UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2021

| ecture 14: Inverse RL

i
Roy Fox =N
' %\/\/ILL PREss &
Department of Computer Science ean]
Bren School of Information and Computer Sciences FOFOORD
University of California, Irvine — .
SN =

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Today's lecture

MaxEnt IRL

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Learning rewards from demonstrations

e RL: — policy; IL: demonstrations — policy

e Inverse Reinforcement Learning (IRL): demonstrations —
» Better understand agents (humans, animals, users, markets)
- Preference elicitation, teleology (the “what for” of actions), theory of mind, language
> First step toward Apprenticeship Learning: demos — — policy

- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos

- Partly model-based (learn r but not p); may be easier to learn, generalize, transfer

- Teacher and learner can have different action spaces (e.g., human — robot)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Inverse Reinforcement Learning (IRL)

» Given a dataset of demonstration trajectories ¥ = {&;]

r(s) expressive enough

 Find teacher's /
> Principle: demonstrated actions should achieve high expected return

e |RL is ill-defined

» How low is the reward for states and actions not in £?

> How is the reward distributed along the trajectory?

- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL

> Demonstrator can be fallible = take suboptimal actions; how much?

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Feature matching

» Assume linear reward ry(s) = 0'f, in oracle state features f; € |

= Return=R_.y = Z y!
[

t ~ Geom(1l — y)

/upto (1 —7y)

o 07,1 = Eo, [0T£] (with pe(s) =) 7' py(s))

o leacher optimality: return Re;é’ higher than any other policy's return Rﬂ;g

» = Find 6 that maximizes the gap R,., — R ., (for which 77?)

» — Apprenticeship Learning: find & that maximizes Rﬂ;g (for which 67)

o Solve: max min{Re;H — 71';(9} — max mln{ —SNpe[QTf?] _

0 T

0 T

~ Approximate s ~ p, with s ~ &

=, [07f])

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Feature matching

* Feature Matching:

> Initialize Il = {m,}

> Repeat:

« On convergence: & optimal for @ (no gap), can't find @ with gap

>

Solve the Quadratic Program: max 7 s.t.E,_ o[0'] >

- Add to I the optimal policy & for ry(s) = 0'f,

—

— s~ [Hva]

SNp

[01f] forall = [, _glf,] ©

SNp

= smpalfs]

0'f]1+n Vmell

feature matching

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Today's lecture

Feature Matching

GAIL

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

T—1
) An expert teacher maximizes the return R,., = Z
=0

With the trajectory-summed features f; = Z Js

[

>

Modeling bounded teachers

- 81~ Pe [9 Tf;t] =

« Bounded rationality: teacher has “unintentional™ prior policy

» Cost to intentionally diverge: D[z, || 7] (with 7y uniform: H[x,])

>

Bounded optimality: max E,_, [07f;] — 7D[p,||p,]

e

Total cost over trajectory: D[p,(S)||lpy()] = E;,, llog pe(@] — Z

Po(é)

[

/

_Sthe llog

= ep, L0 T

D7,]

7, (a,

mo(a,

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Bounded optimality: naive solution

Bounded optimality: max E_, [07f;] — D[p,l|p]
Fep.

> Nalive solution: allow any distribution p, over trajectories

~ No need to be consistent with dynamics p(s’| s, a) = p, may be unachievable

Add the constraint Zpe(f) =] with Lagrange multiplier A
5

» Differentiate by p (&) and = 0 to optimize

Po()exp(0'fe)

OTf. — | +1 —~14+4=0 S o0
Je —logp.(S) +1log py(S) — Pde) 2g Po&)exp(@1fp)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

|IRL with bounded teacher

. Assume that demonstrations are distributed py(&) = Zi po(f)eXp(Hng)
0

> With partition function Z, = 5Np0[exp((9T]%)]

e Find @ that minimizes NLL of demonstrations

Vglog py(S) = Vy(0'f: — log Zy) =f5—Zi9 \0YZ

= fe= 7 Beup [expO2)f] = f: — Bz, [£

> To compute gradient, we need p, = we need 2,

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Computing Z,: backward recursion

Partition function: Z, = -prO[exp(é’Tff)]

Compute Z, recursively backward:

Zs,,a,) = po[exp(é’T]%Zt) s, al
Zy(s) = E, [exp(0Tfis) |

Z, defines py(&) = Zig Po()exp(0'f:)

Zo(Sp> Qy)
Zy(s;)

. Marginalizing: zy(a, | s,) = my(a,|s,)

7, is not globally consistent py(&) # pﬂe(f), because we ignored the dynamics

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Computing Z,: backward recursion

Partition function: Z, = -prO[exp(é’Tff)]

Compute Z, recursively backward:

ZH(Sta at) — _po[eXp(ngéZt) ‘ St? at] — eXp(eTfS‘I) _St+1‘st,ath[ZH(St+l)]
ZH(SZ‘) — _po[eXP(HT]%Zt) ‘ St] — _at‘StN]Z'O[ZH(St’ at)]

Z, defines py(&) = Zie Po()exp(0'f:)

Zo(Sp> Qy)
Zy(s;)

. Marginalizing: zy(a, | s,) = my(a,|s,)

7, is not globally consistent py(&) # pﬂe(f), because we ignored the dynamics

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

MaxEnt IRL

» For each sample £ ~ : Limitations:

» Compute Z, = k., [exp(0'f)] recursively backward « * Requires dynamics p
/ | Assumes p@ — pﬂg
» Compute [z =| recursively forward
p 5Npﬂg[f§] y / e Assumes Y — P,

- Take a gradient step to improve 0: Vylogpy(c) = f- — E EN%[Jél

. At the optimum: feature matching E._g[f:] = ‘5,\,]%[]%]

., MaxEnt IRL approximates max H[xz,| s.t. -5,\,@[]‘5] = k.., [fcf]
0 70

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Today's lecture

Feature Matching

MaxEnt IRL

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

|IRL: downstream tasks

e Motivation: learn reward function for downstream tasks...

...such as RL

Inverse

demonstrations— B {11l
learning

reinforcement

policy

learning

 |[L=RL o IRL (composition of RL on IRL)
» Our algorithms already learn 7 as part of learning @ for r : s — 0'f,

> Let's directly optimize IRL for the overall IL task = learn good &

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

IL as RL o IRL

. Entropy-regularized RL: max { _SNpﬂ[l”(S)] + H[ﬂ]} regularization over

rell reward function space

. MaxEnt IRL: max = [1(5)] — max {Eyp [T + H[7] } |} — w(r)

 For any m, our objective with respect to r is:
c R°

w*(p, — p,) = max {(p, —pp) T — w(r)}

reR°®

&

> This form of function y* : R° — R is called the convex conjugate of y

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Reward-function regularizers

w*(p, — p,) = max {(p, —p,) - r—y(r)}

reR°®

» Without regularizer: w =) = solution only exists when p, = p_

» — |learner achieves teacher's state distribution: perfect solution, but hard to find

0 ifr(s) =0,

. Hard linearity constraint: y/(r) =
co otherwise

» —> max-entropy feature matching (MaxkEnt IRL)

~ Great when the reward function really is linear in J,, otherwise no guarantees

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Generative Adversarial Networks (GANS)

» Train generative model py(s) to generate states / observations

> Can we focus the training on failure modes?

» Also train discriminator Dy(s) € [0,1] to score instances

> Kind of like a critic: are generated instances good?

Po(S)

. Dy(s) predicts the probability p(s generated by learner | s) = () + p.(s)

_Trained with cross-entropy loss: max {

ax Ay llog Dy(s)] + E, . [log(] — D, (s)1}

. The generator tries to fool the discriminator: min E SNpe[log D¢(S)]
(0

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Teacher-based reward-function regularizer

e (Consider the regularizer
wea(r) = Ey, [r(s) = log(1 — exp(=r(s))] /

000000

é@)
e |t's convex conjugate is:
e (Do =) = max {(p, = p,) - 7 = (1)
reR —log D(s)
= max|r(s) — r(s) + log(1 — D(s))] — E., [7(s) |]

reR°®

=, [log D(s)] + E, _, [log(1 — D(s))]

» — GAN: generator p_imitating teacher p; discriminator D(s) = exp(—r(s))

oy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Generative Adversarial Imitation Learning (GAIL)

Input: demonstration dataset Dy ~ pr
repeat

D; < roll out my

take discriminator gradient ascent step

Esp, | Velog Dy(s)| + Eswp, [V log(l — Dy(s))]

take entropy-regularized policy gradient step with reward r(s) = —log D4(s)

* We've already seen one entropy-regularized PG algorithm: TRPO

> More next time

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Recap

* To understand behavior: infer the intentions of observed agents

e |f teacher is optimal for a reward function
> The reward function should make an optimizer imitate the teacher
> State (or state—action) distribution of learner should match the teacher
* |n this view, Inverse Reinforcement Learning (IRL) iIs a game:
» Reward is optimized to show how much the teacher is better than the learner

» Learner optimizes for the reward

> Reward is like a discriminator (high = probably teacher); learner like a generator

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

