CS 295: Optimal Control and Reinforcement Learning Winter 2020

Lecture 5: Temporal-Difference Methods

Roy Fox
Department of Computer Science
Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

- Monte Carlo vs. Temporal-Difference
- On-policy vs. off-policy
- Policy evaluation and policy improvement
- Function representation in table-form vs. differentiable

Policy evaluation

• Distribution over trajectories:

$$p_{\pi}(\xi) = p(s_0) \prod_{t} \pi(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

- Expected return: $\mathbb{E}_{\xi \sim p_\pi}[R]$
- State value function: $V_{\pi}(s) = \mathbb{E}_{\xi \sim p_{\pi}}[R|s_0 = s]$
- Dynamic Programming: compute this recursively

$$V_{\pi}(s) = \mathbb{E}_{a|s \sim \pi} [r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p} [V_{\pi}(s')]]$$

Model-free policy evaluation

Monte Carlo (MC) evaluation:

$$\xi_i|s \sim p_{\pi} \qquad V(s) = \frac{1}{N} \sum_i R_i$$

• Temporal-Difference (TD) evaluation:

for each
$$(s_i, a_i, r_i, s_i')$$
: $\Delta V(s_i) \leftarrow \alpha(r_i + \gamma V(s_i') - V(s_i))$

- Only works on-policy $|a_i|s_i\sim\pi$
- Off-policy version:

$$Q_{\pi}(s, a) = \mathbb{E}_{\xi \sim p_{\pi}}[R|s_0 = s, a_0 = a]$$

for each
$$(s_i, a_i, r_i, s_i')$$
: $\Delta Q(s_i, a_i) \leftarrow \alpha(r_i + \gamma \mathbb{E}_{a'|s_i' \sim \pi}[Q(s_i', a')] - Q(s_i, a_i))$

Deep MC policy evaluation

• Monte Carlo (MC) evaluation:

$$\xi_i|s \sim p_{\pi} \qquad V(s) = \frac{1}{N} \sum_i R_i$$

What if the state space is large?

$$\mathcal{L}_{\theta}(\xi) = (V_{\theta}(s_0) - R)^2$$

- With proper parametrization, this can yield generalization over state space
- But still very data inefficient

Deep TD policy evaluation

• On-policy Temporal-Difference (TD) evaluation:

for each
$$(s_i, a_i, r_i, s_i')$$
: $\Delta V(s_i) \leftarrow \alpha(r_i + \gamma V(s_i') - V(s_i))$

Lends itself nicely to SGD:

$$\mathcal{L}_{\theta}(s, a, r, s') = (r + \gamma V_{\theta}(s') - V_{\theta}(s))^2$$

- Using both current-state $V_{ heta}(s)$ and next-state $V_{ heta}(s')$ may be unstable
 - Heuristic: use **target network** $V_{ar{ heta}}(s')$, update it periodically with $ar{ heta} \leftarrow heta$

Policy improvement

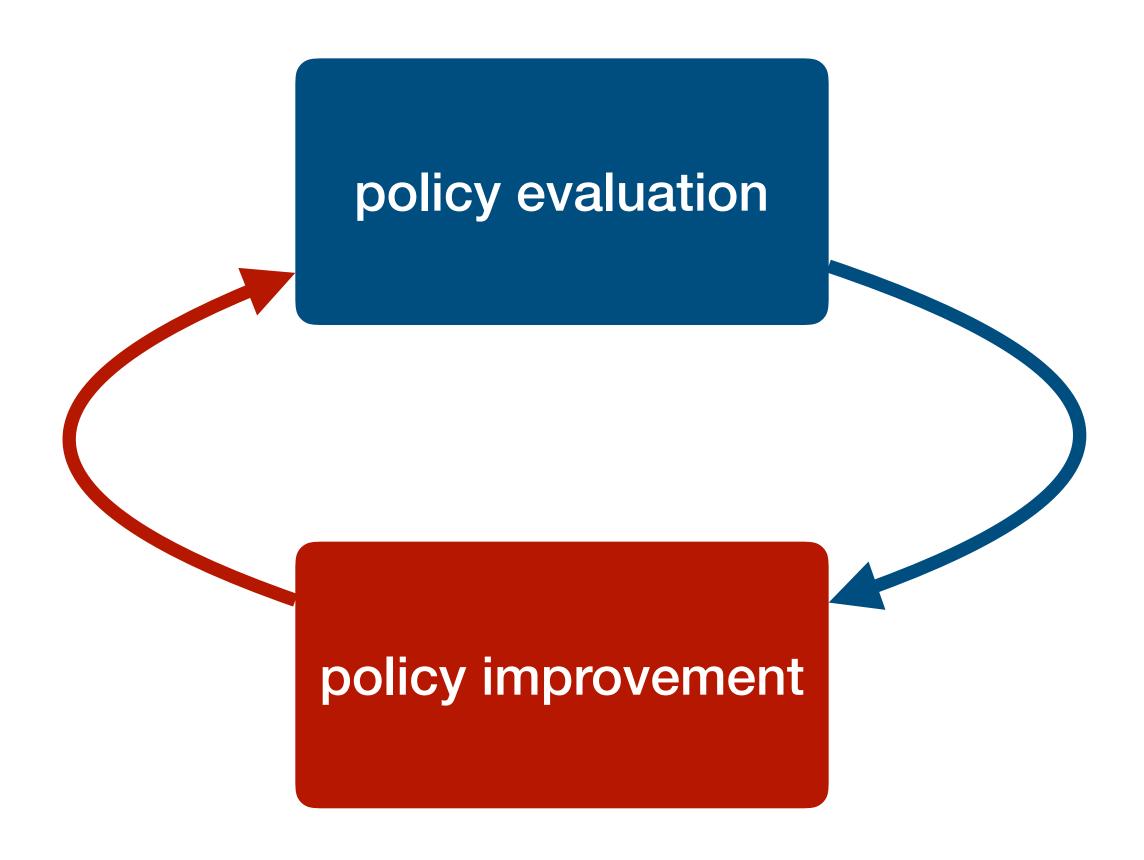
A value function suggests the greedy policy:

$$\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a) = \underset{a}{\operatorname{argmax}} (r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p}[V(s')])$$

- Proposition: the greedy policy for Q_{π} is never worse than π
 - Generally: the greedy policy for $\max(Q_{\pi_1},Q_{\pi_2})$ is never worse than π_1 or π_2
- Corollary 1: any optimal policy π^* is greedy for $Q^* = Q_{\pi^*}$
- Corollary 2: all fixed points of $\pi(s) = \operatorname*{argmax}_{a} Q_{\pi}(s,a)$ have $Q_{\pi} = Q^*$

Bellman optimality

The RL scheme



Policy Iteration

- Evaluate the policy $Q_\pi(s,a) = \mathbb{E}_{\xi \sim p_\pi}[R|s_0 = s, a_0 = a]$
- Update to the greedy policy $\pi(s) = \operatorname*{argmax}_{a} Q_{\pi}(s,a)$
- Repeat

• When loop converges, $Q_\pi = Q^*$

Value Iteration

Repeat:

$$V(s_i) \leftarrow \max_{a} (r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V(s')])$$

Must update each state repeatedly until convergence

Generalized Policy Iteration

• Alternate by some schedule:

$$V(s_i) \leftarrow \mathbb{E}_{a|s_i \sim \pi} [r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p} [V(s')]]$$
$$\pi(s_i) \leftarrow \underset{a}{\operatorname{argmax}} (r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p} [V(s')])$$

Model-free reinforcement learning

• MC:

$$\xi_i|s, a \sim p_{\pi}$$
 $Q(s, a) \leftarrow \frac{1}{N} \sum_i R_i$
 $\pi \leftarrow \operatorname{argmax} Q$

• Q-learning (TD):

$$\Delta Q(s_i, a_i) \leftarrow \alpha(r_i + \gamma \max_{a'} Q(s'_i, a') - Q(s_i, a_i))$$

Deep MC reinforcement learning

A variant of Monte Carlo Tree Search (MCTS):

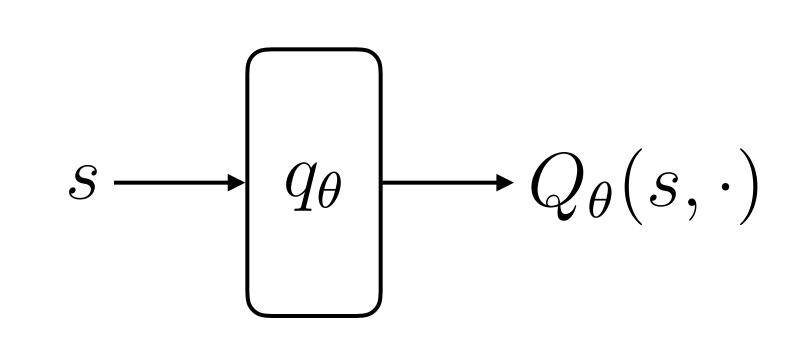
$$\xi \sim p_{\pi_{\bar{\theta}}} \qquad \mathcal{L}_{\theta}(\xi) = (Q_{\theta}(s_0, a_0) - R)^2$$

- With $\pi_{\bar{\theta}}$ greedy for a snapshot of Q_{θ}
- We need a representation of Q_{θ} that allows computing

$$\pi_{\theta}(s) = \underset{a}{\operatorname{argmax}} Q_{\theta}(s, a)$$

• For a small action space: Deep Q Network

$$(q_{\theta}(s))_a = Q_{\theta}(s, a)$$



• π_{θ} is not differentiable, but we don't need it to be

Deep TD reinforcement learning

• Deep Q Learning (historically called DQN):

$$\mathcal{L}_{\theta}(s, a, r, s') = (r + \gamma \max_{a'} Q_{\bar{\theta}}(s', a') - Q_{\theta}(s, a))^2$$

- This algorithm should work off-policy, so we can keep replay buffer
- Variants differ on
 - How to add experience to the buffer
 - How to sample from the buffer

Interaction policy

- In model-free RL, we often get data by interaction with the environment
 - How should we interact?
- On-policy methods (e.g. MC): must use current policy
- Off-policy methods: can use different policy but not too different!
 - Otherwise may have train—test distribution mismatch (with Deep RL)
- In either case, must make sure interaction policy explores well enough

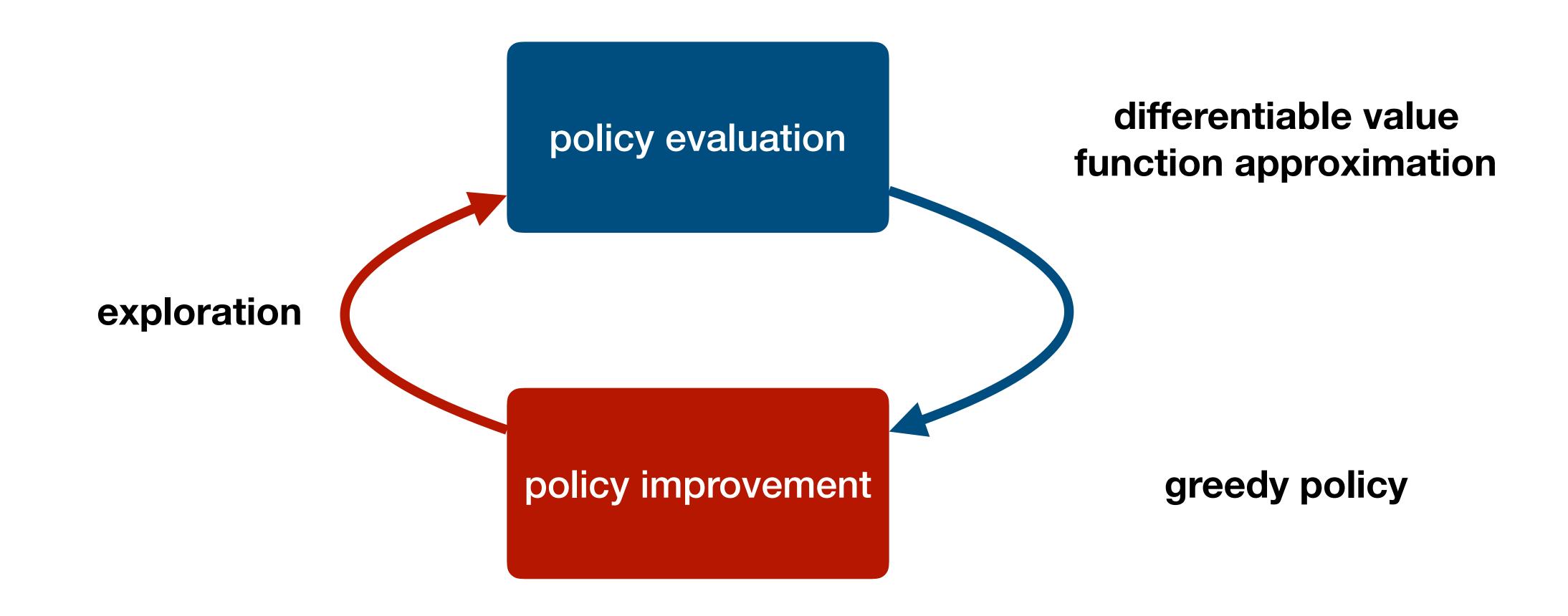
Exploration policies

- ε-greedy exploration: select uniform action w.p. ε, otherwise greedy
- Boltzmann exploration:

$$\pi(a|s) = \operatorname{sm}(Q(s,a);\beta) = \frac{\exp(\beta Q(s,a))}{\sum_{a'} \exp(\beta Q(s,a'))}$$

• Becomes uniform as $\beta \to 0$, greedy as $\beta \to \infty$

Putting it all together: DQN



Recap

- Temporal-Difference methods exploit the dynamical-programming structure
- Off-policy methods don't need to throw out data as often when policy changes
- Many approaches can be made differentiable for Deep RL