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Logistics

- * Assignment 5 due Friday

e Evaluations due end of the week
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Today's lecture

(Fictitious) Self Play

Double Oracle
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Multi-agent systems

 Agent = actuator + sensor + self-interest (reward function) + optimizer

 Multi-agent system:
» Distributed actuation

> Distributed sensing / information hiding

> Distributed optimization

» — distributed memory state =— Theory of Mind
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Centralized cooperative RL

n

. 1 agents = players; jointacton=a = (a',...,a") € S = A X --- X A

. State transition = p(s’| s, a); policy profile = 7 = (', ..., 7"
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Centralized cooperative RL

. 1 agents = players; jointacton=a = (a',....,.a") € f = J' X --- X A"

. State transition = p(s’| s, a); policy profile = 7 = (', ..., 7"

o Cooperative RL = all agents share the same rewards (payoffs) rl = .. = "

 Assume each agent gets observation o' with probabillity p(oi | $)

agent i's action a'

_

—> policy structure: w(a | o) = H ni(ai | oi) can only depend on o'

l

>
action distributions are independent

> Can jointly optimize & with this independence structure

>

Eg PG: VQQCZQ — V@log 72'@(61 ‘ O)R — Z V@llog ﬂgi(ai ‘ O)R
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Independent RL

» Return R (or R, ) is shared by all agents, but has high variance

» Can we use some TD learning? Q-learning, AC, etc. = need (* y |
all agents except

/
e Independent RL = train each agent 1 in MDP induced by others —1

- p(s’|s,a') = = -ilomn—ilD(S| 8, @)

» Can train Q'(0', a') from experience (o;, a;, 1;, 0, ;)

 Problem: the MDP keeps changing with Tl = iInstability

> May still work well in practice
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Centralized critic / decentralized actors

e Actor—Critic presents opportunity:

execution

_________________________________

> No critic In test time = critic may be unrealizable

o Multi-Agent Deep Deterministic Policy Gradient (MADDPG):

» Train critic (0, a) for joint observation + action from experience (o,, a,, 1, 0, 1)

» Use critic to train actors 7'(a'| o0")

» Stochastic actors: Vg Z; = Vg log ngi(ai |01)0(0, a) (like AC)

Deterministic actors: Vy Z'; = V@i//t(gi(Oi) V_ 0o, a) (like DDPG)

ai=Hq(0")
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Today's lecture

Centralized vs. decentralized RL

Double Oracle
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Solution concept: Nash equilibrium

. Best response for player 1 to Tt bi(ﬂ'_i) = arg max c_; n——i[Ri]
. ’

» Nash equilibrium 7 = each 7' is best response to 7™

» = player i has no incentive to deviate = 7' is not exploitable

« Example 1: Prisoner's Dilemma

 Example 2: Matching Pennies

/mixed equilibrium
> Generally, stochastic policies needed
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Nash equilibrium: challenges

 Problem 1:is finding a Nash equilibrium all we need?

> Example:

1\ 1 0\O
0\O 2\2

> Nash equilibrium is a pretty weak (but simple) solution concept

 Problem 2: how to find a Nash equilibrium?

> [teratively switch to each player's best response?

> Counter-example: Rock—Paper-Scissors

- Best response can be deterministic; equilibrium may require stochastic
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Two-player zero-sum games

l_ _ 2

e /Jero-sum:r —rc=r

. Optimization problem: max min [ ; »[R]

A

> Under mild conditions: max-min = min-max (no duality gap)
> All Nash equilibria have the same value
* Very hard optimization problem
> Gradient-based algorithms usually try to avoid a saddle-point

> Here we're seeking a saddle-point
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Self Play

o Self Play (= independent RL) = train each agent in MDP induced by others

 Problem: no guarantees of convergence to Nash equilibrium

> E.g., not clear how to keep policies sufficiently stochastic

 But may work well in practice
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Fictitious Play (FP)

o Self Play has the right idea: if bi(n_i) s better than 7! => update toward it

> But by how much?

* Fictitious Play
» Add b'(z™") to a population
> 1l — average of population

e 5t guaranteed to converge to Nash equilibrium

 How to implement this with (Deep) RL?

0.33

o

O

o
O-b

0.33

o
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Neural Fictitious Self Play (NFSP)

 Representation: “best-response” values Qi + "average” policies !
> Use DQN to train Q" against 7

- Roll out episodes using (e-greedy(Q"), ') — replay buffer

- Sample (sti, ati, rf, Sti+1) from replay buffer — descend on square Bellman error

l

> Use policy distillation (supervised learning) to average Qi as it changes into

- Sample (s', a’) from replay buffer - descend on NLL loss —log 7'(a'| s*)

* Unlike FP, Qi iIsn't immediately best response =— NFSP can be unstable
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Today's lecture

Centralized vs. decentralized RL

(Fictitious) Self Play
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Double Oracle (DO)

 Unweighted population average guaranteed asymptotic convergence

> Some policies are better than others (e.g. late vs. early in training) =— weights??

2

» Assume payoffs / utilities given by matrix U > (normal form) for all ml,

e |dea: weight by mixed Nash equilibrium on population

» ¢ « find Nash equilibrium restricted to population policies IT

> Add best response to population: 1" < [Ty {bi(a_i)}

o Guarantee: 6 — Nash equilibrium; hopefully before all policies added
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Policy-Space Response Oracles (PSRO)

 Problem: computing and storing entire utility matrix is infeasible in RL

~ Policy-space size is exponential in belief-space size | < | |

- |dea: match pairs of population policies = estimate U1 ,» = 1 | R]

 Find meta-Nash equilibrium over population policies [T
. = meta-policy ¢’ = mixture over [T
i

e Add best responseto o

e Guarantee: 6 — Nash equilibrium; hopefully before all (many!) policies added
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Extensive-form Double Oracle (XDO)

e Extensive form = tree of game histories

> |Information set (infostate) = states with same observable history

 Problem: in long game, mixing over few policies is very exploitable

> Opponent can identify selected policy = it becomes deterministic = exploitable

e |dea: mix over population policies again in every infostate

» < extensive-form game restricted to actions by any population policy
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Other methods

e Counterfactual Regret Minimization (CFR)

> In each episode: 7(a | h) « regret of not always taking a in infostate &

 Problem: in RL, we can't really get best responses
> |dea: policy improvement dynamics that are guaranteed to converge

» E.g. Replicator Dynamics (RD)
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General sum games: challenges

 Between zero-sum and cooperative: competitive + cooperative aspects

 May have multiple Nash equilibria = which is best? may be ill-defined

> In one-shot game: which one will my opponent play? ill-defined

e >2 players (nothing special about 0-sum) = can have coalitions etc.

> Mixed Nash equilibria exist, but very weak solution concept

> No good solution concept is known

one critic per player
with shared o and a, but with

Y
» Can also use MADDPG: V,Z'; = Vylogmy(a'|0")Q' (0, a)

 What to do”? In practice, Self Play may work well
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Recap

» Cooperative / general-sum games

» — Self Play (aka independent RL), MADDPG

 [wo-player zero-sum games
> Self Play, MADDPG
> Fictitious Play (FP), NFSP
> Double Oracle (DO), PSRO, XDO
> CFR, DeepCFR
> Replicator Dynamics (RD), Neural RD (NeuRD)

» Etc.
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