and the same Kalman gain. We can rewrite the constant
noise–cost term as

J ˚
t p0q “

1
2

T
ÿ

τ“t

ptrpQΣτ q ` trpSτ`1 Σ1τ`1C
ᵀ
pC Σ1τ`1C

ᵀ
` Σψq

´1C Σ1τ`1qq

“ 1
2

T
ÿ

τ“t

ptrpQΣτ q ` trpSτ`1pΣ
1
τ`1´Στ`1qqq.

In fully-observable stochastic control, the constant cost term represented the cost-to-go of
the process noise. Here it breaks additively into two dual parts: the immediate cost of the
uncertainty in xt accumulated from the past, and the future cost-to-go of the uncertainty
that the immediate observation noise adds to x̂t.

In infinite horizon, the cost rate converges to

1
2

trpQΣq ` 1
2

trpSpΣ1´Σqqq,

where S and Σ1 each solves its own algebraic Ricatti equation, and Σ is computed from Σ1.
The fact that in LQG we have the same cost Hessian and feedback gain as in LQR,

and the same estimator covariance and Kalman gain as in LQE, means that the control
and estimation parts of LQG can be optimized separately. This separation principle is
essentially unique to LQG, and is largely responsible for it being a useful model in a variety
of applications.
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