CS 277: Control and Reinforcement Learning (Winter 2021)
Assignment 3

Due date: Tuesday, February 16, 2021 (Pacific Time)

Roy Fox
https://royf.org/crs/W21/CS277/

In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly explain
informally the reasoning behind your answers.

Part 1 Variance of advantage estimators (50 points + 15 bonus)

This part studies the variance of several estimators of the advantage function A, (s,a) = Q(s,a) — Vi (s).
For this purpose, you will need to find a process that is, in a sense, “worst-case” for this variance. To simplify
things, we will eliminate all the bias by making the following assumptions:

e We have access to the true state-value function V. of the policy of interest 7; and

e The experience (s, a,r,s’) is sampled by on-policy, i.e. by rolling out 7.

We will also assume that r(s,a) is a deterministic function of the state s and, optionally, the action a; and
that V(s) € [—1,1] (otherwise the variance can be made arbitrarily large just by growing the range of V).

We start by finding some properties that such a “worst-case” process must satisfy.

1. Consider the advantage estimator A(s,a;r,s') = r + YVz(s') — Va(s). For given state s and action
a, how should V'(s") € [~1,1] be distributed such that A(s,a;r,s’) will have the maximal conditional

variance Var[A(s, a;r, s')|s, a] that it possibly can? (5 points)

2. For the distribution that you found in the previous question, what is 5[V (s)[s, a]? Recall that, by the

recursive definition for Vi, Eqjswr Eg|sa~plA(s;a;7,5")] = 0. What can you conclude about r(s,a)?
(5 points)

With these properties, we turn to find a dynamic process (an MDP + a policy) that has these properties,
and therefore has “worst-case” variance in this sense. Don’t worry if the process is very degenerate. In fact,
try to make it as simple as possible. You may even find an MDP that is so simple that the policy doesn’t
make any difference.

3. Suggest a two-state dynamic process (MDP + policy) that has the worst-case conditional variance of
A(s,a;r,s') in each state and action. Specify p(s'|s,a), r(s,a), and mw(als) for each s, a, and s’. (10
points)

4. In the process that you proposed in the previous question, what is the conditional variance, given s;
and ag, of each of the following advantage estimators on on-policy experience (s¢, at, Tt St41,---)7

(a) AMC(sy,a,) = hI At ~tr, — V(s¢). (15 points)

(b) A™(s¢,a¢) = ZE,J:;_I Aty 4 4"V (S440) — V(s¢); which n minimizes the conditional variance

under the question’s assumptions? (15 points)
(c) Bonus: A*(s;,a;) = (1— ) st A=A (54, aq) = Zt,%()\v)t/_t/ll(st/,at/); Hint: careful, these
A aren’t conditionally independent. (15 points)


https://royf.org/crs/W21/CS277/

Part 2 Advantage Actor—Critic (25 points)

In this part you'll implement several actor—critic algorithms, starting with Advantage Actor—Critic (A2C;
https://arxiv.org/abs/1602.01783). Note: in RLIib it’s easy to distribute the algorithm’s execution
using Ray, by setting the num_workers in the Tune configuration. If the distribution is asynchronous (rather
than synchronous, which is the default), this would then be the A3C algorithm.

Download the code at https://royf.org/crs/W21/CS277/A3/a2c.py. In the function actor_critic_loss,
write TensorFlow code that calculates a loss with 3 terms:

e An actor loss: a policy-gradient loss with pre-computed advantage estimates (advantages);

e A critic loss: a temporal-difference loss, the square error between the pre-computed value targets
(value_targets) and the critic values, weighted by critic_loss_coeff; and

e A negative-entropy loss on the actor policy, weighted by entropy_loss_coeff (i.e. a slight push to
mazimize entropy). First try without it, and then add it and compare. Hint: action_dist.entropy()
can come in handy.

In the function postprocess_advantages, recall that sample_batch is part of a single trajectory, but in
this assignment we will not assume that it’s the entire episode. The batch contains tuples (s:, a, ¢, s;) for
some consecutive steps t = t1,...,ts in a trajectory. Write code that calculates the scalar last_value_pred,
defined as Vi(s},), i.e. the critic’s prediction of the expected return following the next_obs s}, at the end
of the batch in the sample. Useful: (1) policy._value, a function that gets an array of observations and
returns a same-size array of value predictions; and (2) dones, a boolean array indicating episode termination
in each time step (hint: why is this useful here?).

Also write NumPy code that calculates for each step the discounted one-step advantages Al (s,a) and value
targets Vy(s) for the critic’s TD-learning.

Run your code on the CartPole-v1 environment for 1000000 time steps.

Part 3 Generalized Advantage Estimation (25 points)

Recall the definition of the GAE as A* (s, a;) = Zt,zt(/\fy)tl_tfll(st/, ay ). Hint: another useful expression for

it was given in Lecture 5. Create a copy of a2c.py called gae.py, and change it to use A* as the advantage
estimates (see https://arxiv.org/abs/1506.02438, also see question 4c in Part 1). Useful: recall the
helper function ray.rllib.evaluation.postprocessing.discount_cumsum.

Run your code on CartPole-v1 with a variety of A values. Tip: by setting the name of the trainer to
include the value of )\, you can easily see it later in TensorBoard.

Visualize the results in TensorBoard, and attach the resulting plots. Briefly discuss the results, including:
e What was the best value of A in your experiments?
e What happens as A — 07

e What happens as A — 1 in theory? What happens in practice?
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