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Today's lecture

« TRPO

* Planning
» With a fast simulator — MCTS

> With an arbitrary-reset simulator — VI

» With a differentiable model — iLQR / DDP
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Off-policy Policy Gradient
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Off-policy Policy Gradient: approximation
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. C@ﬂ,,t, Is the IS coefficient of past actions, marginalized

> Originally just ignored \_(*V)_/
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More analysis




More analysis
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« Can we switchto S; ~ Py, so we can estimate the expectation empirically?
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Change of measure

e |ntuition: switching from s; ~ pgr to S; ~ Py isn't too bad if they are similar
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Trust-Region Policy Optimization (TRPO)
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« For small ¢, the objective is close to Jy — Jo

> (Guarantees improvement

L:@(Sv a, T, S,) — Zzgz 3 (T /Vvqb(sl) o V¢(S)) )‘(D[WQ('|S)H7T§(°‘S)] o 6)

e The actual algorithm is somewhat complicated; simpler variant: PPO
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Planning

* Planning is finding a good policy when we "know" the MDP
> Dynamics + reward function
 What does it mean to have a "known model"?
> A really fast simulator
> A simulator that can be reset to any given state
> A differentiable model

> An analytic model that can be manipulated symbolically
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How to use a really fast simulator

« MC policy evaluation

> Sample many trajectories using the greedy policy

> Evaluate by optimizing the loss L£4(&) = (Qy(s0, ag) — R)?
 The greedy policy doesn't explore

> (Can use near-greedy exploration policy

« How to explore optimally? Very little is known in this case.

Roy Fox | CS 295 | Winter 2020 | Lecture 9: Planning



Deterministic dynamics

e With deterministic dynamics, policy can be just a sequence of actions

max R(d) = maxr(sg, ag) + y7(f(s0,a0),a1) + v r(f(f(s0,a0),a1),az) + - -

a a
e Can use Cross Entropy Method (CEM)
> Sample dy,...,ay from T
> Take top V/c"elite" samples
> Fit 7 to the elites

> Repeat

» Scales poorly with the dimension of a
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Discrete action space: optimal exploration

e Action sequences have a tree structure

> Shallow (short) prefixes are visited often = possible to learn their value

S0)
> Deep (long) sequences are visited rarely = we can only explore <
!
 Monte-Carlo Tree Search (MCTYS): ) \
1 W
- Select leaf
S| SIt
- Explore to end of episode random
actions
- Update nodes along branch to leaf R
| | o 0 N (child) = 0
* Selecting a leaf: recursively maximize log N (sell |
V (child) + C\/ ﬁ( hiq) Otherwise
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How to use an arbitrary-reset simulator

 With small state space: value iteration with table parametrization

V(s:) < max(r(s;, a) + 5 B avp[V(5)])
e But simulator is not much help under function approximation

> Distribution should support pg(s) to avoid covariate shift (train—test mismatch)

> Simulator does enable data augmentation
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How to use a differentiable model

» Suppose we have differentiable x; 1 = f(z;, u;)and c(x, uy)

N\

» Taylor expansion at a trajectory (Z, u):

(e, us) = f(Z, ) + Ofe)
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How to use a differentiable model

» Suppose we have differentiable x; 1 = f(z;, u;)and c(x, uy)

» Taylor expansion at a trajectory (Z, u):
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How to use a differentiable model

» Suppose we have differentiable x; 1 = f(z;, u;)and c(x, uy)

» Taylor expansion at a trajectory (Z, u):

f(xtv ut) — f(fta ﬁt) T vxftéxt an vuft5ut T 0(62)

c(xy, up) = (g, Uy) + ViCidxy + Vi, Crouy
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lterative LQR (iLQR)

Algorithm 1 iLQR

compute A, B «— V, ft, \Y% ft

compute Q, R, N,q,7 < V2é, Vié, Veuly, Valr, VG

Lt,ft — LQR on 0z = 2y — &y, 0up = uy — uy

0x™, 0u™ «— execute policy ou; = Ltémt + ét in the simulator / environment
:’i‘<—£+51’*,@<—i1+5u*

repeat to convergence
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Newton's method

» Compare to Newton's method for optimizing min f(x)

X

Algorithm 1 Newton’s method

g < vwa

H —V.f

T «— argmin, s0xTHdx + g7
repeat to convergence

» iLQR approximates this method for min 7 (u)

u

» Exactly Newton's method would be expanding the dynamics to 2nd order —
Differential Dynamic Programming (DDP)
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Recap

« TRPO approximates Off-Policy Policy Gradient in a tractable way

> While constraining the policy to a region where the approx can be trusted

* A fast simulator is good for any RL algorithm, particularly MC

» MCTS explores optimally in the discrete deterministic case
* An arbitrary-reset simulator has surprisingly little use

 \We can plan in a differentiable model by iterative linearization (iLQR)
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