UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2021

Lecture 11: Partial Observability

i
Roy Fox =N
. %\/\/ILL PREss &
Department of Computer Science LEVER |
Bren School of Information and Computer Sciences FoFOcio
University of California, Irvine — -
I SN &

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Today's lecture

Partially Observable MDPs (POMDPs)

Belief-state MDPs

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Issues with approximate models (1)

* |n large state / action spaces, we can only approximate the dynamics

 No guarantees outside of training distribution

> As In model-free RL, we can't be too far off-policy

o Solution: keep interacting using learner policy and updating the model

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Issues with approximate models (2)

 Model inaccuracy accumulates

- It [py(s'ls,a) — p(s’|s,a) |, < ethen |py(s,) — p(s) |, < et
> We have to plan far enough ahead to realize the consequences of actions

> But we don't have to execute those plans far ahead!

 Model Predictive Control (MPC): D collect data
repeat
M « train model p,7 from D
repeat
m «— plan In M from current state s to horizon H

take one action a according to 7
add empirical (s,a,r,s") to D

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

How to use a learned model

* Recall how planning benefitted from access to a model:

» As a differentiable model

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Local models

e Can we use a learned model for iLQR?

> Option 1: learn global model, linearize locally = wasteful

> Option 2: directly learn local linearizations:

initialize a policy 7(u¢|x;)
repeat
roll out 7 to horizon 7" for N trajectories

fit p(egr|e, u)
plan new policy

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

How to fit local dynamics

e Option 1: linear regression
> Find (A, B, th_Ol such that x,, | &% Ax; + Bu,
> Do we care about error / noise?

- |f we assume it's Gaussian, doesn't affect policy; but could help evaluate the method

* Option 2: Bayesian linear regression
» Use global model as prior

> More data efficient across time steps and across iterations

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

How to plan with local models

» Option 1: as in iLQR, find optimal control sequence it

> Problem: model errors will cause actual trajectory to diverge

» Option 2: execute the optimal policy lA,téxt T th + u, directly in the world

> Problem: need spread for linear regression, dynamics may be too deterministic
« Option 3: make control stochastic itéxt + 7, + U, + €

> |dea: have €, ~ /' (0,R™1)

- Optimal for the incurred costs, not for the spread needed for regression

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Recap

 Roughly two schemes:
» Plan in a learned model

> Improve model-free RL using a learned model

 Good theory for how to explore optimally for learning a model

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Today's lecture

MPC, Local Models

Belief-state MDPs

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

What does the policy depend on?

 Minimally: nothing
> Just an open-loop sequence of actions a;, ay, ...

- Except, even this depends on a clock a, = z(r)

» Typically: the current state n(a, | s,)

 What if the state is not fully observable to the agent's sensors?

> Completely unobservable — forced open loop

» Partially observable = n(a,|0,)?

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Partially Observable Markov Decision Process (POMDP)

St—1 S St41

e States &

\ \
» Actions &f ._>. ’.

 Observations O
» Transitions p(s,,(|s, a,)
» Emissions p(o, | s,)

» Rewards r(s,, a,)

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

T-maze domain

$$%

e Observation: current cell

e Observe cue at start

> Decision at T-junction — cue no longer observable

» Memory is needed start

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

What does the policy depend on? (revisited)

» Maximally: the entire observable history z(a,| h, = (0y, 01, ..., 0,))
> Should we remember past actions?
- In a stochastic policy, yes h, = (0, ay, 01, a1, - -, 0,)
- |In a deterministic policy, we could regenerate them (with compute cost)

 Problem: we can't have unbounded memory that grows with ¢

» Solution 1: keep a window of k last observations z(a,|0,_;. 1, ..., 0,_)

» Solution 2: keep a statistic of the observable history z(a, | m,), with some z(m,| h,)

» Memory must allow sequential updates: z(m,|m,_;, 0,)

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Agent—-environment interaction

environment Si_q A i1

\ /)

» Agent policy: a(m,, a,| m,_,,0,) = n(m,|m,_,, 0)r(a,|m,)
» For simplicity, no edge from a,_; to m,

> Can make a,_; explicitly observable in o,, or explicitly remembered in m,_

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

S0 what is memory?

 There's no Markov property in the observable process alone

y y
"8 i
> All past observations may be informative of future actions > ‘_,

e Filter the observable past to provide more information about the hidden state

 No less important: plan for the future
> Previously, we needed to trade off short-term with long-term rewards

> Now we also need to trade off with information-gathering = active perception

* In multi-agent: state of the world is incomplete without other agent's memory

> Theory of mind

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Tiger domain

« 2 states: which door leads to a tiger (-100 reward) and which to $$$ (+10)

* You can stop and listen: p(0; = s;|s;) = 0.8 m
e

p(so = left) = 0.5; E|r(sg,left)| = —45—> listen = 0; = right

2; Elr(sy,left)] = —12 - listen = 0y = left

(
(89, left)| = —45 - listen = 03 = right
(

r(ss,left)| = —12 - listen = 04 = right

— ' ~ 0.06; IE[r(sy,left)| ~ 3.5

p(ss = left) =~ 0.015; E|r(ss,left)| ~ 8.3

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Today's lecture

MPC, Local Models

Partially Observable MDPs (POMDPs)

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Sufficient statistics

o Statistic of h = independent of all else given A
» Satisfying the Markov chains — h — m
» Data processing inequality (DPI): I[s; m] < [[s; A]
o Sufficient statistic of & for s = statistic that has s — m — h

> = l[s;m] =1[s;h] = p(s|m)=p(s|h)

what is p(s | b) for a Bayesian belief?

ate b(s)

o Belief = distribution over the st p(s|b) = b(s) = p(s | h)
/ not true for all beliefs!

 Bayesian belief b(s) = p(s | h): a sufficient statistic of & for s

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Computing the Bayesian belief

 |In the linear-Gaussian case: the Kalman filter

» Bayesian belief is Gaussian p(x, | X)) = /' (X,, 2,

» Precomputed covariance var(x, | X,) = 2, mean updated linearly:

IR
1 a0 la
Tl 2 5

R

A A _ N/ AN
! . revious belief
 More generally — use Bayes' rule: total probability over s, /p/ o o ynamics

b/(s,.11ha) = ps | h)p(spy | s a) = Z b(s)p(s;1 15, a,)

St

by 1(Sq1 1y = (y, ay, 0,41))

Bayes' rule

B p(siq 1y, a)p(0,q18,41) B

/ p(o1 |y, ay) \ - ZEH 1 b8 1)P(0rg1|5141)

Op1 — Sep1 — (N ay)

St

previous prediction
~ . observation model

b (s, 1)P(0,111541)

AN

normalizer

> This is a deterministic update of belief-state b,, given an action ¢, and next observation o, ,

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Belief-state MDP

* |n the linear—quadratic—-Gaussian case: certainty equivalence 51 s, Sit1
> Plan using X, as if it was x,

 More generally (though vastly less useful): belief-state MDP

>

States: A(&) Actions: & Rewards: r(b,, a,) = Z b(s)r(s, a,)
St

b, b, b,

 [ransitions: each possible observation o, ; contributes its probability

p(o,q11b,a) = Z b(S)P(Si1 |8 AP0, 1 |8141)

St9514+1

to the total probability that the belief that follows (b,, a,, 0,, ;) is the Bayesian belief

ZSI b(sPP(S11 155 AP0y [S141)

bt+1(St+1) — p(St+1 ‘ bt’ s 0t+1) —
P01 | by, ay)

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Memory iIs hard...

» Belief space b(s,) is continuous, as high-dimensional as the state space

> Curse of dimensionality

> Beliefs are naturally multi-modal — how do we even represent them?

 The number of reachable beliefs may grow exponentially with time

> Curse of history

 As we'll see, belief-value function very complex, hard to approximate

 There may not be optimal stationary deterministic policy =— instability

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Stationary deterministic policy counterexample

 Assume no observablility

S()
o Stationary deterministic policies gets no reward
51 ol
» Non-stationary policy: |, T; expected return: +1
S11 S11
> But non-stationary = observabillity of a clock +1

e Stationary stochastic policy: 1 / T with equal prob.; expected return: +0.25

 Open problem: Bellman backup is inherently stationary and deterministic
no dependence on ¢ maximum achieved for some action

T V(s) = ma’g (s, a) + YE g5 4 V()]

A

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Today's lecture

MPC, Local Models

Partially Observable MDPs (POMDPs)

Belief-state MDPs

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Filtering with function approximation

- Instead of Bayesian belief, compute memory update h, = fy(h,_, 0,)

~ Action policy: my(a, | h,) " st"
Q a Q “
i

> Sequential structure = Recurrent Neural Network (RNN)

* Training = back-propagate gradients through the whole sequence

> Back-propagation through time (BPTT)

o Unfortunately, gradients tend to vanish — 0 / explode — ©0

> Long term coordination of memory updates + actions is challenging

> RNN can't use information not remembered, but no memory gradient unless used

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

RNNs in on-policy methods

* Training RNNs with on-policy methods is straightforward (and backward)

~ Roll out policy: parameters of a, distribution are determined by m,(/,) with

h, = fo(-+-Jo(fo(0p), 01), *+-0))

~ Compute V,log my(a, | h,) with BPTT all the way to initial observation o,

 Problems: computation graph > RAM, vanishing / exploding grads

e Solution: stop gradients every k steps

R

St41
| |

\ 4 \
r

 Problem: cannot learn longer memory — but that's hard anyway

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

RNNs in off-policy methods

 Problem: RNN states in replay buffer disagree with current RNN params

o Solution 1: use n-step rollouts

Qs hpa) = ri+yr g+ -+ Vn_lrt+n—1 + 7" max OFCoNY

A

» Solution 2: “burn in” h, from even earlier stored steps
* |In practice: RNNs rarely used

» Stacking k frames every step (0,_;. 1, - - -, 0,) may help with short-term memory

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Deep RL as partial observability

e Memory-based policies fail us in Deep RL, where we need them most:
> Deep RL is inherently partially observable
 Consider what deeper layers get as input:

> High-level / action-driven state features are not Markov!

 Memory management is a huge open problem in Deep RL

> Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

Recap and further considerations

» Let policies depend on observable history through memory
 NMemory update: Bayesian, approximate, or learned

» Learning to update memory is one of the biggest open problems in all of ML
* Let policy be stochastic

> Should memory be stochastic? interesting research question...

e Let policies be non-stationary if possible, otherwise learning may be unstable
> Time-dependent policies for finite-horizon tasks

> Periodic policies for periodic tasks

Roy Fox | CS 277 | Winter 2021 | Lecture 11: Partial Observability

