

# CS 277: Control and Reinforcement Learning Winter 2021

# Lecture 3: Temporal-Difference Methods

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine



## Logistics

assignments

onto

- Assignments 1 will be published in 2 parts
  - Math part today
  - Programming part Thursday
  - Due next Thursday

resources

- Lots of resources on the website
- Will be updated with papers relevant to each lecture

## Today's lecture

Policy evaluation and improvement

Monte Carlo and Temporal-Difference

Differentiable Representation

# Policy evaluation

• Distribution over trajectories:

$$p_{\pi}(\xi) = p(s_0) \prod_{t} \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

- Expected return:  $\mathbb{E}_{\xi \sim p_{\pi}}[R]$
- State value function:  $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \,|\, s_0 = s]$
- Dynamic Programming: compute  $V_\pi$  recursively

$$V_{\pi}(s) = \mathbb{E}_{a|s \sim \pi}[r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p}[V_{\pi}(s')]]$$

## Model-free policy evaluation

Monte Carlo (MC) evaluation:

sample 
$$\xi_i \mid s_0 = s \sim p_{\pi}$$
 
$$V(s) = \frac{1}{N} \sum_i R(\xi_i)$$

• Temporal-Difference (TD) evaluation:

should be 0 in expectation, update towards that

for each 
$$(s_i, a_i, r_i, s_i')$$
:  $\Delta V(s_i) \leftarrow \alpha(r_i + \gamma V(s_i') - V(s_i))$ 

- Only works on-policy = data comes from the evaluated policy  $a_i \, | \, s_i \sim \pi$
- Off-policy version: use  $Q_\pi(s,a) = \mathbb{E}_{\xi \sim p_\pi}[R \,|\, s_0 = s, a_0 = a]$

for each 
$$(s_i, a_i, r_i, s_i')$$
:  $\Delta Q(s_i, a_i) \leftarrow \alpha(r_i + \gamma \mathbb{E}_{a'|s_i' \sim \pi}[Q(s_i', a')] - Q(s_i, a_i))$ 

## Deep MC policy evaluation

• (reminder) Monte Carlo (MC) evaluation:

sample 
$$\xi_i \mid s_0 = s \sim p_{\pi}$$
 
$$V(s) = \frac{1}{N} \sum_i R(\xi_i)$$

What if the state space is large?

$$\mathcal{L}_{\theta}(\xi) = (V_{\theta}(s_0) - R)^2$$

- With proper parametrization, this can yield generalization over state space
  - But still very data inefficient

## Deep TD policy evaluation

• (reminder) On-policy Temporal-Difference (TD) evaluation:

for each 
$$(s_i, a_i, r_i, s_i')$$
:  $\Delta V(s_i) \leftarrow \alpha(r_i + \gamma V(s_i') - V(s_i))$ 

• Lends itself nicely to Stochastic Gradient Descent (SGD):

$$\mathcal{L}_{\theta}(s, a, r, s') = (r + \gamma V_{\theta}(s') - V_{\theta}(s))^2$$

- Using both current-state  $V_{ heta}(s)$  and next-state  $V_{ heta}(s')$  may be unstable
  - Heuristic: use target network  $V_{\bar{\theta}}(s')$ , update it periodically with  $\bar{\theta} \leftarrow \theta$

## Policy improvement

A value function suggests the greedy policy:

$$\pi(s) = \arg\max_{a} Q(s, a) = \arg\max_{a} (r(s, a) + \gamma \mathbb{E}_{s'|s, a \sim p}[V(s')])$$

- Proposition: the greedy policy for  $Q_\pi$  is never worse than  $\pi$ 
  - Generally: the greedy policy for  $\max(Q_{\pi_1},Q_{\pi_2})$  is never worse than  $\pi_1$  or  $\pi_2$
- Corollary 1: any optimal policy  $\pi^*$  is greedy for  $Q^* = Q_{\pi^*}$
- . Corollary 2: all fixed points of  $\pi(s) = \arg\max_a Q_\pi(s,a)$  have  $Q_\pi = Q^*$ 
  - Bellman optimality

### The RL scheme



# Policy Iteration

- Evaluate the policy  $Q_\pi(s,a) = \mathbb{E}_{\xi \sim p_\pi}[R \,|\, s_0 = s, a_0 = a]$
- . Update to the greedy policy  $\pi(s) = \arg\max_{a} Q_{\pi}(s,a)$

Repeat

• When loop converges,  $Q_\pi = Q^*$ 

#### Value Iteration

- Repeat:
  - For each  $S_i$ :

$$V(s_i) \leftarrow \max_{a} (r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V(s')])$$

Must update each state repeatedly until convergence

## Generalized Policy Iteration

Alternate by some schedule:

$$V(s_i) \leftarrow \mathbb{E}_{a|s_i \sim \pi}[r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V(s')]]$$
  
$$\pi(s_i) \leftarrow \arg\max_{a}(r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V(s')])$$

## Model-free reinforcement learning

Repeatedly perform MC estimation with the greedy policy:

$$\xi_i | s, a \sim p_{\pi}$$
  $Q(s, a) \leftarrow \frac{1}{N} \sum_i R_i$ 

$$\pi \leftarrow \arg \max Q$$

• Q-learning (TD): on experience  $(s_i, a_i, r_i, s_i')$ 

$$\Delta Q(s_i, a_i) \leftarrow \alpha(r_i + \gamma \max_{a'} Q(s_i', a') - Q(s_i, a_i))$$

# Deep MC reinforcement learning

• Repeatedly perform MC estimation with the greedy policy for  $Q_{\theta}$ :

$$\xi \sim p_{\bar{\theta}}$$
  $\xi = (Q_{\theta}(s_0, a_0) - R)^2$ 

- With  $\pi_{\bar{\theta}}$  greedy for a snapshot of  $Q_{\theta}$
- We need a representation of  $Q_{\theta}$  that allows computing

$$\pi_{\theta}(s) = \arg\max_{a} Q_{\theta}(s, a)$$

For a small action space: Deep Q Network

$$(q_{\theta}(s))_a = Q_{\theta}(s, a)$$



•  $\pi_{\theta}$ , unlike  $Q_{\theta}$ , is not differentiable, but we don't need it to be

## Deep TD reinforcement learning

Deep Q Learning (historically called DQN):

$$\mathcal{L}_{\theta}(s, a, r, s') = (r + \gamma \max_{a'} Q_{\bar{\theta}}(s', a') - Q_{\theta}(s, a))^2$$

- This algorithm should work off-policy, so we can keep past experience
  - Replay buffer = data set of recent past experience of learner policy at that time
  - Variants differ on
    - How to add experience to the buffer
    - How to sample from the buffer

## Interaction policy

- In model-free RL, we often get data by interaction with the environment
  - How should we interact?
  - Must we use current learner policy (on-policy data) or another (off-policy data)
- On-policy methods (e.g. MC): must use current policy
- Off-policy methods: can use different policy but not too different!
  - Otherwise may have train—test distribution mismatch
- In either case, must make sure interaction policy explores well enough

## Exploration policies

- $\epsilon$ -greedy exploration: select uniform action w.p.  $\epsilon$ , otherwise greedy
- Boltzmann exploration:

$$\pi(a \mid s) = \operatorname{sm}_{a}(Q(s, a); \beta) = \frac{\exp(\beta Q(s, a))}{\sum_{\bar{a}} \exp(\beta Q(s, \bar{a}))}$$

• Becomes uniform as  $\beta \to 0$ , greedy as  $\beta \to \infty$ 

## Putting it all together: DQN



## Recap

- Temporal-Difference methods exploit the dynamical-programming structure
- Off-policy methods throw out data much less often when policy changes
- Many approaches can be made differentiable for Deep RL

## Logistics

assignments

- Assignments 1 will be published in 2 parts
  - Math part today
  - Programming part Thursday
  - Due next Thursday

resources

- Lots of resources on the website
- Will be updated with papers relevant to each lecture