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Filtering with function approximation
• Instead of Bayesian belief, compute memory update 


‣ Action policy: 


‣ Sequential structure = Recurrent Neural Network (RNN)


• Training = back-propagate gradients through the whole sequence


‣ Back-propagation through time (BPTT)


• Unfortunately, gradients tend to vanish → 0  / explode → 


‣ Long term coordination of memory updates + actions is challenging


‣ RNN can't use information not remembered, but no memory gradient unless used

ht = fθ(ht−1, ot)

πθ(at |ht)

∞

st+1stst−1

at−1 atot−1 ot

ht−1 ht
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RNNs in on-policy methods

• Training RNNs with on-policy methods is straightforward (and backward)


‣ Roll out policy: parameters of  distribution are determined by  with


 


‣ Compute  with BPTT all the way to initial observation 


• Problems: computation graph > RAM, vanishing / exploding grads


• Solution: stop gradients every  steps


• Problem: cannot learn longer memory — but that's hard anyway

at πθ(ht)

ht = fθ(⋯fθ( fθ(o0), o1), ⋯ot)

∇θlog πθ(at |ht) o0

k st+1stst−1

at−1 atot−1 ot

ht−1 ht
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RNNs in off-policy methods

• Problem: RNN states in replay buffer disagree with current RNN params


• Solution 1: use -step rollouts


 


• Solution 2: “burn in”  from even earlier stored steps


• In practice: RNNs rarely used


‣ Stacking  frames every step  may help with short-term memory

n

Qθ(st, ht, at) → rt + γrt+1 + ⋯ + γn−1rt+n−1 + γn max
a′￼

Qθ(st+n, ht+n, a′￼)

ht

k (ot−k+1, …, ot)
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Deep RL as partial observability

• Memory-based policies fail us in Deep RL, where we need them most:


‣ Deep RL is inherently partially observable


• Consider what deeper layers get as input:


‣ High-level / action-driven state features are not Markov!


• Memory management is a huge open problem in Deep RL


‣ Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...
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Recap and further considerations
• Let policies depend on observable history through memory


• Memory update: Bayesian, approximate, or learned


‣ Learning to update memory is one of the biggest open problems in all of ML


• Let policy be stochastic


‣ Should memory be stochastic? interesting research question...


• Let policies be non-stationary if possible, otherwise learning may be unstable


‣ Time-dependent policies for finite-horizon tasks


‣ Periodic policies for periodic tasks
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Belief-state MDP

• Agent has seen history 


‣ Will see future 


• State = separates past and future (given actions)


‣ This means:  (for fixed action seq.)


 


 

ht = (o0, a0, o1, a1, …, ot)

ft = (at, ot+1, …, aT−1, oT)

p( ft |ht, st) = p( ft |st)

⟹ p( ft |ht) = ∑
st

p(st |ht)p( ft |st, ht)

= ∑
st

bt(st)p( ft |st) = p( ft |bt)

st+1stst−1

at−1 atot−1 ot

bt−1 bt

bt+1btbt−1

at−1 at

Bayesian belief

Bayesian belief is also a state 
 all the agent needs⟹
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Belief-state value function
• If belief-states form an MDP, what is its state-value function ?


• Value recursion: 


 


 


•  is linear in   


• Optimally: 


‣ where 

Vπ(bt) = 𝔼[R≥t |bt]

Vπ(bt) = 𝔼[r(st, at) + γVπ(bt+1) |bt]

pπ(st, at, bt+1 |bt) = bt(st)π(at |bt)p(bt+1 |bt, at)

p(bt+1 |bt, at) = ∑
st+1,ot+1 s.t. bt,ot+1→bt+1

p(st+1 |st, at)p(ot+1 |st+1)

Vπ(bt) bt ⟹ Vπ(bt) = ∑
st

bt(st)ν(st)

V*(bt) = max
π∈Π

Vπ(bt) = max
ν∈𝒱 ∑

st

bt(st) ⋅ ν(st) = max
ν∈𝒱

bt ⋅ ν

𝒱 = {ν : ∃π ∈ Π Vπ(bt) = bt ⋅ ν}

probability of  
leading to 

ot+1
bt+1

linear in bt
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Belief-state value function
• Maximum of linear functions  piecewise-linear function


• Can be represented by set of supporting vectors 

⟹

⊆ 𝒱

belief

value
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First-action partitioning
• What is the structure of the belief-value support set ?


• Let's partition by first action:


 


 


• 


•  We can partition  by first action 

𝒱

V*(bt) = max
at

Q*(bt, at)

Q*(bt, at) = max
π

𝔼[r(st, at) + γVπ(bt+1) |bt, at]

⟹ Q*(bt, at) = max
ν∈𝒱at

bt ⋅ ν

⟹ 𝒱 𝒱 = ⋃
a

𝒱a

linear in  
 linear in 

p(st |bt)
⟹ bt
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Next-step partition

• Recall: 


 


 

bt+1(st+1; bt, at, ot+1) =
p(st+1, ot+1 |bt, at)

p(ot+1 |bt, at)

⟹ Q*(bt, at) = max
π

𝔼[r(st, at) + γVπ(bt+1) |bt, at]

= 𝔼[r(st, at)] + γ∑
ot+1

p(ot+1 |bt, at) max
π

Vπ(bt+1)

= 𝔼[r(st, at)] + γ∑
ot+1

max
ν′￼∈𝒱 ∑

st+1

p(st+1, ot+1 |bt, at)ν′￼(st+1)

= bt ⋅ r( ⋅ , at) + γ∑
ot+1

max
ν∈𝒱at,ot+1

bt ⋅ ν

⟹ 𝒱a = r( ⋅ , a) + γ ⊕o′￼
𝒱a,o′￼

linear in  
 linear in 

p(st |bt)
⟹ bt

Bayes' rule max
π

Vπ(bt+1) = max
ν′￼∈𝒱

bt+1 ⋅ ν′￼

sum of max = max of all 
combinations of sums
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Value Iteration in belief-state MDP

• Represent  as 


• Backward recursion:


 


 


 

V(bt) max
ν∈𝒱

bt ⋅ ν

𝒱a,o′￼
= {ν(s) = ∑

s′￼

p(s′￼, o′￼|s, a)ν′￼(s′￼) : ν′￼ ∈ 𝒱}
𝒱a = r( ⋅ , a) + γ ⊕o′￼

𝒱a,o′￼

𝒱 = ⋃
a

𝒱a
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Representing belief value by its support

• Another curse of history: the support of  has at worst  vectors


‣ For infinite horizon, value function may even be uncomputable!


• Do we need all these ?


‣ Some may be optimal only in unreachable beliefs


‣ Some may be optimal for beliefs not reached by an optimal policy


‣ Some may be optimal for beliefs with low probability of being reached


‣ Some may only be slightly better than others on likely beliefs

𝒱 |𝒜 ||𝒪|T−t

ν
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Point-Based Value Iteration (PBVI)
• Only try to optimize the value for a finite set of belief points 


‣ That means having a small subset  of all support vectors


• We compute  from  as before


• But now we optimize the policy suffix for a specific belief point


 


• Then optimize the first action, and repeat for all belief points


 

ℬ

𝒱ℬ

𝒱ℬ
a,o′￼

𝒱ℬ

𝒱b
a = r( ⋅ , a) + γ∑

o′￼

arg max
ν′￼∈𝒱ℬ

a,o′￼b⋅ν′￼

𝒱ℬ = {arg max
{νb

a}
b ⋅ νb

a}
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PBVI belief set expansion
• With fixed , repeat the approximate VI backward until near-convergence


‣ This leads to approximate optimality, if  covers beliefs we care about


• One way to expand  to improve belief-space coverage:


‣ For each  and , sample the following observation , compute 


‣ For each , add farthest belief from , in  distance


• To use the solution: 


• Proposition: let  be the density of , then


 

ℬ

ℬ

ℬ

b ∈ ℬ a o′￼ b′￼(s′￼; b, a, s)

b ∈ ℬ ℬ L1

π(b) = arg max
a

b ⋅ νb
a

ϵ = max
b reachable

min
b′￼∈ℬ

∥b′￼− b∥1 ℬ

∥V* − Vℬ∥∞ ≤
1

(1 − γ)2
Rmaxϵ
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Learning with partial observation

• Learning with partial observation is particularly challenging


‣ If we never see states, how do we know:


- How to represent them?


- How many there are?


‣ New challenge of exploration


‣ New challenge of model-selection


- How to choose robust representations among equivalent ones?


- How to discover the causal structure?
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Learning: exponentially harder than planning
• In MDPs, we had polynomial model-based learning (E3, R-max)


• In POMDPs, learning can be exponentially harder than planning


• Password game: guess  bits, unobservable, reward on success


‣ Planning: with the dynamics known, password is known


‣ Learning: have to brute-force, exponentially many guesses


• What if we can pay to observe state?


‣ Too expensive for optimal policy  only used in training


‣ Polynomial sample complexity possible in some classes

n

⟹
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Recap

• Belief-state value function is piecewise linear


‣ Can be represented by supporting vectors


‣ But there are exponentially many


‣ We can approximate by using a subset of the supporting vectors


- PBVI: choose vectors by recursive optimality for beliefs we care about


