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Learning rewards from demonstrations
• RL: rewards  policy; IL: demonstrations  policy


• Inverse Reinforcement Learning (IRL): demonstrations  reward function


‣ Better understand agents (humans, animals, users, markets)


- Preference elicitation, teleology (the “what for” of actions), theory of mind, language


‣ First step toward Apprenticeship Learning: demos  rewards  policy


- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos


- Partly model-based (learn  but not ); may be easier to learn, generalize, transfer


- Teacher and learner can have different action spaces (e.g., human → robot)

→ →

→
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Inverse Reinforcement Learning (IRL)
• Given a dataset of demonstration trajectories 


• Find teacher's reward function 


‣ Principle: demonstrated actions should achieve high expected return


• IRL is ill-defined


‣ How low is the reward for states and actions not in ?


‣ How is the reward distributed along the trajectory?


- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL


‣ Demonstrator can be fallible = take suboptimal actions; how much?

𝒟 = {ξi}

r : 𝒮 × 𝒜 → ℝ

𝒟

 expressive enoughr(s)
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Feature matching
• Assume linear reward  in oracle state features 


‣  Return =  (with )


• Teacher optimality: return  higher than any other policy's return 


‣  Find  that maximizes the gap  (for which ?)


‣  Apprenticeship Learning: find  that maximizes  (for which ?)


• Solve: 


‣ Approximate  with 

rθ(s) = θ⊺fs fs ∈ ℝd

⟹ Rπ;θ = ∑
t

γt𝔼st∼pπ
[θ⊺fst

] = 𝔼s∼pπ
[θ⊺fs] pθ(s) = ∑

t

γt pθ(st)

Re;θ Rπ;θ

⟹ θ Re;θ − Rπ;θ π

⟹ π Rπ;θ θ

max
θ

min
π

{Re;θ − Rπ;θ} = max
θ

min
π

{𝔼s∼pe
[θ⊺fs] − 𝔼s∼pπ

[θ⊺fs]}

s ∼ pe s ∼ 𝒟

 
up to 
t ∼ Geom(1 − γ)

⋅ (1 − γ)
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Feature matching
• Feature Matching:


‣ Initialize 


‣ Repeat:


- Solve the Quadratic Program:    


- Add to  the optimal policy  for 


• On convergence:  optimal for  (no gap), can't find  with gap


‣   for all   

Π = {π0}

max
η,∥θ∥2≤1

η s.t. 𝔼s∼𝒟[θ⊺fs] ≥ 𝔼s∼pπ
[θ⊺fs] + η ∀π ∈ Π

Π π rθ(s) = θ⊺fs

π θ θ

⟹ 𝔼s∼𝒟[θ⊺fs] ≈ 𝔼s∼pπ
[θ⊺fs] θ ⟹ 𝔼s∼𝒟[ fs] ≈ 𝔼s∼pπ

[ fs]
feature matching
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Modeling bounded teachers

• An expert teacher maximizes the return 


‣ With the trajectory-summed features 


• Bounded rationality: teacher has “unintentional” prior policy 


‣ Cost to intentionally diverge:  (with  uniform: )


‣ Total cost over trajectory: 


• Bounded optimality: 

Re;θ =
T−1

∑
t=0

𝔼st∼pe
[θ⊺fst

] = 𝔼ξ∼pe
[θ⊺fξ]

fξ = ∑
t

fst

π0

𝔻[πe∥π0] π0 ℍ[πe]

𝔻[pe(ξ)∥p0(ξ)] = 𝔼ξ∼pe [log
pe(ξ)
p0(ξ) ] = ∑

t

𝔼st∼pe [log
πe(at |st)
π0(at |st) ]

max
πe

𝔼ξ∼pe
[θ⊺fξ] − τ𝔻[pe∥p0]

𝔻[πe∥π0]
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Bounded optimality: naïve solution

• Bounded optimality: 


‣ Naïve solution: allow any distribution  over trajectories


‣ No need to be consistent with dynamics    may be unachievable


• Add the constraint  with Lagrange multiplier 


• Differentiate by  and  to optimize


   

max
πe

𝔼ξ∼pe
[θ⊺fξ] − 𝔻[pe∥p0]

pe

p(s′￼|s, a) ⟹ pe

∑
ξ

pe(ξ) = 1 λ

pe(ξ) = 0

θ⊺fξ − log pe(ξ) + log p0(ξ) − 1 + λ = 0 ⟹ pe(ξ) =
p0(ξ)exp(θ⊺fξ)

∑ξ̄ p0(ξ̄)exp(θ⊺fξ̄)

pe
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IRL with bounded teacher

• Assume that demonstrations are distributed 


‣ With partition function 


• Find  that minimizes NLL of demonstrations


 


‣ To compute gradient, we need   we need 

pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

θ

∇θlog pθ(ξ) = ∇θ(θ⊺fξ − log Zθ) = fξ−
1
Zθ

∇θZθ

= fξ−
1
Zθ

𝔼ξ̄∼p0
[exp(θ⊺fξ̄)fξ̄] = fξ − 𝔼ξ̄∼pθ

[ fξ̄]

pθ ⟹ Zθ
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Computing : backward recursionZθ

• Partition function: 


• Compute  recursively backward:


 


•  defines 


‣ Marginalizing: 


•  is not globally consistent , because we ignored the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼st+1|st,at∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼at|st∼π0
[Zθ(st, at)]

Zθ pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

πθ(at |st) = π0(at |st)
Zθ(st, at)

Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ)
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Computing : backward recursionZθ

• Partition function: 


• Compute  recursively backward:


 


•  defines 


‣ Marginalizing: 


•  is not globally consistent , because we ignored the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼st+1|st,at∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼at|st∼π0
[Zθ(st, at)]

Zθ pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

πθ(at |st) = π0(at |st)
Zθ(st, at)

Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ)
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MaxEnt IRL

• For each sample :


‣ Compute  recursively backward


‣ Compute  recursively forward


‣ Take a gradient step to improve : 


• At the optimum: feature matching 


‣ MaxEnt IRL approximates    s.t. 

ξ ∼ 𝒟

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

𝔼ξ̄∼pπθ
[ fξ̄]

θ ∇θlog pθ(ξ) ≈ fξ − 𝔼ξ̄∼pπθ
[ fξ̄]

𝔼ξ∼𝒟[ fξ] = 𝔼ξ∼pπθ
[ fξ]

max
θ

ℍ[πθ] 𝔼ξ∼𝒟[ fξ] = 𝔼ξ∼pπθ
[ fξ]

Limitations: 

• Requires dynamics  

• Assumes  

• Assumes 

p

pθ = pπθ

𝒟 = pe
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IRL: downstream tasks

• Motivation: learn reward function for downstream tasks...


                                                                                 ...such as RL


• IL = RL ○ IRL (composition of RL on IRL)


• Our algorithms already learn  as part of learning  for 


‣ Let's directly optimize IRL for the overall IL task = learn good 

π θ r : s ↦ θ⊺fs

π

inverse

reinforcement


learning

reinforcement

learningdemonstrations reward 

function policy
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IL as RL ○ IRL

• Entropy-regularized RL: 


• MaxEnt IRL: 


• For any , our objective with respect to  is:


 


‣ This form of function  is called the convex conjugate of 

max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}

max
r∈ℝ𝒮 {𝔼s∼pe

[r(s)] − max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}} − ψ(r)

π r

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ* : ℝ𝒮 → ℝ ψ

regularization over 
reward function space

∈ ℝ𝒮
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Reward-function regularizers

 


• Without regularizer:   solution only exists when 


‣  learner achieves teacher's state distribution: perfect solution, but hard to find


• Hard linearity constraint: 


‣  max-entropy feature matching (MaxEnt IRL)


‣ Great when the reward function really is linear in , otherwise no guarantees

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ = 0 ⟹ pe = pπ

⟹

ψ(r) = { 0 if r(s) = θ⊺fs
∞ otherwise

⟹

fs
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Generative Adversarial Networks (GANs)
• Train generative model  to generate states / observations


‣ Can we focus the training on failure modes?


• Also train discriminator  to score instances


‣ Kind of like a critic: are generated instances good?


•  predicts the probability 


‣ Trained with cross-entropy loss: 


• The generator tries to fool the discriminator: 

pθ(s)

Dϕ(s) ∈ [0,1]

Dϕ(s) p(s generated by learner |s) =
pθ(s)

pθ(s) + pe(s)

max
ϕ

{𝔼s∼pθ
[log Dϕ(s)] + 𝔼s∼pe

[log(1 − Dϕ(s))]}

min
θ

𝔼s∼pθ
[log Dϕ(s)]
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Teacher-based reward-function regularizer
• Consider the regularizer


 


• It's convex conjugate is:


 


‣  GAN: generator  imitating teacher ; discriminator 

ψGA(r) = 𝔼s∼pe
[r(s) − log(1 − exp(−r(s)))]

ψ*GA(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

= max
r∈ℝ𝒮

[r(s) − r(s) + log(1 − D(s))] − 𝔼s∼pπ
[

⏞
r(s) ]

= 𝔼s∼pπ
[log D(s)] + 𝔼s∼pe

[log(1 − D(s))]

⟹ pπ pe D(s) = exp(−r(s))

D(s)

−log D(s)
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Generative Adversarial Imitation Learning (GAIL)

• We've already seen one entropy-regularized PG algorithm: TRPO


‣ More next time

Input: demonstration dataset DT „ pT
repeat

DL – roll out ⇡✓

take discriminator gradient ascent step

Es„DLrr� logD�psqs ` Es„DT rr� logp1 ´ D�psqqs

take entropy-regularized policy gradient step with reward rpsq “ ´ logD�psq

<latexit sha1_base64="iR3FqYi/MwjxwDoGl1+2vSIfHi4="></latexit>
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Recap
• To understand behavior: infer the intentions of observed agents


• If teacher is optimal for a reward function


‣ The reward function should make an optimizer imitate the teacher


‣ State (or state–action) distribution of learner should match the teacher


• In this view, Inverse Reinforcement Learning (IRL) is a game:


‣ Reward is optimized to show how much the teacher is better than the learner


‣ Learner optimizes for the reward


‣ Reward is like a discriminator (high = probably teacher); learner like a generator


