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Logistics

e Evaluations due end of next week

-  Assignment 5 due next Friday
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Today's lecture

Hierarchical planning

Subgoal discovery
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Abstractions in learning

: : : features
 Abstraction = succinct representation inputwoutput
N

N

» Captures high-level features, ignores low-level N - -7

> (Can be programmed or learned

> Can improve sample efficiency, generalization, transfer
e |nput abstraction (in RL: state abstraction)
> Allow downstream processing to ignore irrelevant input variation

 Qutput abstraction (in RL: action abstraction)

> Allow upstream processing to ignore extraneous output details
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Abstractions In sequential decision making

e Spatial abstraction: each decision has state / action abstraction
> Easier to decide based on high-level state features (e.g. objects, not pixels)

> Easier to make big decisions first, fill in the detalls later

 [emporal abstraction: abstractions can be remembered .
> No need to identify objects from scratch in every frame { s { s
- High-level features can ignore fast-changing, short-term aspects "‘_""

> No need to make the big decisions again in every step

- Focus on long-term planning, shorten the effective horizon
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Options framework
o Option = persistant action abstraction [ ] h [ ]
s\—> a

» High-level policy = select the active option h € # S o -

~ Low-level option = “fills in the details”, select action 7, (a | s) every step

» When to switch the active option /7?

> |dea: option has some subgoal = postcondition it tries to satisfy

> Option can detect when the subgoal is reached (or failed to be reached)

- As part of deciding what action to take otherwise

» —> the option terminates = the high-level policy selects new option
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Four-room example

one of the 8 options:

4 stochastic
HALLWAYS — primitive actions
up
. Fail 33%
Ieft—'— Mght of the time
/ 0 \\ Gl down
/NN
/ \\‘\ G, 8 multi-step options
/ o, (to each room's 2 hallways)
——
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Options framework: definition

» Option: tuple <Zp,, 7n, Bn)
> The option can only be called in its initiation set s € Z;,

> It then takes actions according to policy Wh(a\s)

> After each step, the policy terminates with probability ﬁh(s)
» Equivalently, define policy over extended action set 7, : S — A(A U {L})
- Initiation set can be folded into option-selection meta-policy 7, : S — A(H)

» Together, 7, and {m, },c3 form the agent policy
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Today's lecture

Abstractions

Subgoal discovery
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Planning with options

* Given a set of options, Bellman equation for the meta-policy

Vi(s) = maxra(s) + Eyponp, [Vi(5)

> such that with a7 = L at the time of option termination time
/

time the option terminates

1'—1
/Th(st) - b Z Y (s, an) sy

reward during option's run t'=t

—

/ 1'—t
/ph(s 5¢) = E|Lis,—sy 7|5t
distribution of state when option terminates

e Special case of primitive actions = option says: take one action and terminate

ra(s) =71(s,a)  pa(s's) = yp(s']s, a)
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Four-room example

Primitive
options

Hallway
options

O=H

Initial Values lteration #1 lteration #2

* Options allow fast value backup

e [ransfer to other tasks in same domain
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Memory structure of options agent

 Options are a pre-commitment, thus an uncontrolled part of the state
e Option terminate after variable time: Semi-Markov Decision Process (SMDP)

 Can be viewed as structured memory

> The option index Is committed to memory

- although it's not about past observations, it's about future actions Q Q
S —_— S

> Memory remains unchanged until option termination

> — memory Is interval-wise constant
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Planning within options

state value when / is active — V}, (S) — I1axX Qh (S, @)
a

/
state-action value for %Qh(S, CL) T(S, CL) + Y E)s’|s,a~p [Vh (S )]
non-terminating action a # | —— ot allowed to terminate a new option

pd .
state—action value for /th (3’ J_) — VJ_ (5) — max Vh (S) must take at least one action
terminating actiona = L h

* Problem: jointly finding V| and {V}, },c is under-determined

 High-fitting: some 7, tries to solve entire task, never terminates

> If 714, Is expressive enough, this is guaranteed to happen

o Low-fitting: options terminate immediately, emulating primitive actions

> Now meta-policy carries the entire burden
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Today's lecture

Abstractions

Hierarchical planning
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Option-critic method

o For the critic, define V,(s) = Ea|3w6h Qn(s,a)l

« Then for on-policy experience (s, h, a, r, s’) define the losses:

Lo(s,hya,r,s) = (r+v((1—PBr(s))Vi(s) + Br(s) max Vi (s') — Qn(s,a))’

\ W
squar(e:rgle(:hl:::z error vﬁh £7‘(’(87 h, CL) — —Veh 10g 776’h (Q‘S)Qh(sy CL)« option policy gradient
Vg, [’5(57 h) — v¢hﬂ¢h (5)(Vh(5) _ th@X Vh’(s)v)\

option termination gradient

o Suffers badly from high- and low-fitting

Roy Fox | CS 277 | Winter 2021 | Lecture 16: Structured Control



Subgoals

 Can we discover natural points to separate the high and low levels?
* |nsight: the high level defines the termination value for the low level
Qn(s, L) =Vi(s)
> Brings value back from a far future horizon to the low level's horizon

 \We can think of the terminal-state value function as a subgoal
> Defines in which states the option should try to terminate

> E.g. doorways in the four-room domain

 Can we discover good subgoals?
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Learning skill trees

— —
“-——’ ‘--——’

S «— {goal}

repeat
(7, ) < option for subgoal V| (s) = 7 - Ljses
7 < initiation set, on which (7, ) succeeds reaching subgoal
S—Sul

until s, € S
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Spectral methods

* Consider a state clustering into “good” and “bad” states
* The clustering indicator Is a subgoal

» Let's use spectral clustering on the visitation graph

Ws,s’ — ]1[3’ is reachable from s
D(s) = Z W, ¢ = out-degree of s

1 1
» Normalized graph Laplacian L = D™ 2(D — W) D™ 2 finds connectivity

1 1
~ Related to random walk D~ 2 (I — L)D2 = D™'W = {po(s'|$)}s.s

> Eigenvectors of least positive eigenvectors find nearly stationary state clusters
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Spectral subgoal discovery

0 LAPLACIAN BASIS FUNCTION 1 LAPLACIAN BASIS FUNCTION 2
)|

|

A

|

o

|

8 0 0 0 0
ol

ol

1

LAPLACIAN BASIS FUNCTION 3 LAPLACIAN BASIS FUNCTION 4

e Roll out random walk

 Find eigenvectors of graph Laplacian with small eigenvalues

e |earn options for these subgoals
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Option inference

* A (hierarchical) policy is a generator

po(he, arlhy—1,8:) = ((1 — Br,_, (5¢)) Lhy=hy 1] +Bh,_1 (80)T L (he|Se) )7, (a|S¢)

» Easy to compute when ¢ = hg, hq, ..

Vopo(§) _
Po (f )

Vologpe(§) =

. IS known; otherwise we can infer

> p;iig) Vologpe((,§) =1
¢

— Z E)ht_l,ht\ffvpe [VQ 1Og pﬁ(htv at‘ht—b St)]
t

Eé\ffvpe [Vg log pe (C? f)]

» In one-level hierarchy, pg(h:_1, h:|&) can be computed exactly

> Forward-backward algorithm, similar to Baum-Welch in HMMs
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Expectation—-Gradient

 E-step: compute posterior over latent options

Segment
* (G-step: compute policy gradient Cluster ’f

)

Improve
o Effectively, we jointly

» segment (successful) trajectories into homogenous control intervals
> cluster segments with similar behavior = options

> take a policy gradient step for the policy of each cluster
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e Multi-level hierarchies useful for same reasons as one-level

Multi-level hierarchies

> Many algorithms don't easily extend

» EXxact inference no longer possible

» use variational inference

08 o(€) > B, |1

pe(@f)
; q¢<<\§>]

Ot a¢
conv nhet

o

Ot+1 Q41
conv net

o

.

. bidirectional RNN

}

Ty bt

log QQb(lh’m "y )

|

S

L, o]

}

softmax

142

b r
C
U;

* Proposal distribution in training time can depend on past and future

> Better data efficiency
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Parametrized Hierarchical Procedures (PHPs)

Code Model

return
value

procedure @

Hierarchical control

| - sub-procedure/ argument/
* Memory is a call-stack ﬁ:- o = apbserve / act/ return

| | termination value
 Can be trained with VI

Roy Fox | CS 277 | Winter 2021 | Lecture 16: Structured Control



Feudal networks

Manager m soal
g &= Rd _.[ / Mrnn W - = Rd . TranSIt]()T]
t J S policy gradient

4

-------------------

[ f Mspace ] Worker
A

RS
> k=16 << d=256
x — §H zeR¢ kx|
: i : w SR action
Policy gradient
| a |- y g

m t

- I-i"'rn'n W - alxk
1 s ) UER

e Manager sets goals in learned latent space, every H{ steps

* \Worker uses the goals as hints for learning long-term valuable behavior

Roy Fox | CS 277 | Winter 2021 | Lecture 16: Structured Control



Recap

o Abstractions: succinct representations; better data efficiency, generalization
* Hierarchical policy is foremost a memory structure

e Structure can be programmed, demonstrated, or discovered

 Subgoals can be represented by terminal-state value functions

 Many more hierarchical frameworks: HAMQ, MAXQ, HEXQ, HDQN, QRM, ...

 Many more opportunities for structure in control
> Multi-task learning

» Structured exploration
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