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Today's lecture

Bounded RL

SQL, SAC
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Bounded optimality

» Bounded optimizer = trades off value and divergence from prior my(a | 5)

max
T

“sap LTS, Q)| — 7

])[ﬂuﬂo] — IMax

JU

e [ﬁr(s, a) — log

n(als)

my(al s)

e = % IS the tradeoff coefficient between value and relative entropy

> Similar to the inverse-temperature in thermodynamics

> As [ — 0, the agent will fall back to the prior & —

>~ As fj — o0, the agent will be a perfect value optimizer &1 — 7*

» We'll see reasons to have finite
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Simplifying assumption

 MaxEnt IRL was approximate because It violated dynamical constraints
> p(&) x exp(R(&)) (regardless of trajectory feasibility)

* For simplicity, let's do the same for RL

> Suppose the environment is fully controllable s, = a,

> Bellman equation:

7(s’]s)

mo(s'| 5)

% n _ 1 %( o
Vﬁ (s) = max g, lr(s) ﬂlog +;/Vﬂ (s )]

U

L 7o(s | )exp(BrViG) | 4 |
r(s)—; m;n ) | 7S E— +ElogZﬁ(s)
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Soft-greedy policy

e To solve the Bellman recursion

7(s’|s)

() — - _1 (o
Vi(s) = max Ey [r(s) Llog 2oy VE(s)
L 7o(s | )exp(BrVEGs) | |
— — ) il
r(s) 5 mj:n T 70 + 2 log Zﬁ(s)

>

Differentiate, with A, constraining Z n(s'|s) =1

\)

I (s’ 5) /
0= V g1 Euoon | 5 108 247V = A
1 JZ'(S,|S) / / /
= -7 log Ty +g/V;<(s ) — Ay — 7($"| $) V15 10g 7(s7| 5)

. Soft-greedy policy: ﬂﬁ*(s’\ s) o 1o(s’| S)exp(ﬁyVﬂ*(S’)) (more general form later)
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Linearly-Solvable MDPs (LMDPs)

* Plugging the soft-greedy policy back into the value recursion:

7o(s'| )exp(ByVi(s))
Zj(s)

O N 1 /
Vﬁ (s) = r(s) 5 m;n@ [n + 2 log Zﬁ(s)

= 1($)+ 108 Zj(s) = r(s)+ 108 Egyyr [eXp(ByVE(s)]

e Alternatively:

Zy(s) = exp(pV;(s)) = exp(fr(s))Zy(s) = exp(Pr(s)Eys.q [Z5(s")]

N/

» In the undiscounted case y = 1, with D = diag(exp pr): z = DPz

» We can solve for z, and therefore z, by finding a right-eigenvector of DP,,
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Z-learning

Z(s) = exp(Br(s))E, |, [Z/(s")]
* \We can do the same model-free:
~ Given experience (s, r, s’) sampled by the prior policy

~ Update Zy(s) — exp frZ’(s’)
» Full-controllability condition (s,, ; = a,) can be relaxed to allow zy(s’|s) = 0

~ But we still allow any transition distribution 7(s’| s) over the remaining support

Later: the general case, p(s'|s) = Z n(al|s)p(s'|s, a)

>

A
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Today's lecture

Linearly Solvable MDPs

SQL, SAC
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Duality between value and log prob

* \We've seen many cases where log-probs play the role of reward / value

> Or values the role of logits (unnormalized log-probs)

 Examples:

1
2

~ InLQG, log p(x|) x'2ix + const; costs / values are quadratic

> In value-based algorithms, a good exploration policy is m(a|s) = sm SQ)(s, a)
a
> Imitation Learning can be viewed as RL with 7“(3, CL) = log WT(a\S)

> In IRL, a reward function can be viewed as a discriminator D(S) = exp 7“(3)

> etc.
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Full-controllability duality

Z(s) = exp(Br(s)) Eyjsm[Z7(s)]

» Backward filtering in a partially observable system with dynamics my(s’|s)

p(0=¢|st) = p(o¢|S¢) | 1P(0=141|5t41) ]
» Equivalentif r(s) = p(o|s)and Z(s) = p(0=¢|s:)

» With the actual observations that we see

 Can we say anything about the partially controllable case?
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Bounded RL

» Back to the general case: max I ., |87 (s,a)] — D|x|mo]

T

* Define an entropy-regularized Bellman optimality operator

1 7T(CL|S) - /
6 10g 7_‘_0(@|S) Y I—Js’\s,afvp[v(s )]]

> As in the unbounded case [ — 00, this operator is contracting

BlV|(s) = max E,jsr [fr(s, a)

-

e Optimal policy:

m(a|s) oc mo(als) exp B(r(s,a) + v Egisawp|V (s)]) = mo(als) exp BQ(s, a)

e Optimal value recursion:

Vis) = %log Z(s) = %log Eajs~molexp B(r(s,a) + v EgisapV(s)])]
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Value—-RelEnt curve
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[Rubin et al., 2012}
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Robustness to model uncertainty

Expected value, V.
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Today's lecture

Linearly Solvable MDPs

Bounded RL
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Exact and approximate inference

+ Suppose we want to max log-likelihood of a dataset max E.-pllogpy(x)]

> And computing it is easier with a latent intermediate variable pg(z) Do (ZE‘Z)

e Expectation—-Gradient (EG):

Vo 1Og Po ($) — IEZ|£IZ~p9 [VH 1Og p9<Z7 aj)]
 But what if sampling from the exact posterior p@(z\az) Is also hard?

* Let's do importance sampling from any approximate posterior q4(2|x)

logpg(x) = log IE, |, ~ [ p9($|z)] > [~ [k)g ]
0 Laglelo) L g (ele)
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Variational Inference (VI): Evidence Lower Bound (ELBO)

» Two ways of decomposing py(z, x):

log pa(z) > — Dlgs(=|) [po(=. z)]

po(2|T)
— ] I, | ]
og po(x) + z~qy | 108 q¢(z ] (1)
po(2)
= IE, .- | -] )
o~as [Og qo(2|7) o8 Po(]2) ] (2)

* (1) shows that the bounding gap is D[q,(z|z)||pe(z|z)] = 0
> It Is smaller the better we can approximate p9(2|$) using q¢(z|aj)

e (2) shows how the bound can be computed efficiently

> We can use it as a proxy for our objective
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Control as inference

e Consider soft “success” indicators

p(ve = 1|84, ar) = exp Br(s, a)

« What is the log-probability that an entire trajectory & “succeeds”?

logp(V|€) = Zlogp(vt = 1|ss, a;) = BZr(st,at) = OR

 What is the posterior distribution over trajectories, given success?

_ po(&)P(VIE) _ po(§) exp SR

» But this distribution is not realizable, due to dynamical constraints
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Pseudo-observations
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General duality between VI and bounded RL

+ Take x = V, 2 = &, and py(&) = po(€)

 Optimize the ELBO with a realizable proposal distribution q¢(§|V) = Prg (f)

e The ELBO becomes

? po(é") o B pﬂ'gb(g)
Eev~g, [bgpo(wf) + log %@W)] = Be~pr, [5 L log Po(§) ]
) Te(als)
= Ls.a~pr, [5T(S’ 7) — log W:)b(a 5)]

> Equivalent to the bounded RL problem!
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Soft Q-Learning (SQL)

o D off-policy algorithm for model-free bounded RL

o With tabular parametrization:
Y

AQ(s,a) = r A 3 log Eo/(s~m lexp BQ(s",a")| — Q(s, a)
o With differentiable parametrization:
2
Ly(s,a,r s) = (7“ I glog Eo s ~mlexp BQa(s",a")| — Qo(s, a))

« As B8 — o0, this becomes (Deep) Q-Learning

Roy Fox | CS 277 | Winter 2021 | Lecture 15: Control as Inference



Soft Actor—Critic (SAC)

o AC off-policy algorithm for model-free bounded RL

e Optimally:

7(als) — mo(als) exp BQ(s, a) Va: V(s) = Q(s.a) 1 log m(als)

exp BV (s) B~ mo(als)

* \We can train the critic off-policy

£¢(S, a, T, 8/7 a/) — (T -+ Y (qu(S/’ a/) ; 10g ZzEZ’ z,§> — Q¢(S, Cl))

 And the actor to be soft-greedy = distill / imitate the critic

Lo(s) = Egjsr,|log mg(als) — log mo(als) — BRs(s, a)]

e Allows continuous action spaces
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Why use a finite )

 Model suboptimal agents / teachers
 Robustness to model misspecification / avoid overfitting

e Eliminate bias due to winner's curse

> For 3 — o0 E[mgx Qa)| = max E|Q(a)]
.+ For 3 — 0 E[E, . [Q(a)]] = Fur [E[Q(a)]] < max]

a

> Somewhere in between there must be an unbiased [3

e More reasons...
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Recap

 Duality: rewards and values are like log-probs
e Can use inference methods to plan and learn
* Fall back to “optimal” methods in the O-temperature case

 But many reasons to keep finite temperature, during training and often after
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