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Today's lecture

Belief-state value function

Point-Based Value lteration
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Filtering with function approximation

- Instead of Bayesian belief, compute memory update h, = fy(h,_, 0,)

~ Action policy: my(a, | h,) " st"
Q a Q “
i

> Sequential structure = Recurrent Neural Network (RNN)

* Training = back-propagate gradients through the whole sequence

> Back-propagation through time (BPTT)

o Unfortunately, gradients tend to vanish — 0 / explode — ©0

> Long term coordination of memory updates + actions is challenging

> RNN can't use information not remembered, but no memory gradient unless used
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RNNs in on-policy methods

* Training RNNs with on-policy methods is straightforward (and backward)

~ Roll out policy: parameters of a, distribution are determined by m,(/,) with

h, = fo(-+-Jo(fo(0p), 01), *+-0))

~ Compute V,log my(a, | h,) with BPTT all the way to initial observation o,

 Problems: computation graph > RAM, vanishing / exploding grads

e Solution: stop gradients every k steps
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 Problem: cannot learn longer memory — but that's hard anyway
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RNNs in off-policy methods

 Problem: RNN states in replay buffer disagree with current RNN params

o Solution 1: use n-step rollouts

Qs hpa) = ri+yr g+ -+ Vn_lrt+n—1 + 7" max OFCoNY

A

» Solution 2: “burn in” h, from even earlier stored steps
* |In practice: RNNs rarely used

» Stacking k frames every step (0,_;. 1, - - -, 0,) may help with short-term memory
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Deep RL as partial observability

e Memory-based policies fail us in Deep RL, where we need them most:
> Deep RL is inherently partially observable
 Consider what deeper layers get as input:

> High-level / action-driven state features are not Markov!

 Memory management is a huge open problem in Deep RL

> Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...
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Recap and further considerations

* Let policies depend on observable history through memory
 NMemory update: Bayesian, approximate, or learned

» Learning to update memory is one of the biggest open problems in all of ML
* Let policy be stochastic

> Should memory be stochastic? interesting research question...

e Let policies be non-stationary if possible, otherwise learning may be unstable
> Time-dependent policies for finite-horizon tasks

> Periodic policies for periodic tasks

Roy Fox | CS 277 | Winter 2021 | Lecture 12: Partial-Observability Methods



Today's lecture

Point-Based Value lteration
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Belief-state MDP
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e Agent has seen history /1, = (0, ay, 01, ay, ..., 0,)

> Will see future f, = (a,, 0, (, ...,ap_, 07)

e State = separates past and future (given actions)

~ This means: p(f,| h, s,) = p(f,|s,) (for fixed action seq.)

1\ t
- ‘l

= p(f;|h) = Zp(stlht)p(ft‘st’/)

Baye3|an belief

= ) bs)p(f;]s) = p(f;|b)

"™\ Bayesian belief is also a state
—> all the agent needs
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Belief-state value function

» If belief-states form an MDP, what is its state-value function V (b,) = E[Rs,| b,]?

e Value recursion: V(b)) = E[r(s,a,) +yV (b, ) |b,]

p(sya.b.|b) =(at\bt)p(bt |b.a) probability of ..
/ leading to b,_ ,

pb, 11D, a) = Z P(Si1 15, a)p(0,4118,41)

814150141 S.1. b;,0,,1—b, 4

V(b)) is linear in b, == V,(b) = ) b(s)u(s,)

t linear in b,

/

Optimally: V¥(b,) = max V,(b) = max ) b(s) - 1(s) = maxb, - v
rell vEY ] vEY

S where‘7={1/: dz € 11 Vﬂ(bt)=bt-1/}
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Belief-state value function

 Maximum of linear functions = piecewise-linear function

value

belief

» Can be represented by set of supporting vectors C 7/
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First-action partitioning
» What is the structure of the belief-value support set 7/ ?

e Let's partition by first action:

v (bt) = Inax Q*(bt’ at) linear in p(s,| b,)

/ — linear in bt

Q*(bta at) = 1M4ax _[V(St, at) + }/Vyz(bﬂ-l) | bt, Clt]

JU

—> (Q*(b,,a,) = max b, - v
vE

at

—> We can partition 7" by first action 7" = U 7

A
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Next-step partition

P(Sii15 0111 1 Dy @)
. Recall: bl‘-l—l(SH-l; bt’ iy, OH—l) —

/' POy lb,ap)

Bayes' rule max Vﬂ(bt+1) = Inax bz+1 22
T =y
— Q%(b,a,) = max E[r(s,a) +yV(b, ) ]|b,a,l /
T
— I [r(Sta at)] T 4 Z p(0t+1 ‘ bt’ at) max Vﬂ(bt+1) linear In p(St | bt)
T . .

Or+1 — linear in b,

= Elr(s, a)] +7 2 ma;c Z P(Siy1s Org1 1 b AV (5,4 1)

V'E

Oy 1 St+1

bt-r(-,at)+yz Emax b, - v

%af’ot 1\
O 1 + sum of max = max of all
combinations of sums

— %Cl: r(-,a)+}/@0/7a,0/
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Value lteration in belief-state MDP

. Represent V(b,) as max b, - v
vET

e Backward recursion:

7 {y(s) = Zp(s’, o'|ls,a)'(s): UV E ‘7}
7 = 1"( Y ,Cl) +}/@0/%a’0/

7 =\])7,
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Today's lecture

Belief-state value function
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Representing belief value by its support

T—t
 Another curse of history: the support of 7' has at worst | &/ | 1" Vectors

> For infinite horizon, value function may even be uncomputable!

e Do we need all these 1/?

> Some may be optimal only in unreachable beliefs
» Some may be optimal for beliefs not reached by an optimal policy
> Some may be optimal for beliefs with low probability of being reached

> Some may only be slightly better than others on likely beliefs
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Point-Based Value Iteration (PBVI)

» Only try to optimize the value for a finite set of belief points 9B

> That means having a small subset V% of all support vectors

« We compute ‘75?0, from 7% as before

 But now we optimize the policy suffix for a specific belief point

Vb = r(-,a)+yZarg max

v’e%a‘%orb-v’

 Then optimize the first action, and repeat for all belief points

VP = {argmaxb-vfj}

{v;)
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PBVI belief set expansion

« With fixed &, repeat the approximate V| backward until near-convergence

» This leads to approximate optimality, if 98 covers beliefs we care about

» One way to expand 93 to improve belief-space coverage:

» For each b € 9B and a, sample the following observation o', compute b'(s’; b, a, )

» For each b € 9B, add farthest belief from 9B, in L, distance

. To use the solution: 7(b) = arg max b - 1/5
a

. Proposition:lete = max  min ||b"— b||; be the density of &, then
b reachable b'e%

1
HV* o V%j”oo < szaXG
(1 =7)
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earning with partial observation

* Learning with partial observation is particularly challenging

> If we never see states, how do we know:
- How to represent them?

- How many there are?
> New challenge of exploration
> New challenge of model-selection

- How to choose robust representations among equivalent ones?

- How to discover the causal structure?
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Learning: exponentially harder than planning

* |In MDPs, we had polynomial model-based learning (E3, R-max)

* |n POMDPs, learning can be exponentially harder than planning

 Password game: guess n bits, unobservable, reward on success

> Planning: with the dynamics known, password is known

> Learning: have to brute-force, exponentially many guesses

 What if we can pay to observe state?

> Too expensive for optimal policy = only used in training

> Polynomial sample complexity possible in some classes
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Recap

* Belief-state value function is piecewise linear
> (Can be represented by supporting vectors
> But there are exponentially many

> We can approximate by using a subset of the supporting vectors

- PBVI. choose vectors by recursive optimality for beliefs we care about
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