CS 295:
Optimal Control and

Reinforcement Learning
Winter 2020

Lecture 5: Temporal-Difference Methods

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

 Monte Carlo vs. Temporal-Difference
* On-policy vs. off-policy
e Policy evaluation and policy improvement

* Function representation in table-form vs. differentiable

Policy evaluation

e Distribution over trajectories:

px(§) = p(so) H (@ $1)p(St+1]St, ar)

t

e Expected return: E¢., [R]

« State value function: V,(s) = E¢,_[R|so = 5]

 Dynamic Programming: compute this recursively

Vi(s) = Egjsarlr(s,a) + v Easa<i Va(s)]]

Model-free policy evaluation

 Monte Carlo (MC) evaluation:
1
Eils ~ pr Vis) = —ZRZ-
o Temporal-Difference (TD) evaluation:

for each (s;, a3, 11,8;) : AV(s;) — a(r; + vV (s;) — V(s;))

> Only works on-policy @;|s; ~ T
e Off-policy version:
Qr(s,a) = Eevp | R|So = s,a0 = af
for each (si,a;,15,8,) : AQ(S;, a;) «— a(r; + YEygr|Q(s,)] — Q(s4,a;))

Deep MC policy evaluation

 Monte Carlo (MC) evaluation:
1
fz‘s ~ Pr V(S) = NZZ]RZ

 What if the state space is large?

Lo(&) = (Va(so) — R)?

o With proper parametrization, this can yield generalization over state space

e But still very data inefficient

Deep 1D policy evaluation

* On-policy Temporal-Difference (TD) evaluation:
for each (si, a,11,8) : AV(s;) «— a(r; + vV (s)) — V (s;))
e |ends itself nicely to SGD:
Lo(s,a,r,s) = (r+4Vy(s) — Vy(s))

» Using both current-state j(s) and next-state V3 (s') may be unstable

> Heuristic: use target network Vg(sl), update it periodically with O — 0

Policy improvement

* A value function suggests the greedy policy:

m(s) = argmax (s, a) = argmax(r(s,a) + v Egs.awp[V ()]

a a

* Proposition: the greedy policy for () is never worse than 7

> Generally: the greedy policy for maX(Qm, QWQ) IS never worse than 71 or 7o
e Corollary 1: any optimal policy 7* is greedy for ()* = () .x
» Corollary 2: all fixed points of 7(s) = argmax (0 (s,a) have Q, = QF

a

Bellman optimality

The RL scheme

policy evaluation

policy improvement

Roy Fox | CS 295 | Winter 2020 | Lecture 5: Temporal-Difference Methods

Policy lteration

» Evaluate the policy ().(s,a) = E¢, [R|so = s, a0 = a

» Update to the greedy policy m(s) = argmax 0, (s, a)

a

 Repeat

 When loop converges, (). = Q*

Value lteration

 Repeat:

V(s;) < max(r(s; a) + 7 Egjs, ap[V(s')])

a

» Must update each state repeatedly until convergence

Generalized Policy Iteration

* Alternate by some schedule:

V(SZ) — Ea\sww [T(Siv a) + /YIES/‘SZ’,CLNP[V(S/)]]
m(s;) <« argmax(r(s;,a) + v Egjs;.ap|V(8)])

a

Model-free reinforcement learning

e MC:

1
§i|87aNpW Q(S,CL) < ZR’L

T «— argmax ()

e Q-learning (TD):
AQ(S’U ai) N CV(T'Z' T ﬂ/m@XQ(S;, Cl,) o Q<Si7 az))

a

Deep MC reinforcement learning

e A variant of Monte Carlo Tree Search (MCTS):

E~Dry Lo(&) = (Qols0,a0) — R)

~ With 7 greedy for a snapshot of (Jy

« We need a representation of (Jy that allows computing

Ty(s) = argmax Qy(s, a)

a

 For a small action space: Deep Q Network S " 4o > QQ(S)
(96(8))a = Qo(s,a) N

» T Is not differentiable, but we don't need it to be

Deep D reinforcement learning

* Deep Q Learning (historically called DQN):

Lo(s,a,r,s') = (r +ymaxQg(s', a') — Qs(s,a))’

a

* This algorithm should work off-policy, so we can keep replay buffer

e Variants differ on
> How to add experience to the buffer

> How to sample from the buffer

Interaction policy

* |In model-free RL, we often get data by interaction with the environment

> How should we interact?
* On-policy methods (e.g. MC): must use current policy

o Off-policy methods: can use different policy — but not too different!

> Otherwise may have train—test distribution mismatch (with Deep RL)

* In either case, must make sure interaction policy explores well enough

Exploration policies

e g-greedy exploration: select uniform action w.p. €, otherwise greedy

e Boltzmann exploration:

m(als) = sm(Q(s,a);B) = xp(fQ(s, a))
(|) p (Q())76) Za’ exp(ﬁQ(S,a’))

» Becomes uniformas 0 — 0, greedyas 5 — O

Putting it all together: DQN

differentiable value
function approximation

policy evaluation

exploration

policy improvement greedy policy

Recap

 RL is a policy evaluation < policy improvement loop

 Temporal-Difference methods exploit the dynamical-programming structure

» Off-policy methods don't need to throw out data as often when policy
changes

 Many approaches can be made differentiable for Deep RL

