CS 295:
Optimal Control and

Reinforcement Learning
Winter 2020

Lecture 6: Policy-Gradient Methods

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences
University of California, Irvine

Today's lecture

 DQN in practice

* Policy Gradient (PG) methods
> REINFORCE

e Variance reduction

» Baselines

» Reward-to-go

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Deep Q-Learning (DQN)

differentiable value
function approximation

policy evaluation

exploration

e Target network? policy improvement greedy policy

* Exploration policy?

* Replay buffer?

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

DQN pseudocode

Algorithm 1 DQN

initialize 6 for Qy, set 6 «— 6
for each step do
if new episode, reset to sg
observe current state s;
take e-greedy action a; based on Qy(sy,)

{1 |“?J4_|16 a; = argmax, (Qg(s¢, a)

W(at‘st) — 1
WE
ocet reward r; and observe next state s;i
add (s, ag, ¢, S¢41) to replay buffer D

for each (s,a,r,s’) in minibatch sampled from D do

otherwise

r if episode terminated at s’
7/ r+ ymaxy Qg(s’,a’) otherwise
compute gradient Vg(y — Qq(s,a))?

take minibatch gradient step
every K steps, set 6 «— 6

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Value estimation bias

« Q-value estimation is optimistically biased

» Jensen's inequality: E|max Q(a)| > max E|{Q(a)]

a a

 While there's uncertainty In QQ—, Y IS more positively biased than Qg

S0 how can this converge?
> As certainty increases, new bias decreases

> Old bias attenuates with repeated discounting by 7Y

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Double Q-Learning

» One solution: keep two estimates of ()%,)y and ()4

» Target for Q;(s, a):
i =1+ vyQ1—;(s’, argmax Q;(s’,a’))

e How to use this with DQN?

 One idea: use target network as the other estimate

y =1+ vQg(s, argmax Qy(s',a’))

* Another idea: Clipped Double Q-Learning

yi =7+ 7 min Qp,(s', argmax Gy, (s, a’))

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Dueling Networks

- Advantage function: A, (s,a) = Q.(s,a) — V,(s)
7

>

17
/
/)
17
/

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Value-based methods (e.g. DQN)

differentiable value
function approximation

policy evaluation

policy improvement greedy policy

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Policy-based methods

policy evaluation e.g. MC

policy improvement differentiable policy

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Policy Gradient (PG)

» Unlike minimizing L4(D) in general ML, in RL we maximize Jy = Ibgfvpﬁe R

 This is harder since the "data" distribution depends on @

1
2a(E) Vopo(§)

» But there's a trick: Vi log pg(&) =

e And so:

VoJo = Vo fpe(ﬁ)R(ﬁ)df

= fpe(f)ve log pe (&) R(E)dE
= B¢, [Vo log pe(§) R

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

REINFORCE (1992)

 Roll out 7y to sample & ~ pg
e Compute R and

Volog ps(€) = Ve(log p(so) + Y (log mg(aysy) + log p(siiase, ar)))
 Take a gradient step with Vy log pz(f)R

 Repeat

* This is model-free! but on-policy, + high variance of the gradient estimator

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

PG with Gaussian policy

» As an example in continuous action spaces: my(als) = N (ug(s), 2)

* So that
1
log py (&) = Z log my(ay|s;) + const = 5 Z |a; — pg(s;))|5-1 + const
: :

- Where |25 = 2" Px

e Then

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

PG: the good and the bad

Vng = Effvp@ Z VQ 10g W@(at‘st) R
t

» —log my(als) is sometimes called "surprisal’
» We update 6 towards being less surprised by high return

o But surprisal can get very large for unlikely actions
> Gradient estimator has high variance when unlikely actions can have high return

> Particularly it our policy tries to converge to deterministic

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Baselines

* (Constant shifts in return shouldn't matter for optimal policy

0 = Vo Eep, [0] = Eerpy [V log pa(£)D]

e Can we use that to reduce variance without adding bias?

e Using the average return works pretty well in practice

1
VoJp & N Z@: Vo IOgPG(fi)(Rz‘ — b)

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Optimal baseline

» Denote ¢(&) = Vglog pg(&)

» Then 0, Var(Vyglogpy(&)(R — b))
= 0y(E[g”*(R — b)*] — E[g(R - b)]*)
= 0y(E[g°R?| — E[gR]* — 2bE[¢°R] + b° E[g¢°])
= —2E[¢°R] + 2bE[g7]

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Don't let the past distract you
(Z VQ lOg W@(atst)> R

L)

Vodp = E§~p9 at|st~mg [R]]

= > By, [Vo]l
t

e |n our case

[z = Z (s, ap)

t' >t

is a sufficient statistic of R

* Therefore, a lower-variance gradient estimator:

[
\Q@F
~

St ~Po [Ia@t st ~Trg [V@ lOg o (at ‘ St)RZt]]

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

Recap

* Practical RL algorithms add tricks and heuristics to the theory
 \We can take the gradient of our objective w.r.t. the policy parameters
* This often leads to high variance

e \Variance can be reduced by baselines and other tricks

Roy Fox | CS 295 | Winter 2020 | Lecture 6: Policy-Gradient Methods

