UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2021

| ecture 13: Exploration

i
Roy Fox =N
. %\/\/ILL PREss &
Department of Computer Science LEVER |
Bren School of Information and Computer Sciences FoFOcio
University of California, Irvine — -
I SN &

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Today's lecture

Multi-Armed Bandits

Exploration in Deep RL

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Relation between RL and IL
e What makes RL harder than |L?

» IL: teacher policy z,(a | s) indicates a good action to take in s

» RL: r(s, a) does not indicate a globally good action; O*(s, a) does, but it's nonlocal

 But didn't we see an equivalence between RL and IL?

» NLL loss in BC: VyE[log my(a|s)]

- s and a sampled from teacher distribution (this makes IL harder than RL...)

» PG loss: VyE[log my(a|s)R]

- s and a sampled from learner distribution

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Informational quantities: refresher

entropy: Hip(a)] = — E,, [log p(a)] = —) p(a)log p(a)

» Conditional entropy: H[z|s] = = E___ [log n(a | s)]

e EXpected conditional entropy: H[xz] = —SNpﬂ[H[nls]] = — —S,aNpﬂ[log n(als)]

ma|s)]

w'(als)

Expected relative entropy: D[z||7'] = E, ., [log

» Expected cross entropy (aka NLL): —[E S,aNpﬂ[log 7'(als)]

» D[x||z'] = NLL — H[x]

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

IL as sparse-reward RL

» NLL BC: maximize k., [log my(a | s)] = — Dlz,|| 7] — Hlz,]

N

constantin 0

> EXxperience from teacher distribution p,

- RL: experience from learner distribution p,
> “Return” R = g ,ccess fOr successful trajectory
- RL: 7, = r(s,, a,) in every step
e Sparse reward = most rewards are 0 = rare learning signal

» R =1 on success = very sparse; but doesn't IL provide dense learning signal?

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

IL as dense-reward RL

 What if instead we minimize the other relative entropy?

teacher labeling of learner states/actions

' as in er
[zyliz,] = — E, ., [log 7,(a|s)] — H[z,]

~ This is exactly the RL objective, with r(s,a) = log z,(a | s) and entropy regularizer
» Now r(s, a) does give global information on optimal action

> |n fact, with deterministic teacher, r(s, a) = — oo for any suboptimal action

 The same return can be viewed as sum of sparse or dense rewards

> Can we do the same in proper RL?

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Reward shaping

e |deal reward: r(s,a) = — oo for any suboptimal action = as hard to provide as 7*

> We need supervision signal that's sufficiently easy to program — generate more data
o Sparse reward functions may be easier than dense ones

> E.g., may be easy to identify good goal states, safety violations, etc.
 Reward shaping: art of adjusting the reward function for easier RL; some tips:

> Reward “bottleneck states™; subgoals that are likely to lead to bigger goals

» Break down long sequences of coordinated actions = better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Learning with sparse rewards

* Montezuma's Revenge

> Key = 100 points

> Door = 500 points

> Skull = 0 points
- Is it good? Bad? Affects something off-screen? Opens up an easter egg?
» Humans have a head start with transfer from known objects
* Exploration before learning:

> Random walk until you get some points — could take a while!

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Optimal exploration: simple settings

 Multi-Armed Bandits (MAB): single state, one-step horizon

> Exploration—exploitation tradeoff very well understood

o Contextual bandits: random state, one-step horizon

> Also has good theory (Online Learning)

e Jabular RL

» Some good heuristics, recent theoretical guarantees
» Deep RL

> Only few exploratory ideas and heuristics

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Today's lecture

Sparse rewards

Exploration in Deep RL

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Multi-Armed Bandits (MABs)

e “One-armed bandit”:

e Multi-armed bandit:

o States: & = {5y}

» Actions: &f = {pull;, ..., pull }
 One time step, no transitions

« Rewards: p(r | pull)

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Exploration vs. exploitation

 Exploitation = choose actions that seems good (so far)

 Exploration = see if we're missing out on even better ones

 Model-based algorithms (E3, R-MAX) learn r by trying every action enough times
> Suppose we can't wait that long: we care about rewards while we learn

 Regret = how much worse our return is than an optimal action

T—1
p(T) = TE[r|a*] -) r,
=0
T
« Can we get the regret to grow sub-linearly with 1?7 = average AL —>

I

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

e http://iosband.qgithub.io/2015/07/28/Beat-the-bandit.html

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

http://iosband.github.io/2015/07/28/Beat-the-bandit.html

Optimism under uncertainty

* E3: optimistic while the model isn't known; we need to start exploiting sooner

n 1
Track the mean reward for each arm ji; = — Z r,

f.

l

By the central limit theorem, the distribution of /21. quickly — A/ (ﬂi, O <—>>

. Be optimistic by slowly-growing number of standard deviations: a = arg max y; +
i

> Has to grow because we don't know the constant in the variance

> But not too fast, or we fail to exploit what we do know

» Regret: p(T') = O(log T'), provably optimal

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Learning as POMDP planning

» MDP learning as POMDP planning:

» Extend the state with the model parameters §, = (s,, ¢)

> @ uncontrollable, unobservable
» Now we “know” the dynamics: p((s’, 0) | (s, 0), a) = py(s’| s, a)
» For the rewards: p(r| (s, 0),a) = py(r|s, a)

« POMDP planning in parameter space = at least as hard as MDP learning

» Too hard to solve with POMDP methods, even in the bandits case

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Thompson sampling

» In the bandits case: py,(7|a;)
« Consider the belief = posterior over 6 (note: distribution over distributions)
 Computing the belief-value function: optimal experiment design; challenging
e Approximation:

> Sample 6’|(at, Tt)t ~ b, from the belief

> Take the optimal action

» Update the belief

> Repeat

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Today's lecture

Sparse rewards

Multi-Armed Bandits

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

RL exploration is more complicated...

 Need to consider states and dynamics

 Need coordinated behavior to get anywhere
> E.g., cross a bridge to get the game started...

» Random exploration will kill us with high probability

- Structured exploration?
 How to define regret?

> With respect to constant action? We can outperform it

> With respect to optimal policy? May be too hard to learn = linear regret

> Most approaches are heuristic, no regret guarantees

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Count-based exploration

* Generalizing a = argmax [; + \/Q}QT to RL
i
» Count visitations to each state N (s) (or state-action N (s, a))
* Optimism under uncertainty: add exploration bonus to scarcely-visited states
r=1r+1r.(N(s))
> 7" should be monotonic decreasing In N(S)

> Need to tune its weight

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Density model for count-based exploration

 How to represent “counts” in large state spaces?
> We may never see the same state twice

> |f a state is very similar to ones we've seen often, is it new?
» Train a density model py(s) over past experience

* Unlike generative models, we care about getting the density correctly

> But we don't care about the quality of samples

* Density models for images:

» CTS, PixelRNN, PixelCNN, etc.

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Pseudo-counts

 How to infer pseudo-counts from a density model?

N
qu(S) — z&rs)
e After another visit: pqy(S) — N]&[S-?-_Il_l

 Jo recover the pseudo-count:

> Py + mock-update the density model with another visit of S

< 1— /(S) < <
> Compute N = qu,(s})?iqu(s)pﬁb(s) N(s) = Npy(s)

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Exploration bonus

 What's a good exploration bonus?

e In bandits: Upper Confidence Bound (UCB) Te(N(S)) — \/Qﬁg

* In RL, often: re(N(s)) = \/N%s)

5 MILLION TRAINING FRAMES 10 MILLION TRAINING FRAMES

No bonus - No bonus -

* [Bellemare et al., 2016]: po—— po——

20 MILLION TRAINING FRAMES 50 MILLION TRAINING FRAMES

No bonus No bonus

With bonus With bonus

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Thompson sampling for RL

» Keep a distribution over models p,(¢)

e What's our “model”? Idea 1: MDP; Idea 2: Q-function

e Thompson sampling over Q-functions:

> Sample O ~ py

. Roll out an episode with the greedy policy z(s) = arg max Q(s, a)
a

~ Update p, to be more likely for Q" that gives low empirical Bellman error

> Repeat

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

Recap

 Dense rewards help, but hard to generate

* Challenges of random exploration can be overcome with
» Count-based exploration bonus for novelty, effective way to make rewards denser

» Posterior sampling for coordinated exploration actions

Roy Fox | CS 277 | Winter 2021 | Lecture 13: Exploration

