

CS 277: Control and Reinforcement Learning Winter 2021

Lecture 11: Partial Observability

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Today's lecture

MPC, Local Models

Partially Observable MDPs (POMDPs)

Belief-state MDPs

RNNs

Issues with approximate models (1)

- In large state / action spaces, we can only approximate the dynamics
- No guarantees outside of training distribution
 - As in model-free RL, we can't be too far off-policy
- Solution: keep interacting using learner policy and updating the model

Issues with approximate models (2)

- Model inaccuracy accumulates

 - We have to plan far enough ahead to realize the consequences of actions
 - But we don't have to execute those plans far ahead!

```
• Model Predictive Control (MPC): \mathcal{D} \leftarrow \text{collect data}
repeat
\hat{\mathcal{M}} \leftarrow \text{train model } \hat{p}, \hat{r} \text{ from } \mathcal{D}
repeat
\pi \leftarrow \text{plan in } \hat{\mathcal{M}} \text{ from current state } s \text{ to horizon } H
take one action a according to \pi
add empirical (s, a, r, s') to \mathcal{D}
```

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Local models

- Can we use a learned model for iLQR?
 - ► Option 1: learn global model, linearize locally ⇒ wasteful
 - Option 2: directly learn local linearizations:

```
initialize a policy \pi(u_t|x_t)
repeat
roll out \pi to horizon T for N trajectories
fit p(x_{t+1}|x_t, u_t)
plan new policy \pi
```

How to fit local dynamics

- Option 1: linear regression
 - Find $(A_t, B_t)_{t=0}^{T-1}$ such that $x_{t+1} \approx A_t x_t + B_t u_t$
 - Do we care about error / noise?
 - If we assume it's Gaussian, doesn't affect policy; but could help evaluate the method
- Option 2: Bayesian linear regression
 - Use global model as prior
 - More data efficient across time steps and across iterations

How to plan with local models

- Option 1: as in iLQR, find optimal control sequence \hat{u}
 - Problem: model errors will cause actual trajectory to diverge
- Option 2: execute the optimal policy $\hat{L}_t \delta x_t + \hat{\ell}_t + \hat{u}_t$ directly in the world
 - Problem: need spread for linear regression, dynamics may be too deterministic
- Option 3: make control stochastic $\hat{L}_t \delta x_t + \hat{\ell}_t + \hat{u}_t + \hat{u}_t + \epsilon_t$
 - Idea: have $\epsilon_t \sim \mathcal{N}(0, R^{-1})$
 - Optimal for the incurred costs, not for the spread needed for regression

Recap

- Roughly two schemes:
 - Plan in a learned model
 - Improve model-free RL using a learned model
- Good theory for how to explore optimally for learning a model

Today's lecture

MPC, Local Models

Partially Observable MDPs (POMDPs)

Belief-state MDPs

RNNs

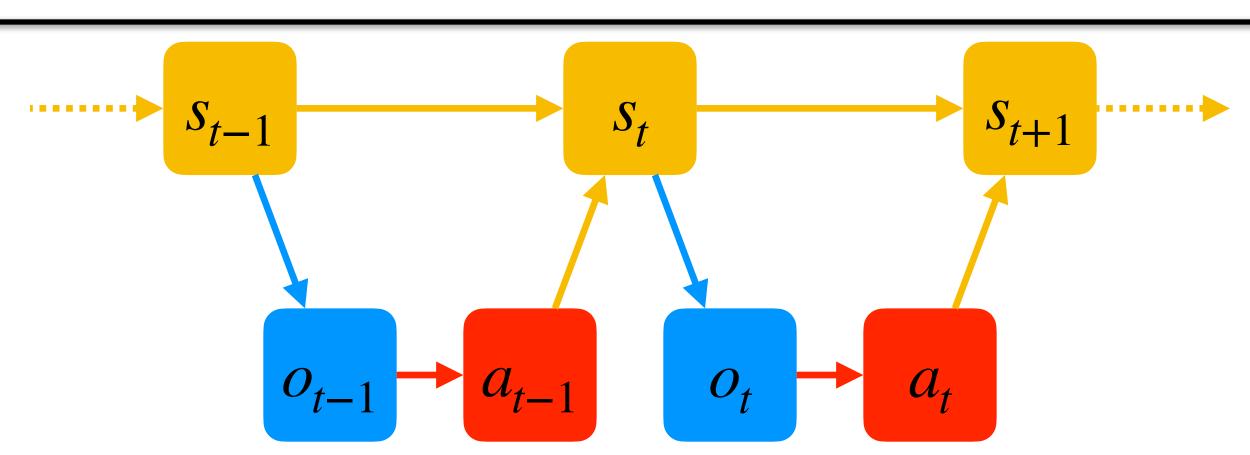
What does the policy depend on?

- Minimally: nothing
 - ► Just an open-loop sequence of actions a_0, a_1, \dots
 - Except, even this depends on a clock $a_t = \pi(t)$
- Typically: the current state $\pi(a_t | s_t)$
- What if the state is not fully observable to the agent's sensors?
 - Completely unobservable → forced open loop
 - ► Partially observable $\rightarrow \pi(a_t | o_t)$?

Partially Observable Markov Decision Process (POMDP)

• States \mathcal{S}

Actions A



- Observations Ø
- Transitions $p(s_{t+1} | s_t, a_t)$
- Emissions $p(o_t | s_t)$
- Rewards $r(s_t, a_t)$

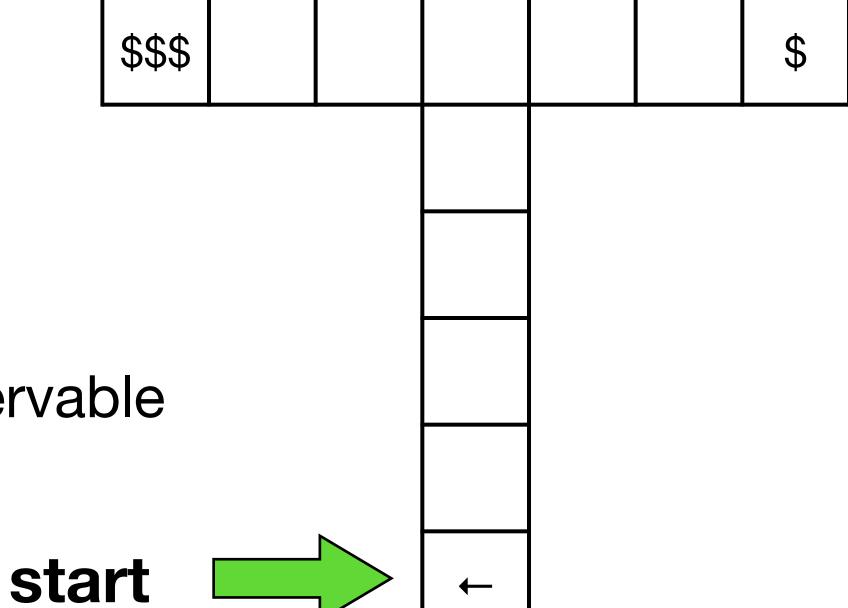
T-maze domain

Observation: current cell

Observe cue at start

Decision at T-junction — cue no longer observable

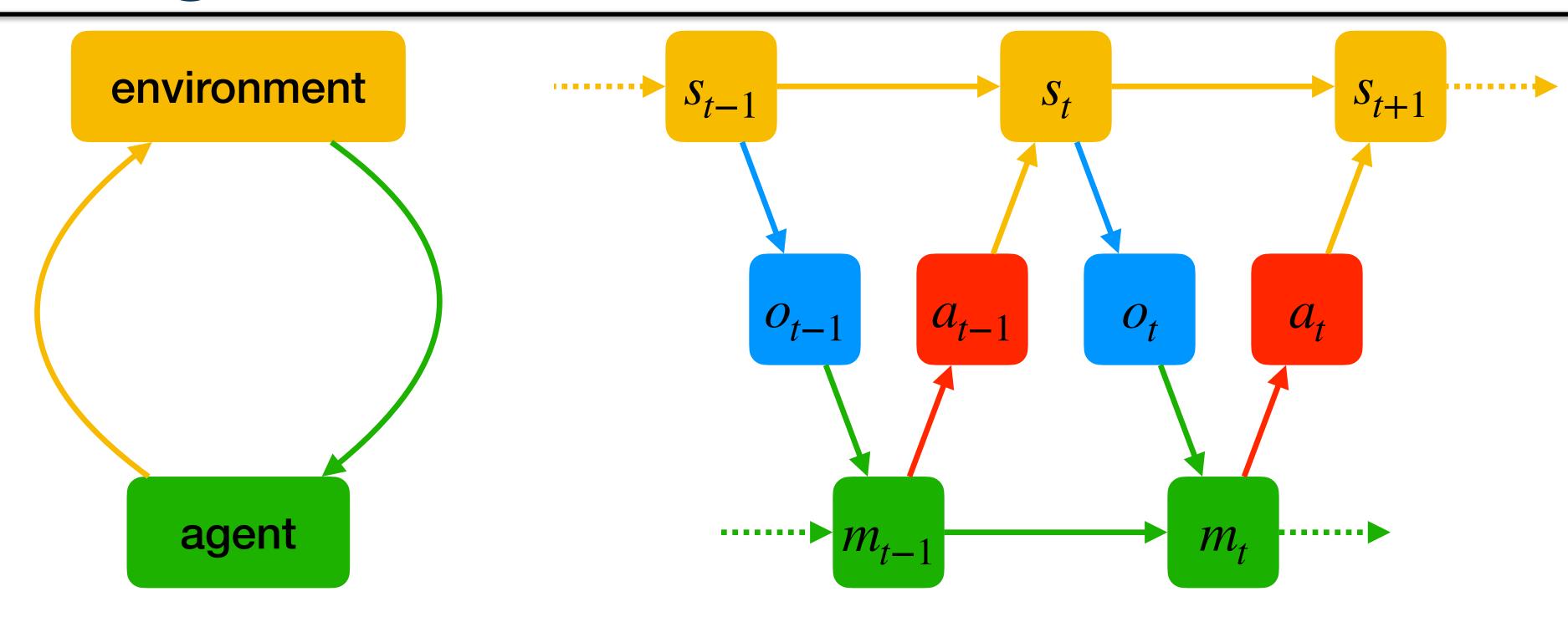
Memory is needed



What does the policy depend on? (revisited)

- Maximally: the entire observable history $\pi(a_t | h_t = (o_0, o_1, \dots, o_t))$
 - Should we remember past actions?
 - In a stochastic policy, yes $h_t = (o_0, a_0, o_1, a_1, \dots, o_t)$
 - In a deterministic policy, we could regenerate them (with compute cost)
- Problem: we can't have unbounded memory that grows with t
- Solution 1: keep a window of k last observations $\pi(a_t | o_{t-k+1}, ..., o_{t-1})$
- Solution 2: keep a statistic of the observable history $\pi(a_t \mid m_t)$, with some $\pi(m_t \mid h_t)$
 - Memory must allow sequential updates: $\pi(m_t \mid m_{t-1}, o_t)$

Agent-environment interaction



- Agent policy: $\pi(m_t, a_t | m_{t-1}, o_t) = \pi(m_t | m_{t-1}, o_t) \pi(a_t | m_t)$
- For simplicity, no edge from a_{t-1} to m_t
 - Can make a_{t-1} explicitly observable in o_t , or explicitly remembered in m_{t-1}

So what is memory?

- There's no Markov property in the observable process alone
- S_{t-1} S_t S_{t+1} O_{t-1} O_t A_t M_{t-1} M_t

- All past observations may be informative of future actions
- Filter the observable past to provide more information about the hidden state
- No less important: plan for the future
 - Previously, we needed to trade off short-term with long-term rewards
 - Now we also need to trade off with information-gathering = active perception
- In multi-agent: state of the world is incomplete without other agent's memory
 - Theory of mind

Tiger domain

- 2 states: which door leads to a tiger (-100 reward) and which to \$\$\$ (+10)
- You can stop and listen: $p(o_t = s_t | s_t) = 0.8$

$$p(s_0 = \text{left}) = 0.5;$$
 $\mathbb{E}[r(s_0, \text{left})] = -45 \rightarrow \text{listen} \rightarrow o_1 = \text{right}$

$$p(s_1 = \text{left}) = 0.2;$$
 $\mathbb{E}[r(s_1, \text{left})] = -12 \rightarrow \text{listen} \rightarrow o_2 = \text{left}$

$$p(s_2 = \text{left}) = 0.5;$$
 $\mathbb{E}[r(s_2, \text{left})] = -45 \rightarrow \text{listen} \rightarrow o_3 = \text{right}$

$$p(s_3 = \text{left}) = 0.2;$$
 $\mathbb{E}[r(s_3, \text{left})] = -12 \rightarrow \text{listen} \rightarrow o_4 = \text{right}$

$$p(s_4 = \text{left}) = \frac{0.04}{0.04 + 0.64} \approx 0.06; \quad \mathbb{E}[r(s_4, \text{left})] \approx 3.5$$

$$p(s_5 = \text{left}) = \approx 0.015; \mathbb{E}[r(s_5, \text{left})] \approx 8.3$$

Today's lecture

MPC, Local Models

Partially Observable MDPs (POMDPs)

Belief-state MDPs

RNNs

Sufficient statistics

- Statistic of h = independent of all else given h
 - ► Satisfying the Markov chain s h m
 - ▶ Data processing inequality (DPI): $[s; m] \leq [s; h]$
- Sufficient statistic of h for s = statistic that has s m h
 - $\blacktriangleright \implies \llbracket[s;m] = \llbracket[s;h] \implies p(s|m) = p(s|h)$
- Belief = distribution over the state b(s)

what is p(s | b) for a Bayesian belief?

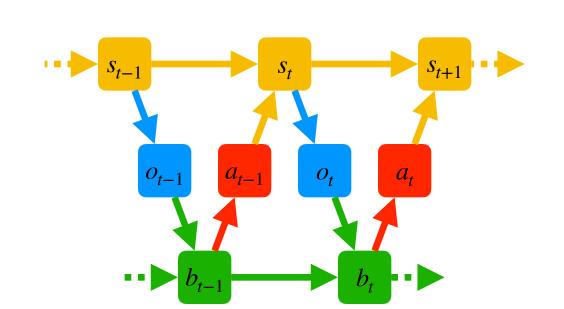
$$p(s \mid b) = b(s) = p(s \mid h)$$

not true for all beliefs!

• Bayesian belief b(s) = p(s | h): a sufficient statistic of h for s

Computing the Bayesian belief

- In the linear-Gaussian case: the Kalman filter
 - Bayesian belief is Gaussian $p(x_t | \hat{x}_t) = \mathcal{N}(\hat{x}_t, \Sigma_t)$



normalizer

• Precomputed covariance $var(x_t | \hat{x}_t) = \Sigma_t$; mean updated linearly:

$$\hat{x}'_t = A\hat{x}_{t-1} + Bu_{t-1}$$
 $e_t = y_t - C\hat{x}'_t$ $\hat{x}_t = \hat{x}'_t + K_t e_t$

More generally — use Bayes' rule:

use Bayes' rule: total probability over s_t previous belief known dynamics $b_t'(s_{t+1} | h_t, a_t) = \sum_{t} p(s_t | h_t) p(s_{t+1} | s_t, a_t) = \sum_{t} b_t(s_t) p(s_{t+1} | s_t, a_t)$

$$b_{t+1}(s_{t+1} \mid h_{t+1} = (h_t, a_t, o_{t+1})) = \frac{p(s_{t+1} \mid h_t, a_t)p(o_{t+1} \mid s_{t+1})}{p(o_{t+1} \mid h_t, a_t)} = \frac{b_t'(s_{t+1})p(o_{t+1} \mid s_{t+1})}{\sum_{\bar{s}_{t+1}} b_t'(\bar{s}_{t+1})p(o_{t+1} \mid \bar{s}_{t+1})}$$
Bayes' rule
$$o_{t+1} - s_{t+1} - (h_t, a_t)$$
normalize

• This is a deterministic update of belief-state b_t , given an action a_t and next observation o_{t+1}

Belief-state MDP

- In the linear-quadratic-Gaussian case: certainty equivalence
 - Plan using \hat{x}_t as if it was x_t
- More generally (though vastly less useful): belief-state MDP

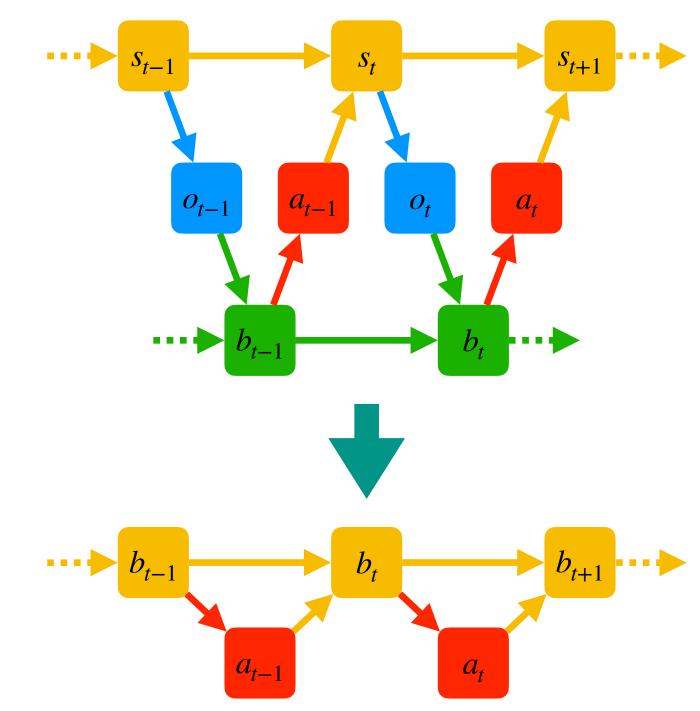
States:
$$\Delta(\mathcal{S})$$
 Actions: \mathcal{A} Rewards: $r(b_t, a_t) = \sum_{s_t} b_t(s_t) r(s_t, a_t)$

• Transitions: each possible observation o_{t+1} contributes its probability

$$p(o_{t+1} | b_t, a_t) = \sum_{s_t, s_{t+1}} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})$$

to the total probability that the belief that follows (b_t, a_t, o_{t+1}) is the Bayesian belief

$$b_{t+1}(s_{t+1}) = p(s_{t+1} | b_t, a_t, o_{t+1}) = \frac{\sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})}{p(o_{t+1} | b_t, a_t)}$$

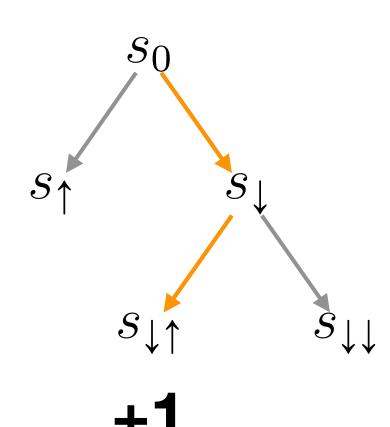


Memory is hard...

- Belief space $b(s_t)$ is continuous, as high-dimensional as the state space
 - Curse of dimensionality
 - Beliefs are naturally multi-modal how do we even represent them?
- The number of reachable beliefs may grow exponentially with time
 - Curse of history
- As we'll see, belief-value function very complex, hard to approximate
- There may not be optimal stationary deterministic policy \Longrightarrow instability

Stationary deterministic policy counterexample

- Assume no observability
- Stationary deterministic policies gets no reward
- Non-stationary policy: \(\daggerightarrow\), \(\daggerightarrow\); expected return: +1
 - But non-stationary = observability of a clock t



• Stationary stochastic policy: \$\diamond\$ / 1 with equal prob.; expected return: +0.25

Open problem: Bellman backup is inherently stationary and deterministic
 no dependence on t

maximum achieved for some action

$$V(s) = \max_{a} r(s, a) + \gamma \mathbb{E}_{s'|s,a \sim p}[V(s')]$$

Today's lecture

MPC, Local Models

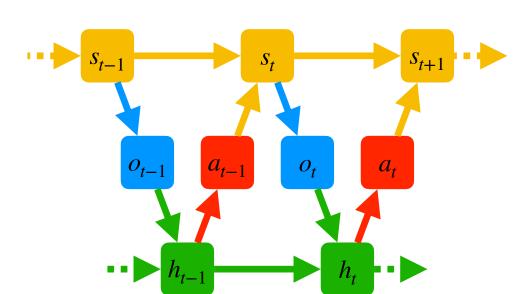
Partially Observable MDPs (POMDPs)

Belief-state MDPs

RNNs

Filtering with function approximation

- Instead of Bayesian belief, compute memory update $h_t = f_{\theta}(h_{t-1}, o_t)$
 - Action policy: $\pi_{\theta}(a_t | h_t)$
 - Sequential structure = Recurrent Neural Network (RNN)



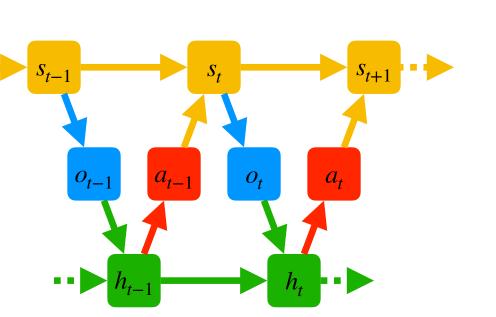
- Training = back-propagate gradients through the whole sequence
 - Back-propagation through time (BPTT)
- Unfortunately, gradients tend to vanish → 0 / explode → ∞
 - Long term coordination of memory updates + actions is challenging
 - RNN can't use information not remembered, but no memory gradient unless used

RNNs in on-policy methods

- Training RNNs with on-policy methods is straightforward (and backward)
 - Roll out policy: parameters of a_t distribution are determined by $\pi_{\theta}(h_t)$ with

$$h_t = f_{\theta}(\cdots f_{\theta}(f_{\theta}(o_0), o_1), \cdots o_t)$$

- Compute $\nabla_{\theta} \log \pi_{\theta}(a_t \,|\, h_t)$ with BPTT all the way to initial observation o_0
- Problems: computation graph > RAM, vanishing / exploding grads
- Solution: stop gradients every k steps
- Problem: cannot learn longer memory but that's hard anyway



RNNs in off-policy methods

- Problem: RNN states in replay buffer disagree with current RNN params
- Solution 1: use *n*-step rollouts

$$Q_{\theta}(s_t, h_t, a_t) \to r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a'} Q_{\theta}(s_{t+n}, h_{t+n}, a')$$

- Solution 2: "burn in" h_t from even earlier stored steps
- In practice: RNNs rarely used
 - Stacking k frames every step $(o_{t-k+1}, ..., o_t)$ may help with short-term memory

Deep RL as partial observability

- Memory-based policies fail us in Deep RL, where we need them most:
 - Deep RL is inherently partially observable
- Consider what deeper layers get as input:
 - High-level / action-driven state features are not Markov!
- Memory management is a huge open problem in Deep RL
 - Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Recap and further considerations

- Let policies depend on observable history through memory
- Memory update: Bayesian, approximate, or learned
 - Learning to update memory is one of the biggest open problems in all of ML
- Let policy be stochastic
 - Should memory be stochastic? interesting research question...
- Let policies be non-stationary if possible, otherwise learning may be unstable
 - Time-dependent policies for finite-horizon tasks
 - Periodic policies for periodic tasks