

CS 277: Control and Reinforcement Learning Winter 2021 Lecture 19: Open Questions

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Taxonomy

Imitation Learning Off-policy **On-policy** BC DAgger DART **GAIL**

Reinforcement Learning **Policy Temporal** Difference Gradient **DQN** PG **DDPG** A2C **TRPO** SAC

Model-Based Learning MFRL w/ Planning model **iLQR** Dyna MPC

Bounded RL

- Back to the general case: $\max_{\pi}\mathbb{E}_{s,a\sim p_{\pi}}[\beta r(s,a)] \mathbb{D}[\pi\|\pi_0]$
- Define an entropy-regularized Bellman optimality operator

$$\mathcal{B}[V](s) = \max_{\pi} \mathbb{E}_{a|s \sim \pi} \left[r(s, a) - \frac{1}{\beta} \log \frac{\pi(a|s)}{\pi_0(a|s)} + \gamma \mathbb{E}_{s'|s, a \sim p}[V(s')] \right]$$

- As in the unbounded case $\beta \to \infty$, this operator is contracting
- Optimal policy:

$$\pi(a|s) \propto \pi_0(a|s) \exp \beta(r(s,a) + \gamma \mathbb{E}_{s'|s,a\sim p}[V(s')]) = \pi_0(a|s) \exp \beta Q(s,a)$$

Optimal value recursion:

$$V(s) = \frac{1}{\beta} \log Z(s) = \frac{1}{\beta} \log \mathbb{E}_{a|s \sim \pi_0} \left[\exp \beta(r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p}[V(s')]) \right]$$

Soft Q-Learning (SQL)

- TD off-policy algorithm for model-free bounded RL
- With tabular parametrization:

$$\Delta Q(s, a) = r + \frac{\gamma}{\beta} \log \mathbb{E}_{a'|s' \sim \pi_0} [\exp \beta Q(s', a')] - Q(s, a)$$

With differentiable parametrization:

$$\mathcal{L}_{\theta}(s, a, r, s') = \left(r + \frac{\gamma}{\beta} \log \mathbb{E}_{a'|s' \sim \pi_0} \left[\exp \beta Q_{\bar{\theta}}(s', a')\right] - Q_{\theta}(s, a)\right)^2$$

• As $\beta \to \infty$, this becomes (Deep) Q-Learning

Soft Actor-Critic (SAC)

- AC off-policy algorithm for model-free bounded RL
- Optimally:

$$\pi(a|s) = \frac{\pi_0(a|s) \exp \beta Q(s,a)}{\exp \beta V(s)} \qquad \forall a: \ V(s) = Q(s,a) - \frac{1}{\beta} \log \frac{\pi(a|s)}{\pi_0(a|s)}$$

We can train the critic off-policy

$$\mathcal{L}_{\phi}(s, a, r, s', a') = \left(r + \gamma \left(Q_{\bar{\phi}}(s', a') - \frac{1}{\beta} \log \frac{\pi_{\theta}(a'|s')}{\pi_{0}(a'|s')}\right) - Q_{\phi}(s, a)\right)^{2}$$

And the actor to be soft-greedy = distill / imitate the critic

$$\mathcal{L}_{\theta}(s) = \mathbb{E}_{a|s \sim \pi_{\theta}} [\log \pi_{\theta}(a|s) - \log \pi_{0}(a|s) - \beta Q_{\phi}(s, a)]$$

Allows continuous action spaces

Flowchart: which algorithm to choose?

On- or off-policy data?

- The faster our simulator \Longrightarrow the faster we can refresh our data
 - And still keep sufficient diversity for training
- - No need for replay buffer
 - No train→test distributional mismatch (= covariate shift)
 - Can still use off-policy algorithms with on-policy data
- Extremely slow simulator

 not even off-policy, just offline RL

Topics we covered

- Imitation learning
- Policy evaluation + improvement
 - Monte-Carlo vs. Temporal Difference
 - On- vs. off-policy
- Policy Gradient
 - Advantage estimation, Actor–Critic
- Optimal control
- Planning, model-based learning

- Partial observability
- Exploration
- Inverse RL
- Control as Inference
- Structured control
- Multi-task learning
- Multi-agent RL

Topics we didn't cover

- Hindsight Experience Replay (HER)
- Eligibility traces
- Generalized Value Functions (GVF)
 - Successor representation
- Value Iteration / Prediction Nets (VIN / VPN)
- Natural policy gradient
 - Mirror descent
- Distributional RL
- Bayesian RL

- Hyperparameter tuning
- Distributed RL
- Robot learning
- Safety
- Curiosity + empowerment
- Preference elicitation
- Offline RL
- Meta-learning
- Lifelong learning

Trends and open questions in ML

- Bayesian Deep Learning
- Optimization theory
- Neuro-symbolic Al
- Meta-learning / learning to learn
- Lifelong learning
- Interpretability, explainability
- Al ethics: fairness, safety

Bayesian RL

- Two kinds of uncertainty
 - Aleatoric = things I haven't seen / haven't happened yet: $p(s_t | m_t)$, $p(r_{t+k} | m_t)$, ...
 - Epistemic (= model uncertainty) = things I haven't modeled / learned yet: \hat{p} , π_{θ} ,...
- Standard RL already considers aleatoric uncertainty
 - "Overtake truck quickly, to reduce time with partial observability, prob of crash"
- Bayesian RL can estimate epistemic uncertainty: $p(\theta \mid \mathscr{D})$
 - Can help improve exploration (cf. Thompson sampling)

• Can improve learning in bounded agents (uncertain $Q \Longrightarrow$ winner's curse)

Optimization \iff RL

- Special considerations of optimization → RL:
 - Covariate shift

- ► Temporal-Difference ⇒ non-stationary loss landscape
- Saddle points in multi-agent RL
- RL → optimization: iterative optimization is a dynamical process
 - Gradient descent = maximize "reward" of descending loss landscape
 - Optimal control concepts (e.g. Langevin dynamics) key in analysis

Neuro-symbolic RL

- Is there any benefit to discrete components in gradient-based methods?
 - E.g. modularity
- Structured control = discrete memory components

- Can help sample efficiency, generalization, transfer, interpretability, ...
- How to learn under given structure?
- How to discover optimal structure?

Meta-learning \iff RL

- Multi-task learning = transfer / share learning products between tasks
 - E.g. features, models, policies, skills
- Meta-learning = transfer / share learning of learner components
 - Network architecture = Neural Architecture Search (NAS)
 - Parameter initializations (MAML)
 - Optimizer hyperparameters

- Learning to perform sequence of tasks = sequential decision making
 - E.g. can use RNNs

Trends and open questions in ML

- Bayesian Deep Learning
- Optimization theory
- Neuro-symbolic Al
- Meta-learning / learning to learn
- Lifelong learning
- Interpretability, explainability
- Al ethics: fairness, safety

Reproducibility crisis

- Reinforcement learning has seen immense success
 - But remains largely irreproducible

- Very sensitive to parameter initialization

 need to average over many runs
- Small implementation details may have unexpected effects
- How to go beyond this pre-paradigmatic phase?
 - Better RL theory
 - Build practical RL (and ML) as experimental field

Other open questions

- Imitation learning / inverse RL
 - Discover structure / memory features in teacher demonstrations
- Control as Inference
 - How much "bounded" should the agent be? How to anneal this temperature?
- Structured control
 - Which structures can we discover? Which structures are useful for control?
- Multi-task learning
 - How to discover which tasks are related / unrelated?