
CS 277: Control and Reinforcement Learning (Winter 2021)
Assignment 5

Due date: Friday, March 12, 2021 (Pacific Time)
Roy Fox
https://royf.org/crs/W21/CS277/

General instructions: In theory questions, a formal proof is not needed (unless specified otherwise); in-
stead, briefly explain informally the reasoning behind your answers. In practice questions, include a printout
of your code as a page in your PDF, and a screenshot of TensorBoard learning curves (episode_reward_mean,
unless specified otherwise) as another page.

Part 1 Actor–Critic vs. Control-as-Inference (50 points + 10 bonus)

Recall that Actor–Critic algorithms represent an actor πθ and a critic Vφ. Many such algorithms use a
temporal-difference loss to update the critic and a policy-gradient loss to update the actor. The simplest
such algorithm we saw gathers on-policy experience ps, a, r, s1q, and then uses the critic’s Bellman error
δ “ r` γVφ̄ps

1q´Vφpsq (with Vφ̄ a target network) to compute the critic loss Lφ “ 1
2δ

2; and uses the critic’s
advantage estimate Â “ r ` γVφps

1q ´ Vφpsq to compute the actor loss Lθ “ log πθpa|sqÂ. The algorithm
then employs any gradient-based optimizer on the total loss LAC “ Lφ ` ηLθ, with η a coefficient relating
the two losses.

Also recall that, in the Control-as-Inference framework, the optimal policy is

πpa|sq “
π0pa|sq expβQps, aq

Zpsq
, (1)

with the normalizer (“partition function”) Zpsq “ Ea|s„π0
rexpβQps, aqs. If this policy is plugged into the

bounded Bellman optimality equation, we get

V psq “
1

β
logZpsq “

1

β
logEa|s„π0

rexpβQps, aqs.

The SQL algorithm represents a Q-value function Qθ, and given off-policy experience ps, a, r, s1q uses the
Bellman error δ̃ “ r ` γVθ̄ps

1q ´Qθps, aq to compute the loss LSQL “
1
2 δ̃

2. Here Vθ̄ is computed by

Vθ̄ “
1

β
logEa|s„π0

rexpβQθ̄ps, aqs (2)

from a target network Qθ̄.

1. Rearranging (1), we get

Qps, aq “ V psq `
1

β
log

πpa|sq

π0pa|sq
. (3)

Consider implementing the SQL algorithm by parametrizing Qθ,φ as the function (3) of an actor
network πθ and a critic network Vφ. There is no dedicated network for Q (beyond the actor and critic
networks), and no target network for Q. Instead, there is a target critic network Vφ̄, which is used in
the Bellman error δ̃ instead of Vθ̄ (i.e. (2) is not used now). Write down the SQL loss LSQL in terms
of this Qθ,φ. (15 points)

https://royf.org/crs/W21/CS277/


2. Write an expression for a pseudo-reward1 r̃, such that the AC critic loss Lφ, with r̃ substituted for r,
is equivalent to the SQL loss LSQL. (15 points)

3. Show that the gradient ∇θLθ of the AC actor loss Lθ, with r̃ substituted for r, is almost2 equivalent
to the gradient ∇θLSQL of the SQL loss with respect to the policy parameters θ. (10 points)

4. Put the previous two questions together by showing that, with r̃ substituted for r in AC, the gradient
of LAC is (almost) equivalent to the gradient of LSQL with respect to both θ and φ. What is the
equivalent of β in AC? (10 points)

5. (Bonus) (Warning: hard question) AC is an on-policy algorithm (can only work with on-policy data),
while SQL is an off-policy algorithm. This means that the above equivalence only holds for on-policy
data. Which part of this equivalence fails for off-policy data? (10 points)

Part 2 Option–Critic algorithm (50 points)

1. Download the following implementation of the Option–Critic algorithm: https://github.com/alversafa/
option-critic-arch. Read option_critic.ipynb, and make the following changes:

(a) In parts 3 and 4, add color bars (see matplotlib.pyplot.colorbar) to the heat maps.
(b) In part 4, plot the following three histograms:

i. For each option h (on the x-axis), the number of times option h was called in an episode.
ii. For each option h (on the x-axis), the average number of actions option h took each time it

was called before it terminated.
iii. For each option h (on the x-axis), the total number of actions it took in an episode (summed

over all times it was called).
In each of these histograms, plot the average and standard-deviation error bars over 10 episodes.

Run the code, and attach the resulting plots. (10 points)

2. Is the agent high-fitting (i.e. a single option solves much of the entire task)? Is it low-fitting (i.e.
options terminate very quickly, such that the meta-policy solves much of the entire task)? Explain
which results make you think so and why. (5 points)

3. One way to reduce high-fitting is to make the options simpler. In the next question, you’ll implement
options that try to move towards a single position µh in 2D space. Specifically, the action distribution
is

πµh
pa|sq “

expp´dpfps, aq, µhqq
ř

ā expp´dpfps, āq, µhqq
,

where fps, aq is the state that would follow s when action a is taken (if there weren’t walls), and
dps1, s2q “

1
2}s1´ s2}

2
2. Note that the option policy is now parametrized by µh. Recall that the option

policy gradient in the Option–Critic algorithm is ∇µh
Lhps, aq “ ´∇µh

log πhpa|sqQhps, aq. Write the
expression for the gradient in the case of the above policy. (10 points)

4. In this question, you’ll implement the option class above. Read the implementation of the current
option policy class utils.SoftmaxPolicy. It parametrizes the policy with parameters θs,a such that
the softmax policy is

πθpa|sq “
exp τ´1θs,a

ř

ā exp τ´1θs,ā
,

where τ is a temperature hyperparameter. The class has the following methods:
1r̃ is called a pseudo-reward because it’s not a fixed function of s and a, but may change during the run of the algorithm.
2It would be exactly equivalent if Â in AC was also using the critic’s target network for Vφ̄ps1q.

https://github.com/alversafa/option-critic-arch
https://github.com/alversafa/option-critic-arch


• The method Q_U just returns the parameters, and is poorly named so don’t get confused — it’s
not returning Q values at all.

• The method pmf takes the parameters and applies softmax to get πθpa|sq for all actions a in a
given state s. Computing softmax can be numerically unstable if parameters become very large
or very small, so notice how this function uses logsumexp to compute this in a numerically stable
way.

• The method sample then samples an action for a given state.

• The method update takes an option policy gradient step over the parameters. It’s argument
Q_h is the same as what we called Qh, and is provided by the critic. Note that, in the original
parameterization, Lθps, aq for a given state s and action a depends only on θs,a for that action
and θs,ã for other actions. The gradient therefore only touches those parameters, and for them:

∇θs,ãLθps, aq “ Qhps, aq∇θs,ā log
ÿ

ā

exp τ´1θs,ā “ τ´1πpã|sqQhps, aq,

and similarly

∇θs,aLθps, aq “ ´τ´1p1´ πpa|sqqQhps, aq.

Note how the current code implements this update.

Based on this, implement the new option class, with the new parametrization µh. The code for the
Option–Critic algorithm will only use methods sample and update of your class, but you can have any
other methods that you find helpful. Some things to note:

• You can initialize the option policy parameters µh however you want.

• The state argument is an integer. To get the px, yq position in the grid world, you can use
env.tocell (see here: https://github.com/alversafa/option-critic-arch/blob/master/
fourrooms.py#L42). It may help to pass the env to the policy object constructor.

• The action argument is also an integer. To get the direction in the grid world, you can use
env.directions.

• The state that follows env.tocell(state) when taking action env.directions(action) is their
sum (if it’s not a wall, but for the purpose of the policy just take their sum).

• Remember to descend on the loss.

Replace the option_policies with your implementation. Compare the results of your code with
different numbers of options, and compare to the original code. (25 points)

https://github.com/alversafa/option-critic-arch/blob/master/fourrooms.py#L42
https://github.com/alversafa/option-critic-arch/blob/master/fourrooms.py#L42

	Actor–Critic vs. Control-as-Inference (50 points + 10 bonus)
	Option–Critic algorithm (50 points)

