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Logistics

 Both parts due next Friday

_  Assignment 1, practical part to be published shortly

* Enrollment (and dropping) is now open to all
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Today's lecture

Policy Gradient Methods

Variance Reduction
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Deep I'D reinforcement learning

* Deep Q Learning (historically called DQN):
Zy(s,a,r,s") = (r+ymax Qg(s’, a) — Qys, a))”
al

* This algorithm should work off-policy, so we can keep past experience
» Replay buffer = data set of recent past experience of learner policy at that time

> Variants differ on
- How to add experience to the buffer

- How to sample from the buffer
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Interaction policy

* In model-free RL, we often get data by interaction with the environment

» How should we interact?

> Must we use current learner policy (on-policy data) or another (off-policy data)
 On-policy methods (e.g. MC): must use current policy

o Off-policy methods: can use different policy — but not too different!

> Otherwise may have train—test distribution mismatch

* In either case, must make sure interaction policy explores well enough
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Exploration policies

e c-greedy exploration: select uniform action w.p. €, otherwise greedy

e Boltzmann exploration:

exp(pQ(s, a))

n(als) =sm, (Q(s,a); p) = m

» Becomes uniform as f — 0, greedy as f# > o0
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Putting it all together: DQN

differentiable value
function approximation

policy evaluation

exploration

greedy policy
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Recap

 RL is a (policy evaluation < policy improvement) loop

o [emporal-Difference methods exploit the dynamical-programming structure
o Off-policy methods throw out data much less often when policy changes

 Many approaches can be made differentiable for Deep RL
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DQN pseudocode

Algorithm 1 DQN

initialize 6 for Qy, set 6 «— 6
for each step do
if new episode, reset to sg
observe current state s;
take e-greedy action a; based on Qy(sy, )

] — AL, a; = argmax, (Qg(s¢, a)
m(ag|s;) = { A

1
——€
- UA]
ocet reward r; and observe next state s;i
add (s, ag, ¢, S¢41) to replay buffer D

for each (s,a,r,s’) in minibatch sampled from D do

otherwise

r if episode terminated at s’
7/ r + vymaxy Qg(s’,a’) otherwise
compute gradient Vg(y — Qq(s,a))?

take minibatch gradient step
every K steps, set 6 «— 0

Roy Fox | CS 277 | Winter 2021 | Lecture 4: Policy-Gradient Methods



Value estimation bias

e Q-value estimation is optimistically biased

. Jensen's inequality: E{max f(a)] =2 max E/ f(a)] (E over randomness of )
a a

. While there's uncertainty in Q5 , max Qa(s’, a’) is positively biased
a/

* S0 how can this converge?

> As certainty increases, new bias decreases

> Old bias attenuates with repeated discounting by y

Roy Fox | CS 277 | Winter 2021 | Lecture 4: Policy-Gradient Methods



Double Q-Learning

» One solution: keep two estimates of O* : J, and 0,
» Target for Q.(s, a):
y; = 1+ 70)_(s', arg max Q(s’, a")
da

e How to use this with DQN?

 One idea: use target network as the other estimate
y =1+ y0Qp(s’, argmax Qy(s’, a’))
a
* Another idea: Clipped Double Q-Learning

y, = r+ymin Qz(s’,arg max Qy,(s’,a’))
=12 a’ l
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Dueling Networks

» Advantage function: A_(s,a) = Q_(s,a) — V_(s)

| °
I Ny V

e Issue: 0 = (V+ ¢) + (A — ¢) is underdetermined

_ Stabilize with O(s,a) = V(s) + (A(S, a) — \;ﬂ ZA(S’ C_l))
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Today's lecture

DQN Tricks

Variance Reduction
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Value-based methods (e.g. DQN)

differentiable value
function approximation

policy evaluation

greedy policy
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Policy-based methods

policy evaluation e.g. MC

differentiable policy
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Policy Gradient (PG)

[R]

Unlike minimizing Z’»(<) in general ML, in RL we maximize ./, = k.,
79

This is harder since the “data” distribution depends on &

1
But there's a trick: Vylog py(&) = Vypy(&)
Po(S)

Log-derivative / score-function / REINFORCE trick: estimate gradient using samples of p,(&)

VoS o= V0 depe(f)R(f)

_ [dfp@(cf) Vglog p(R(E)

= E;_,[ Volog pg(©R]
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REINFORCE (1992 )

+ Roll out 7, to sample & ~ pj

e Compute R(¢) and

Volog py(&) = Vy(log p(sp) + ) (log my(a,|s) +1og p(s | 5 @)

» Take a gradient step with V log p,()R

 Repeat

* This is model-free! but on-policy, + high variance of the gradient estimator
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PG with Gaussian policy

» As an example in continuous action spaces: my(a|s) = N (uy(s), 2)

e S0 that

log py(S) = 2 log my(a,|s,) + const = _% Z la, — //té’(st)H%—l + const
f f

> Where ||x||120 = xTPx is the Mahalanobis norm

e Then

Volog py( &R = ) 7 (a, — pgls)Rgp(s)
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PG: the good and the bad

V@je — _pré’ Z V@log ﬂ@(at ‘ Sl‘) R
[

» —log ry(als) is sometimes called surprisal

» We update 6 towards being less surprised by high return

o But surprisal can get very large for unlikely actions
» Gradient estimator has high variance when unlikely actions can have high return

> Particularly if our policy tries to converge to deterministic / lower-support
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Today's lecture

DQN Tricks

Policy Gradient Methods
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Baselines

» (Constant shifts in return shouldn't matter for optimal policy

0=V, "5Np9[b] = _nge[ Volog p(5)b]

 Can we use that to reduce variance without adding bias?

* Using the average return works pretty well in practice

1
VoS o R N Z Vylog py(S)(R; — b)

1
‘ Withb=N;Ri
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Optimal baseline

» Denote g(¢) = Vylog py(c)

e Then

d,var( Vlog py(E)(R — b))

. Optimally: b =

::é%(

::é%(
-2

“[g?]

(7R -

“[g°R]

“[g*(R — b)*] —

“[gR] —2b

“[g°R] + 2bE[g?]

“[g(R — b)]%)

“[g°R] + b*

“[g°])




Rao—-Blackwell theory

» Suppose we use data x to generate an estimate 6A’(x) of parameter €

» Let y be a sufficient statistic of x for &

» That is, there's nothing more, on top of y, that x can tell us about &

» Consider the estimator é’(y) = —[9()6) | y] of &

> |t has the same bias as 6(x), and lower variance

» Which also means it has lower MSE
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Don't let the past distract you

Vot o= Eevp, l( 2 Vglog my(a| St)) R] = 2 =

t'>t

[

* Therefore, a lower-variance gradient estimator:

27
[

St"’l’e[

_Clt‘StNﬂ'g[ Vﬁl()g ﬂe(at ‘ St)RZt]]

[ Vg

“a s ]

In our case, R, = 2 y'r(s,, a,) is a sufficient statistic of R for 7,
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Recap

* Practical RL algorithms add tricks and heuristics to the theory
* \We can take the gradient of our objective w.r.t. the policy parameters
* This often leads to high variance

e Variance can be reduced by baselines and other tricks
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