CS 277: Control and Reinforcement Learning Winter 2021 Lecture 12: Partial-Observability Methods

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Today's lecture

Belief-state value function

Point-Based Value Iteration

Roy Fox | CS 277 | Winter 2021 | Lecture 12: Partial-Observability Methods

RNNs

Filtering with function approximation

- Instead of Bayesian belief, compute memory update $h_t = f_{\theta}(h_{t-1}, o_t)$
 - Action policy: $\pi_{\theta}(a_t | h_t)$
 - Sequential structure = Recurrent Neural Network (RNN)
- Training = back-propagate gradients through the whole sequence
 - Back-propagation through time (BPTT)
- Unfortunately, gradients tend to vanish \rightarrow 0 / explode $\rightarrow \infty$
 - Long term coordination of memory updates + actions is challenging
 - RNN can't use information not remembered, but no memory gradient unless used

RNNs in on-policy methods

- Training RNNs with on-policy methods is straightforward (and backward)
 - Roll out policy: parameters of a_t distribution are determined by $\pi_{A}(h_t)$ with

$$h_t = f_{\theta}(\cdots f_{\theta}(f_{\theta}(o_0), o_1), \cdots o_t)$$

- Compute $\nabla_{\theta} \log \pi_{\theta}(a_t | h_t)$ with BPTT all the way to initial observation o_0
- Problems: computation graph > RAM, vanishing / exploding grads
- Solution: stop gradients every k steps
- Problem: cannot learn longer memory but that's hard anyway

RNNs in off-policy methods

- Solution 1: use *n*-step rollouts

$$Q_{\theta}(s_{t}, h_{t}, a_{t}) \to r_{t} + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^{n} \max_{a'} Q_{\theta}(s_{t+n}, h_{t+n}, a')$$

- Solution 2: "burn in" h_t from even earlier stored steps
- In practice: RNNs rarely used

Problem: RNN states in replay buffer disagree with current RNN params

• Stacking k frames every step (o_{t-k+1}, \ldots, o_t) may help with short-term memory

Deep RL as partial observability

- Memory-based policies fail us in Deep RL, where we need them most:
 - Deep RL is inherently partially observable
- Consider what deeper layers get as input:
 - High-level / action-driven state features are not Markov!
- Memory management is a huge open problem in Deep RL
 - Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Recap and further considerations

- Let policies depend on observable history through memory
- Memory update: Bayesian, approximate, or learned
 - Learning to update memory is one of the biggest open problems in all of ML
- Let policy be stochastic
 - Should memory be stochastic? interesting research question...
- Let policies be non-stationary if possible, otherwise learning may be unstable
 - Time-dependent policies for finite-horizon tasks
 - Periodic policies for periodic tasks

Today's lecture

Belief-state value function

Point-Based Value Iteration

Roy Fox | CS 277 | Winter 2021 | Lecture 12: Partial-Observability Methods

RNNs

Belief-state MDP

- Agent has seen history $h_t = (o_0, a_0)$
 - Will see future $f_t = (a_t, o_{t+1}, ..., a_{T-1}, o_T)$
- State = separates past and future (given actions)
 - This means: $p(f_t | h_t, s_t) = p(f_t | s_t)$ (for fixed action seq.)

$$\implies p(f_t | h_t) =$$

$$= \sum_{s_t} b_t(s_t) p(f_t | s_t) = p(f_t | b_t)$$

$$(o_1, o_1, a_1, \dots, o_t)$$

$$\sum_{s_t} p(s_t | h_t) p(f_t | s_t, h_t)$$

Bayesian belief is also a state \implies all the agent needs

Belief-state value function

- If belief-states form an MDP, what is its state-value function $V_{\pi}(b_t) = \mathbb{E}[R_{>t} | b_t]$?
- Value recursion: $V_{\pi}(b_t) = \mathbb{E}[r(s_t, a_t) + \gamma V_{\pi}(b_{t+1}) | b_t]$ $p_{\pi}(s_{t}, a_{t}, b_{t+1} | b_{t}) = b_{t}(s_{t})\pi(a_{t} | b_{t})p(b_{t+1} | b_{t}, a_{t})$ probability of o_{t+1} $|b_{t}, a_{t}) = \sum_{s_{t+1}, o_{t+1}} \sum_{s.t. \ b_{t}, o_{t+1} \to b_{t+1}} p(s_{t+1} | s_{t}, a_{t})p(o_{t+1} | s_{t+1})$ probability of o_{t+1} $|a_{t+1}| = \sum_{s_{t+1}, o_{t+1}} \sum_{s.t. \ b_{t}, o_{t+1} \to b_{t+1}} p(s_{t+1} | s_{t}, a_{t})p(o_{t+1} | s_{t+1})$ $\mathcal{V}(S_t)$ linear in b_t $\sum_{v \in \mathscr{V}} b_t(s_t) \cdot \nu(s_t) = \max_{v \in \mathscr{V}} b_t \cdot \nu$

$$p(b_{t+1} | b_t, a_t) = \sum_{s_{t+1}, o_{t+1} \text{ s.t. }}$$

$$V_{\pi}(b_t)$$
 is linear in $b_t \Longrightarrow V_{\pi}(b_t) = \sum_{s_t} b_t(s_t)$

• Optimally:
$$V^*(b_t) = \max_{\pi \in \Pi} V_{\pi}(b_t) = \max_{\nu \in \mathcal{V}} \sum_{s_t} S_{\tau}$$

• where
$$\mathscr{V} = \left\{ \nu : \exists \pi \in \Pi \quad V_{\pi}(b_t) = b_t \cdot \iota \right\}$$

Belief-state value function

• Maximum of linear functions \implies piecewise-linear function

• Can be represented by set of supporting vectors $\subseteq \mathscr{V}$

belief

First-action partitioning

- What is the structure of the belief-value support set \mathcal{V} ?
- Let's partition by first action:

$$V^*(b_t) = \max_{a_t} Q^*(b_t, a_t) \qquad \text{linear in } p(s_t | b_t) \\ \Rightarrow \text{linear in } b_t$$
$$Q^*(b_t, a_t) = \max_{\pi} \mathbb{E}[r(s_t, a_t) + \gamma V_{\pi}(b_{t+1}) | b_t, a_t]$$

$$\implies Q^*(b_t, a_t) = \max_{\nu \in \mathcal{V}_{a_t}} b_t \cdot \nu$$

 \implies We can partition \mathcal{V} by first act

$$\operatorname{tion} \mathcal{V} = \bigcup_{a} \mathcal{V}_{a}$$

Next-step partition

$$\begin{aligned} \text{Recall: } b_{t+1}(s_{t+1}; b_t, a_t, o_{t+1}) &= \frac{p(s_{t+1}, o_{t+1} | b_t, a_t)}{p(o_{t+1} | b_t, a_t)} \\ &\implies Q^*(b_t, a_t) &= \max_{\pi} \mathbb{E}[r(s_t, a_t) + \gamma V_{\pi}(b_{t+1}) | b_t, a_t] \\ &= \mathbb{E}[r(s_t, a_t)] + \gamma \sum_{o_{t+1}} p(o_{t+1} | b_t, a_t) \max_{\pi} V_{\pi}(b_{t+1}) \\ &= \mathbb{E}[r(s_t, a_t)] + \gamma \sum_{o_{t+1}} \max_{\nu' \in \mathscr{V}} \sum_{s_{t+1}} p(s_{t+1}, o_{t+1} | b_t, a_t) \nu'(s_{t+1}) \\ &= b_t \cdot r(\cdot, a_t) + \gamma \sum_{o_{t+1}} \max_{\nu \in \mathscr{V}_{a_t o_{t+1}}} b_t \cdot \nu \\ &= \sup_{\sigma_{t+1}} \mathcal{V}_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \mathcal{V}_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \mathcal{V}_{\sigma_{t}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \mathcal{V}_{\sigma_{t}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \mathcal{V}_{\sigma_{t}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \nu \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \sigma_{\tau} \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \sigma_{\tau} \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}} b_t \cdot \sigma_{\tau} \\ &= \sum_{\sigma_{t+1}} \sum_{\sigma_{t+1}$$

$$\begin{aligned} a_{t}, o_{t+1}) &= \frac{p(s_{t+1}, o_{t+1} | b_{t}, a_{t})}{p(o_{t+1} | b_{t}, a_{t})} \\ \text{ayes' rule} \\ &= \max_{\pi} \mathbb{E}[r(s_{t}, a_{t}) + \gamma V_{\pi}(b_{t+1}) | b_{t}, a_{t}] \\ &= \mathbb{E}[r(s_{t}, a_{t})] + \gamma \sum_{o_{t+1}} p(o_{t+1} | b_{t}, a_{t}) \max_{\pi} V_{\pi}(b_{t+1}) \\ &= \mathbb{E}[r(s_{t}, a_{t})] + \gamma \sum_{o_{t+1}} \max_{\nu' \in \mathcal{V}} \sum_{s_{t+1}} p(s_{t+1}, o_{t+1} | b_{t}, a_{t})\nu'(s_{t+1}) \\ &= b_{t} \cdot r(\cdot, a_{t}) + \gamma \sum_{o_{t+1}} \max_{\nu \in \mathcal{V}_{a_{t}, o_{t+1}}} b_{t} \cdot \nu \\ &\implies \mathcal{V}_{a} = r(\cdot, a) + \gamma \bigoplus_{o'} \mathcal{V}_{a, o'} \end{aligned}$$

$$p_{t+1} = \frac{p(s_{t+1}, o_{t+1} | b_t, a_t)}{p(o_{t+1} | b_t, a_t)}$$

$$\max_{\pi} \mathbb{E}[r(s_t, a_t) + \gamma V_{\pi}(b_{t+1}) | b_t, a_t] \qquad \max_{\pi} V_{\pi}(b_{t+1}) = \max_{\nu' \in \mathcal{V}} b_{t+1}$$

$$\mathbb{E}[r(s_t, a_t)] + \gamma \sum_{o_{t+1}} p(o_{t+1} | b_t, a_t) \max_{\pi} V_{\pi}(b_{t+1}) \qquad \text{linear in } p(s_t) = \max_{\nu' \in \mathcal{V}} b_{t+1}$$

$$\mathbb{E}[r(s_t, a_t)] + \gamma \sum_{o_{t+1}} \max_{\nu' \in \mathcal{V}} \sum_{s_{t+1}} p(s_{t+1}, o_{t+1} | b_t, a_t) \nu'(s_{t+1})$$

$$b_t \cdot r(\cdot, a_t) + \gamma \sum_{o_{t+1}} \max_{\nu \in \mathcal{V}} \sum_{a_t, o_{t+1}} b_t \cdot \nu \qquad \text{sum of max = max of all combinations of sums}$$

$$\implies \mathcal{V}_a = r(\cdot, a) + \gamma \bigoplus_{o'} \mathcal{V}_{a, o'}$$

Value Iteration in belief-state MDP

- Represent $V(b_t)$ as $\max_{\nu \in \mathscr{V}} b_t \cdot \nu$
- Backward recursion:

$$\mathcal{V}_{a,o'} = \left\{ \nu(s) = \sum_{s'} p \right\}$$

$$\mathcal{V}_a = r(\cdot)$$

 $p(s', o' | s, a)\nu'(s') : \nu' \in \mathcal{V}$

 $(a) + \gamma \bigoplus_{o'} \mathcal{V}_{a,o'}$

 $\mathcal{V} = \bigcup \mathcal{V}$ \mathcal{A} \mathcal{A}

Today's lecture

Belief-state value function

Point-Based Value Iteration

Roy Fox | CS 277 | Winter 2021 | Lecture 12: Partial-Observability Methods

RNNs

Representing belief value by its support

- Another curse of history: the support of \mathscr{V} has at worst $|\mathscr{A}|^{|\mathscr{O}|^{T-t}}$ vectors
 - For infinite horizon, value function may even be uncomputable!
- Do we need all these ν ?
 - Some may be optimal only in unreachable beliefs
 - Some may be optimal for beliefs not reached by an optimal policy
 - Some may be optimal for beliefs with low probability of being reached
 - Some may only be slightly better than others on likely beliefs

Point-Based Value Iteration (PBVI)

- Only try to optimize the value for a finite set of belief points \mathscr{B}
 - That means having a small subset $\mathcal{V}^{\mathscr{B}}$ of all support vectors
- We compute $\mathscr{V}^{\mathscr{B}}_{a,o'}$ from $\mathscr{V}^{\mathscr{B}}$ as before
- But now we optimize the policy suffix for a specific belief point

$$\mathcal{V}_{a}^{b} = r(\cdot, a) + \gamma \sum_{o'} \arg \max_{\nu' \in \mathcal{V}_{a,o'}^{\mathscr{B}} b \cdot \nu'}$$

• Then optimize the first action, and repeat for all belief points

$$\mathcal{V}^{\mathcal{B}} = \left\{ \arg \max_{\{\nu_a^b\}} b \cdot \nu_a^b \right\}$$

PBVI belief set expansion

- With fixed \mathscr{B} , repeat the approximate VI backward until near-convergence
 - This leads to approximate optimality, if ${\mathscr B}$ covers beliefs we care about
- One way to expand \mathscr{B} to improve belief-space coverage:
 - For each $b \in \mathscr{B}$ and a, sample the following observation o', compute b'(s'; b, a, s)
 - For each $b \in \mathcal{B}$, add farthest belief from \mathcal{B} , in L_1 distance
- To use the solution: $\pi(b) = \arg \max_{a} b \cdot \nu_{a}^{b}$
- Proposition: let $\epsilon = \max_{b \text{ reachable } b' \in \mathscr{B}} \min \|b' b\|_1$ be the density of \mathscr{B} , then

$$\|V^* - V^{\mathscr{B}}\|_{\infty} \leq \frac{1}{(1 - \gamma)^2} R_{\max} \epsilon$$

Learning with partial observation

- Learning with partial observation is particularly challenging
 - If we never see states, how do we know:
 - How to represent them?
 - How many there are?
 - New challenge of exploration
 - New challenge of model-selection
 - How to choose robust representations among equivalent ones?
 - How to discover the causal structure?

Learning: exponentially harder than planning

- In MDPs, we had polynomial model-based learning (E³, R-max)
- In POMDPs, learning can be exponentially harder than planning
- Password game: guess n bits, unobservable, reward on success
 - Planning: with the dynamics known, password is known
 - Learning: have to brute-force, exponentially many guesses
- What if we can pay to observe state?
 - Too expensive for optimal policy \implies only used in training
 - Polynomial sample complexity possible in some classes

- Belief-state value function is piecewise linear
 - Can be represented by supporting vectors
 - But there are exponentially many
 - We can approximate by using a subset of the supporting vectors
 - PBVI: choose vectors by recursive optimality for beliefs we care about