
Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

CS 277: Control and

Reinforcement Learning

Winter 2021

Lecture 14: Inverse RL

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Today's lecture

MaxEnt IRL

GAIL

Feature Matching

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Learning rewards from demonstrations
• RL: rewards policy; IL: demonstrations policy

• Inverse Reinforcement Learning (IRL): demonstrations reward function

‣ Better understand agents (humans, animals, users, markets)

- Preference elicitation, teleology (the “what for” of actions), theory of mind, language

‣ First step toward Apprenticeship Learning: demos rewards policy

- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos

- Partly model-based (learn but not); may be easier to learn, generalize, transfer

- Teacher and learner can have different action spaces (e.g., human → robot)

→ →

→

→ →

r p

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Inverse Reinforcement Learning (IRL)
• Given a dataset of demonstration trajectories

• Find teacher's reward function

‣ Principle: demonstrated actions should achieve high expected return

• IRL is ill-defined

‣ How low is the reward for states and actions not in ?

‣ How is the reward distributed along the trajectory?

- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL

‣ Demonstrator can be fallible = take suboptimal actions; how much?

𝒟 = {ξi}

r : 𝒮 × 𝒜 → ℝ

𝒟

 expressive enoughr(s)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Feature matching
• Assume linear reward in oracle state features

‣ Return = (with)

• Teacher optimality: return higher than any other policy's return

‣ Find that maximizes the gap (for which ?)

‣ Apprenticeship Learning: find that maximizes (for which ?)

• Solve:

‣ Approximate with

rθ(s) = θ⊺fs fs ∈ ℝd

⟹ Rπ;θ = ∑
t

γt𝔼st∼pπ
[θ⊺fst

] = 𝔼s∼pπ
[θ⊺fs] pθ(s) = ∑

t

γt pθ(st)

Re;θ Rπ;θ

⟹ θ Re;θ − Rπ;θ π

⟹ π Rπ;θ θ

max
θ

min
π

{Re;θ − Rπ;θ} = max
θ

min
π

{𝔼s∼pe
[θ⊺fs] − 𝔼s∼pπ

[θ⊺fs]}

s ∼ pe s ∼ 𝒟

up to
t ∼ Geom(1 − γ)

⋅ (1 − γ)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Feature matching
• Feature Matching:

‣ Initialize

‣ Repeat:

- Solve the Quadratic Program:

- Add to the optimal policy for

• On convergence: optimal for (no gap), can't find with gap

‣ for all

Π = {π0}

max
η,∥θ∥2≤1

η s.t. 𝔼s∼𝒟[θ⊺fs] ≥ 𝔼s∼pπ
[θ⊺fs] + η ∀π ∈ Π

Π π rθ(s) = θ⊺fs

π θ θ

⟹ 𝔼s∼𝒟[θ⊺fs] ≈ 𝔼s∼pπ
[θ⊺fs] θ ⟹ 𝔼s∼𝒟[fs] ≈ 𝔼s∼pπ

[fs]
feature matching

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Today's lecture

MaxEnt IRL

GAIL

Feature Matching

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Modeling bounded teachers

• An expert teacher maximizes the return

‣ With the trajectory-summed features

• Bounded rationality: teacher has “unintentional” prior policy

‣ Cost to intentionally diverge: (with uniform:)

‣ Total cost over trajectory:

• Bounded optimality:

Re;θ =
T−1

∑
t=0

𝔼st∼pe
[θ⊺fst

] = 𝔼ξ∼pe
[θ⊺fξ]

fξ = ∑
t

fst

π0

𝔻[πe∥π0] π0 ℍ[πe]

𝔻[pe(ξ)∥p0(ξ)] = 𝔼ξ∼pe [log
pe(ξ)
p0(ξ)] = ∑

t

𝔼st∼pe [log
πe(at |st)
π0(at |st)]

max
πe

𝔼ξ∼pe
[θ⊺fξ] − τ𝔻[pe∥p0]

𝔻[πe∥π0]

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Bounded optimality: naïve solution

• Bounded optimality:

‣ Naïve solution: allow any distribution over trajectories

‣ No need to be consistent with dynamics may be unachievable

• Add the constraint with Lagrange multiplier

• Differentiate by and to optimize

max
πe

𝔼ξ∼pe
[θ⊺fξ] − 𝔻[pe∥p0]

pe

p(s′￼|s, a) ⟹ pe

∑
ξ

pe(ξ) = 1 λ

pe(ξ) = 0

θ⊺fξ − log pe(ξ) + log p0(ξ) − 1 + λ = 0 ⟹ pe(ξ) =
p0(ξ)exp(θ⊺fξ)

∑ξ̄ p0(ξ̄)exp(θ⊺fξ̄)

pe

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

IRL with bounded teacher

• Assume that demonstrations are distributed

‣ With partition function

• Find that minimizes NLL of demonstrations

‣ To compute gradient, we need we need

pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

θ

∇θlog pθ(ξ) = ∇θ(θ⊺fξ − log Zθ) = fξ−
1
Zθ

∇θZθ

= fξ−
1
Zθ

𝔼ξ̄∼p0
[exp(θ⊺fξ̄)fξ̄] = fξ − 𝔼ξ̄∼pθ

[fξ̄]

pθ ⟹ Zθ

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Computing : backward recursionZθ

• Partition function:

• Compute recursively backward:

• defines

‣ Marginalizing:

• is not globally consistent , because we ignored the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼st+1|st,at∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼at|st∼π0
[Zθ(st, at)]

Zθ pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

πθ(at |st) = π0(at |st)
Zθ(st, at)

Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Computing : backward recursionZθ

• Partition function:

• Compute recursively backward:

• defines

‣ Marginalizing:

• is not globally consistent , because we ignored the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼st+1|st,at∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼at|st∼π0
[Zθ(st, at)]

Zθ pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

πθ(at |st) = π0(at |st)
Zθ(st, at)

Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

MaxEnt IRL

• For each sample :

‣ Compute recursively backward

‣ Compute recursively forward

‣ Take a gradient step to improve :

• At the optimum: feature matching

‣ MaxEnt IRL approximates s.t.

ξ ∼ 𝒟

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

𝔼ξ̄∼pπθ
[fξ̄]

θ ∇θlog pθ(ξ) ≈ fξ − 𝔼ξ̄∼pπθ
[fξ̄]

𝔼ξ∼𝒟[fξ] = 𝔼ξ∼pπθ
[fξ]

max
θ

ℍ[πθ] 𝔼ξ∼𝒟[fξ] = 𝔼ξ∼pπθ
[fξ]

Limitations:

• Requires dynamics

• Assumes

• Assumes

p

pθ = pπθ

𝒟 = pe

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Today's lecture

MaxEnt IRL

GAIL

Feature Matching

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

IRL: downstream tasks

• Motivation: learn reward function for downstream tasks...

 ...such as RL

• IL = RL ○ IRL (composition of RL on IRL)

• Our algorithms already learn as part of learning for

‣ Let's directly optimize IRL for the overall IL task = learn good

π θ r : s ↦ θ⊺fs

π

inverse

reinforcement

learning

reinforcement

learningdemonstrations reward

function policy

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

IL as RL ○ IRL

• Entropy-regularized RL:

• MaxEnt IRL:

• For any , our objective with respect to is:

‣ This form of function is called the convex conjugate of

max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}

max
r∈ℝ𝒮 {𝔼s∼pe

[r(s)] − max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}} − ψ(r)

π r

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ* : ℝ𝒮 → ℝ ψ

regularization over
reward function space

∈ ℝ𝒮

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Reward-function regularizers

• Without regularizer: solution only exists when

‣ learner achieves teacher's state distribution: perfect solution, but hard to find

• Hard linearity constraint:

‣ max-entropy feature matching (MaxEnt IRL)

‣ Great when the reward function really is linear in , otherwise no guarantees

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ = 0 ⟹ pe = pπ

⟹

ψ(r) = { 0 if r(s) = θ⊺fs
∞ otherwise

⟹

fs

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Generative Adversarial Networks (GANs)
• Train generative model to generate states / observations

‣ Can we focus the training on failure modes?

• Also train discriminator to score instances

‣ Kind of like a critic: are generated instances good?

• predicts the probability

‣ Trained with cross-entropy loss:

• The generator tries to fool the discriminator:

pθ(s)

Dϕ(s) ∈ [0,1]

Dϕ(s) p(s generated by learner |s) =
pθ(s)

pθ(s) + pe(s)

max
ϕ

{𝔼s∼pθ
[log Dϕ(s)] + 𝔼s∼pe

[log(1 − Dϕ(s))]}

min
θ

𝔼s∼pθ
[log Dϕ(s)]

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Teacher-based reward-function regularizer
• Consider the regularizer

• It's convex conjugate is:

‣ GAN: generator imitating teacher ; discriminator

ψGA(r) = 𝔼s∼pe
[r(s) − log(1 − exp(−r(s)))]

ψ*GA(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

= max
r∈ℝ𝒮

[r(s) − r(s) + log(1 − D(s))] − 𝔼s∼pπ
[

⏞
r(s)]

= 𝔼s∼pπ
[log D(s)] + 𝔼s∼pe

[log(1 − D(s))]

⟹ pπ pe D(s) = exp(−r(s))

D(s)

−log D(s)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Generative Adversarial Imitation Learning (GAIL)

• We've already seen one entropy-regularized PG algorithm: TRPO

‣ More next time

Input: demonstration dataset DT „ pT
repeat

DL – roll out ⇡✓

take discriminator gradient ascent step

Es„DLrr� logD�psqs ` Es„DT rr� logp1 ´ D�psqqs

take entropy-regularized policy gradient step with reward rpsq “ ´ logD�psq

<latexit sha1_base64="iR3FqYi/MwjxwDoGl1+2vSIfHi4=">AAANd3ictVZbc9tEFFbLrRgbWnjkgTMk8cikztgdGGbKZKaQGMpM2wlt3HaSdTSytHZ2KkvKatMkCP0z/givvMIf4I2zu7LuTlIuerF19pzv+85ldzUNPRaJweC3Gzffevudd9+79X7rg3bnw49u3/n4eRSccoeOncAL+MupHVGP+XQsmPDoy5BTezH16Ivpqx25/uI15REL/H1xEdLJwp77bMYcW6DJutMebxB6Erc2QouIYypsk5yzHnS3gcy47Qzjg9SeQGiN9SKh56EJ2nxE9mFmoRnQTlobS3eFMLJiuUIitpDRyeHK0ElrI2m1Uilkzm13iUO8YA51cQWXOl5fR2VaerCdr1TTKrFlITKXroyKydTmMo0kaYweFTwuz7SI1Ku8T4oKmyBTvsNqXLFuB1YcWeIu2Jb4BpYCu8SlM3qiUUO2Upvs05yCkNp+gSWOEtbgjuvSUYJGViw2h0kxSGtGooNsORc0SedEYvwHMrVCjJLE2qLolyCNRSmPG3qmk5RhyIlRvY6b4pO4Ij8p4oXZDPmYUKjzSR3L7Ur9/sVOaRiVIt3l83LVPrtiJN+AqJge2Yl3tb80TerZ13CVXwlvYZ9nuh8e5v4TgiAC/hc+6QaE+UD2mN73UUogsw4TC9cxnJsRNgk2UZiJll550iJ2H8j38dPkCGU9QxgR6Pc6HddkuXMj6X5OiW2q6TSvLxRnCxFQoclLonk1g6MvzIxdhuSoatcUxe+g+ARWuxPHDQTwZmLNdZ16oWP1HZUMSrZMwnZRQjUMJSgHOmd+7OC9GiHTALq6Wtul/RipgwzznIkL9CBP4gBX+RmLaCIxfTdDyElmVUbs15P4h2+TJKW+pMX6WjNh2FeHQ18ae7Uj4XHwmo5OHtGZAF3BnOG6bSvO3Bs0b3lp/qP57eufzWWOEracZXoOXTLMxTrspg3LMeqzdb3KrOJUJ+Zutouac1PZDPu7KolJ0zWBKyXdiH7MJKos3+HgLgwn9fXGiBK6ial51OY+5epuzm+0AnFSfMEkQmtfWutnLRIUMyx8j6ysQnhF/qVD/CpoFZhuS9ubB5yJ4wVzkhZ5JmxBY/Jd/KMfnor7Cbh0EfiR4OoDF1xb4B4UsK6uAezvUts6xj5+SkNqixZACpN6PZLfGCJaBx54HgSnMjy7IzAw8xf2KwouixzOFsy3RcBB3qmM+gLsyJE/kaAhqIwBn+KUaCqZp76HVY1VytkIVAdL51APkRVeBslqASRVlaiFB+FFn9P5qWdz9jN1IQw85lzkkpXWMywtcHpmcxfW02OvX9YlazfyXV29GF/kWVdqi3V7bbA1UA/U/wzTP2tG+uwRHHZsX+wGOnhYda3/eX5va/jl1lc/3Vt7MEphbhmfGp8bpjE0vjYeGA+NPWNsOO1f27+3/2j/2f6r81mn2zG1680bacwnRunpDP8GHkFZDQ==</latexit>

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Recap
• To understand behavior: infer the intentions of observed agents

• If teacher is optimal for a reward function

‣ The reward function should make an optimizer imitate the teacher

‣ State (or state–action) distribution of learner should match the teacher

• In this view, Inverse Reinforcement Learning (IRL) is a game:

‣ Reward is optimized to show how much the teacher is better than the learner

‣ Learner optimizes for the reward

‣ Reward is like a discriminator (high = probably teacher); learner like a generator

