

CS 277: Control and Reinforcement Learning Winter 2021 Lecture 2: Imitation Learning

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

What is imitation learning?

- How can we teach an agent to perform a task?
- Often there is an "expert" that already knows how to perform the task
 - A human operator who controls a robot
 - A black-box artificial agent that we can observe but not copy
 - An agent with different embodiment

- The expert can demonstrate the task to create a training dataset $\mathcal{D} = \{\xi_i\}_i$
 - Each demonstration is a trajectory $\xi = s_0, a_0, s_1, a_1, \dots$

Today's lecture

Behavior Cloning

Advanced IL methods

Hierarchical IL

Behavior Cloning (BC)

- The simplest IL is just supervised learning:
 - Break trajectories into examples (s_t, a_t)
 - Learn a function $\pi: s \mapsto a$, or a distribution $\pi(a \mid s)$
- One possible loss: negative log-likelihood $\mathcal{L} = -\sum_{(s,a)\in\mathcal{D}} \log \pi(a \mid s)$

The impact of inaccurate dynamics

- Errors in learning are unavoidable
- What impact do they have on sequential behavior?

- Bounded one-step error in a dynamical model $\sum_{s'} \left| p_1(s'|s) p_2(s'|s) \right| \le \epsilon$
 - Can lead to growing error over time $\sum_{s_t} \left| p_1(s_t) p_2(s_t) \right| \le \epsilon t$
- The same holds for inaccurate learned π , compared to the teacher π^*

A policy is a (stochastic) function

Image: Bojarski et al. 2016

A policy is a (stochastic) function

Inaccuracy in BC

observations + actions

supervised learning

• The state transition distribution is linear in the policy

$$p_{\pi}(s_{t+1} | s_t) = \sum_{o_t, a_t} p(o_t | s_t) \pi(a_t | o_t) p(s_{t+1} | s_t, a_t)$$

- If the policy approximates the teacher $\pi_{\theta}(a_t \mid o_t) \approx \pi^*(a_t \mid o_t)$
 - The dynamics will also approximate teacher behavior $p_{\pi_{\theta}}(s_{t+1} \mid s_t) \approx p_{\pi^*}(s_{t+1} \mid s_t)$
- But errors do accumulate over time
 - May reach states not seen in the training dataset

 $\pi_{\theta}(a_t | o_t)$

But wait...

How did they do it?

Image: Bojarski et al. 2016

IL challenges: modeling other agents is hard

- Are the agent and human observations different ($o_t \neq o_t^{\rm H}$)?
- Is the state partially observable $(o_t \neq s_t)$?
 - $p(o_{t+1} | o_t, a_t) \neq p(o_{t+1} | o_0, a_0, ..., o_t, a_t)$, generally requiring $\pi_{\theta}(a_t | o_0, a_0, ..., o_t)$
 - Can use $\mathrm{RNNs}\,f_{\theta}:(h_{t-1},a_{t-1},o_t)\mapsto h_t$, or other memory models
 - But memory state is latent in demonstrations
 - ► Modeling memory is hard → prior structure may help
- Is there sufficient data? Demonstrating is a burden!
- Are demonstrations consistent? Humans are fallible + some supervision is hard

Modeling memory

Modeling memory

Today's lecture

Behavior Cloning

Advanced IL methods

Hierarchical IL

DAgger: Dataset Aggregation

• Can we collect demonstration data for $p_{\pi_{\theta}}(o_t)$?

Algorithm 1 DAgger

Collect dataset \mathcal{D} of teacher demonstrations

$$(o_0, a_0^*, o_1, a_1^*, \ldots) \sim p_{\pi^*}$$

Train π_{θ} on \mathcal{D}

Execute π_{θ} to get $(o_0, a_0, \ldots) \sim p_{\pi_{\theta}}$

Ask teacher to label $a_t^*|o_t \sim \pi^*$

Aggregate $(o_0, a_0^*, o_1, a_1^*, \ldots)$ into \mathcal{D}

Repeat!

DAgger demo

Video: Stéphane Ross

DAgger: Dataset Aggregation

• Can we collect demonstration data for $p_{\pi_0}(o_t)$?

Algorithm 1 DAgger

Collect dataset \mathcal{D} of teacher demonstrations

$$(o_0, a_0^*, o_1, a_1^*, \ldots) \sim p_{\pi^*}$$

Train π_{θ} on \mathcal{D}

Execute
$$\pi_{\theta}$$
 to get $(o_0, a_0, \ldots) \sim p_{\pi_{\theta}}$

Ask teacher to label $a_t^*|o_t \sim \pi^*$

Aggregate $(o_0, a_0^*, o_1, a_1^*, \ldots)$ into \mathcal{D}

Repeat!

but how? challenging...

DAgger can reduce the imitation loss from $O(\epsilon T^2)$ to $O(\epsilon T)$

Goal-conditioned Behavior Cloning

- Can we train one policy to reach multiple goals? $\pi_{\theta}(a_t \mid s_t, g)$
 - Assume goal = state that the agent should reach
- How can we know the goal in demonstrations $\xi = s_0, a_0, s_1, a_1, \dots$?
 - Require manual labeling?
- Hindsight: take each s_t as the goal of the trajectory leading to it

$$s_0, a_0, \ldots, s_{t-1}, a_{t-1}, s_t = g$$

• Supervised learning of $\pi(a \mid s, g)$ from data points $(s_t, a_t, s_{t'})$ for t' > t

DART: Disturbances Augmenting Robot Training

Off-policy vs. on-policy

- On-policy = data comes from the learner's current policy
- Off-policy = data comes from another policy (another agent or past learner)
- In off-policy IL (e.g. BC) learner may go off the teacher's support
- In on-policy IL (e.g. DAgger) learner initially goes off, until corrected
- DART: increase the data support by injecting noise during demonstrations
 - Force teacher into slight-error states, to see how they are fixed

Image: Laskey et al. 2017

DART

Noise = perturbation of actions

$$\tilde{p}(s'|s,a) = \sum_{\tilde{a}} q(\tilde{a}|a)p(s'|s,\tilde{a})$$

- In continuous actions: $\tilde{a} = a + \epsilon$; $\epsilon \sim \mathcal{N}(0, \Sigma)$
- Repeat:
 - Collect teacher demonstrations
 - Train agent with BC

Optimize noise to force teacher towards agent distribution

Image: Michael Laskey

Grasping task

Behavior Cloning

DART

Today's lecture

Behavior Cloning

Advanced IL methods

Hierarchical IL

Modeling memory

• What is a good structure for memory?

HVIL: Hierarchical Variational Imitation Learning

HVIL: Hierarchical Variational Imitation Learning

Imitation Learning as inference

Behavior Cloning with cross-entropy loss maximizes

$$\log p_{\pi_{\theta}}(\mathcal{D}) = \sum_{i} \log \pi_{\theta}(a_i | o_i) + \text{const} = \log \pi_{\theta}(a | o) + \text{const}$$

- With latent execution structure m we have $\log \pi_{\theta}(a \mid o) = \log \sum_{m} \pi_{\theta}(m, a \mid o)$
- Evidence Lower Bound (ELBO):

$$\log \pi_{\theta}(a \mid o) \ge \mathbb{E}_{m \mid o, a \sim q_{\phi}}[\log \pi_{\theta}(m, a \mid o) - \log q_{\phi}(m \mid a, o)]$$

- Inference network $q_\phi(m \,|\, a,o)$ samples execution structure m
 - which guides training of the agent $\pi_{\theta}(m, a \mid o)$

Hierarchical Variational Imitation Learning (HVIL)

Inference network decomposes as

$$q_{\phi}(m \mid a, o) = \prod_{i} q_{\phi}(\text{procedure step } i \mid a, o)$$

- Bidirectional RNN summarizes demonstration
- into posterior context [Fraccaro et al., NeurIPS 2016]
- Output masked to ensure consistent steps

[F., Shin, Paul, Zou, Song, Goldberg, Abbeel, and Stoica, arXiv 2019]

Recap

