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Logistics

* Assignments 1 will be published in 2 parts

gmens©

 Programming part Thursday
 Due next Thursday

e |Lots of resources on the website

 Will be updated with papers relevant to each lecture
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Today's lecture
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Policy evaluation

» Distribution over trajectories:

P& = pGsp) | | (a, 1 5)pCs,41 15 0)

« Expected return: |R]

—E~p,

. State value function: V_(s) = [R| sy = s]

—E~p,

» Dynamic Programming: compute V_ recursively

V() = Eyyonlr(s, @) + ¥Egps amsl Vi(s)]]
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Model-free policy evaluation

 Monte Carlo (MC) evaluation:
e ¢;| ~ (5) —1 Z, (;)
sample & | sy = S V(s) = R(E;
P 1 120 Pr N i l

 Temporal-Difference (TD) evaluation: should be 0 in expectation, update towards that

f_J%

for each (s, a;, r;, s;): AV(s;) < a(r; + yV(s)) — V(s,))

~ Only works on-policy = data comes from the evaluated policy a; |s; ~ 7

. Off-policy version: use Q_(s,a) = [R|sy=s,ay = dal

—Enp,

for each (s;, a;, 1, 5)): AQ(s;, a;) < a(r; + yE 4. [O(s}, a)] — OCs;, @)
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Deep MC policy evaluation

* (reminder) Monte Carlo (MC) evaluation:
|
Sample fl. ‘ S0 — S ~ P, V(S) — N Z R(él)

 What if the state space is large?

Z (&) = (Vi(sp) — R)2
 With proper parametrization, this can yield generalization over state space

> But still very data inefficient
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Deep 1D policy evaluation

* (reminder) On-policy Temporal-Difference (TD) evaluation:
for each (s, a;, r;, s)): AV(s,) < a(r;+ yV(s!) — V(s)))
* |ends itself nicely to Stochastic Gradient Descent (SGD):
Ls,a,r,s) = (r+yVy(s) — Vy(s))
» Using both current-state V,(s) and next-state V,(s’) may be unstable

~ Heuristic: use target network Vj(s’), update it periodically with 0 «— 6
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Policy improvement

* A value function suggests the greedy policy:

(s) = argmax Q(s, a) = arg max(r(s, a) + yEg; ., V(s)]

A A

» Proposition: the greedy policy for (J_is never worse than z

» Generally: the greedy policy for maX(Qﬂl, Qﬂz) is never worse than 7, or 7,
» Corollary 1: any optimal policy 7* is greedy for Q* = Q .

. Corollary 2: all fixed points of z(s) = arg max Q (s, a) have Q_ = Q%
a

> Bellman optimality
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The RL scheme

policy evaluation
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Policy lteration

. Evaluate the policy Q_(s,a) = [R|sy=s,ay = al

—E~p,

. Update to the greedy policy z(s) = arg max Q_(s, a)

A

 Repeat

« When loop converges, Q. = Q%
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Value lteration

* Repeat:

> For each s::

V(s;) < max(r(s; a) + yEgs 4ol V()]

> Must update each state repeatedly until convergence
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Generalized Policy lteration

* Alternate by some schedule:

V(s) < Eyps a5 @) + 1By 0op [ V(S)]]
7i(s;) < argmax(r(s;, a) + yEg, 4, V(s)])

A
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Model-free reinforcement learning

 Repeatedly perform MC estimation with the greedy policy:

1
|s,a~p, S, () «— — R,
& | p, Qs a) N;

< argmax (J

e Q-learning (TD): on experience (s;, a;, 1;, S;)

AQ(s;,a;) < a(r; +y max Q(s;,a’) — 0(s;, a;))

A
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Deep MC reinforcement learning

 Repeatedly perform MC estimation with the greedy policy for Qy:
E~vpy &= (Qysp.a9) — R)
> With x5 greedy for a snapshot of (),

« We need a representation of (J, that allows computing

7y(s) = arg max Qy(s, a)

a

* For a small action space: Deep Q Network S

(96(5)), = Qy(s, a)

» 1y, unlike Qy, is not differentiable, but we don't need it to be

do
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Deep I'D reinforcement learning

* Deep Q Learning (historically called DQN):
Zy(s,a,r,s") = (r+ymax Qg(s’, a) — Qys, a))”
al

* This algorithm should work off-policy, so we can keep past experience
» Replay buffer = data set of recent past experience of learner policy at that time

> Variants differ on
- How to add experience to the buffer

- How to sample from the buffer
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Interaction policy

* In model-free RL, we often get data by interaction with the environment

» How should we interact?

> Must we use current learner policy (on-policy data) or another (off-policy data)
 On-policy methods (e.g. MC): must use current policy

o Off-policy methods: can use different policy — but not too different!

> Otherwise may have train—test distribution mismatch

* In either case, must make sure interaction policy explores well enough
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Exploration policies

e c-greedy exploration: select uniform action w.p. €, otherwise greedy

e Boltzmann exploration:

exp(pQ(s, a))

n(als) =sm, (Q(s,a); p) = m

» Becomes uniform as f — 0, greedy as f# > o0
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Putting it all together: DQN

differentiable value
function approximation

policy evaluation

exploration

greedy policy
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Recap

 RL is a (policy evaluation < policy improvement) loop

o [emporal-Difference methods exploit the dynamical-programming structure
o Off-policy methods throw out data much less often when policy changes

 Many approaches can be made differentiable for Deep RL
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