

CS 277: Control and Reinforcement Learning Winter 2021 Lecture 9: Planning

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Assignment 3 to be published this week
 - Due next Friday

Today's lecture

Linear-Quadratic-Gaussian control

Planning

iLQR, DDP

Optimal control: properties

- Linear control policy: $u_t = L_t x_t$ $L_t \in \mathbb{R}^{m \times n}$
 - Feedback gain: $L_t = -(R + B^{\dagger}S_{t+1}B)^{-1}B^{\dagger}S_{t+1}A$
- Quadratic value (cost-to-go) function $\mathcal{J}_t(x_t)^* = \frac{1}{2} x_t^\intercal S_t x_t$
 - Cost Hessian $S_t = \nabla^2_{x_t} \mathcal{J}^*_t$ is the same for all x_t
- Ricatti equation for S_t can be solved recursively backward

$$S_t = Q + A^{\mathsf{T}}(S_{t+1} - S_{t+1}B(R + B^{\mathsf{T}}S_{t+1}B)^{-1}B^{\mathsf{T}}S_{t+1})A$$

- Without knowing any actual states or controls (!) = at system design time
- Woodbury matrix identity shows $S_t = Q + A^\intercal (S_{t+1}^\intercal + BR^{-1}B^\intercal)^\dagger A \succeq 0$

Kalman filter

- $e_t = y_t C\hat{x}_t'$ Linear belief update: $\hat{x}_t = A\hat{x}_{t-1} + K_t e_t' = (I K_t C)A\hat{x}_{t-1} + K_t y_t$
- Kalman gain: $K_t = \Sigma_t' C^\intercal (C \Sigma_t' C^\intercal + \Sigma_\psi)^{-1}$
- Covariance update Ricatti equation:

$$\Sigma'_{t+1} = A(\Sigma'_t - \Sigma'_t C^{\mathsf{T}} (C\Sigma'_t C^{\mathsf{T}} + \Sigma_{\psi})^{-1} C\Sigma'_t A^{\mathsf{T}} + \Sigma_{\omega}$$

- Compare to prior (no observations): $\Sigma_{\chi_{t+1}} = A \Sigma_{\chi_t} A^\intercal + \Sigma_{\omega}$
- Observations help, but actual observation not needed to say by how much

Control as inference

- View Bayesian inference as optimization: minimizes MSE $\mathbb{E}[\|x_t \hat{x}_t\|^2]$
- Control and inference are deeply connected:

$$\Sigma'_{t+1} = A(\Sigma'_t - \Sigma'_t C^{\dagger}(C\Sigma'_t C^{\dagger} + \Sigma_{\psi})^{-1}C\Sigma'_t)A^{\dagger} + \Sigma_{\omega}$$

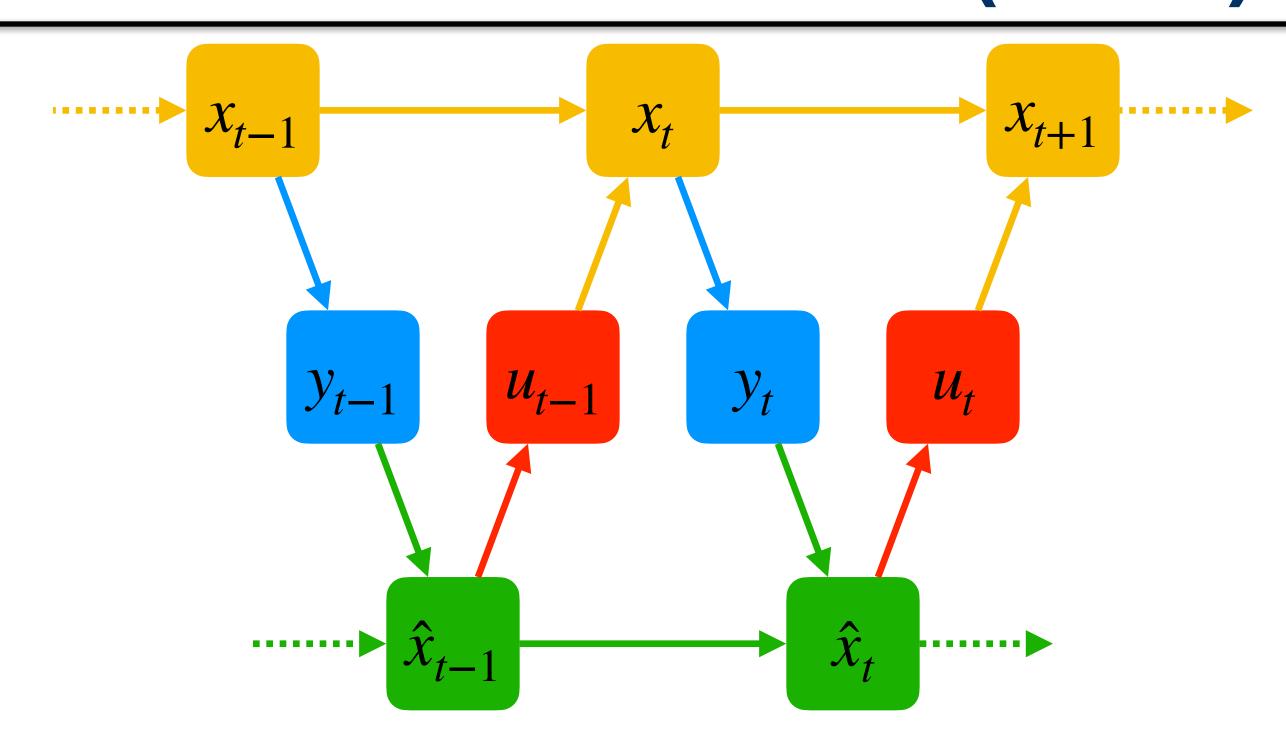
$$S_{t} = Q + A^{\mathsf{T}}(S_{t+1} - S_{t+1}B(R + B^{\mathsf{T}}S_{t+1}B)^{-1}B^{\mathsf{T}}S_{t+1})A$$

• The shared form (Ricatti) suggests duality:

LQR	LQE
backward	forward
S_{T-t}	Σ_t'
\boldsymbol{A}	A^\intercal
В	C^{\intercal}
Q	Σ_{ω}
R	Σ_{ψ}

• Information filter: recursion on $(\Sigma_t')^{-1}$, presents better principled duality

Linear-Quadratic-Gaussian (LQG) control



Putting it all together:

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t + \omega_t & \omega_t \sim \mathcal{N}(0, \Sigma_{\omega}) & \Sigma_{\omega} \in \mathbb{R}^{n \times n} \\ y_t &= Cx_t + \psi_t & \psi_t \sim \mathcal{N}(0, \Sigma_{\psi}) & C \in \mathbb{R}^{k \times n}, \Sigma_{\psi} \in \mathbb{R}^{k \times k} \end{aligned}$$

LQE with control

- How does control affect estimation?
 - Shifts predicted next state $\hat{x}'_{t+1} = A\hat{x}_t + Bu_t$
 - $ightharpoonup Bu_t$ known \Longrightarrow no change in covariances, Ricatti equation still holds
 - Same Kalman gain K_t

$$\hat{x}_t = A\hat{x}_{t-1} + K_t e_t = (I - K_t C)(A\hat{x}_{t-1} + Bu_{t-1}) + K_t y_t$$

And... that's it, everything else the same

LQR with partial observability

- Bellman recursion must be expressed in terms of what u_t can depend on: \hat{x}_t
 - Problem: but value depends on the true state x_t
- Value recursion for full state:

$$\mathcal{J}_{t}(x_{t}, \hat{x}_{t}, u) = \mathbb{E}[c(x_{t}, u_{t}) + \mathcal{J}_{t+1}(x_{t+1}, \hat{x}_{t+1}, u) | x_{t}, \hat{x}_{t}]$$

• In terms of only \hat{x}_t :

works because
$$\hat{x}_{t+1}$$
 is sufficient for x_{t+1} , separating it from \hat{x}_t

$$\mathcal{J}_{t}(\hat{x}_{t}, u) = \mathbb{E}[\mathcal{J}_{t}(x_{t}, \hat{x}_{t}, u) | \hat{x}_{t}] = \mathbb{E}[c(x_{t}, u_{t}) + \mathcal{J}_{t+1}(x_{t+1}, \hat{x}_{t+1}, u) | \hat{x}_{t}] = \mathbb{E}[c(x_{t}, u_{t}) + \mathcal{J}_{t+1}(\hat{x}_{t+1}, u) | \hat{x}_{t}]$$

- Certainty equivalent control: $u_t = L_t \hat{x}_t$ with the same feedback gain L_t
- And... that's it, everything else the same

LQG separability

Given $(A, B, C, \Sigma_{\omega}, \Sigma_{\omega}, Q, R)$, solve LQG = LQR + LQE separately

- LQR:
 - Compute value Hessian recursively backwards

$$S_t = Q + A^{\mathsf{T}}(S_{t+1} - S_{t+1}B(R + B^{\mathsf{T}}S_{t+1}B)^{-1}B^{\mathsf{T}}S_{t+1})A$$

Compute feedback gain:

$$L_t = -(R + B^{\mathsf{T}}S_{t+1}B)^{-1}B^{\mathsf{T}}S_{t+1}A$$

• Control policy: $u_t = L_t \hat{x}_t$

- LQE:
 - Compute belief covariance recursively forward

$$\Sigma'_{t+1} = A(\Sigma'_t - \Sigma'_t C^{\mathsf{T}} (C\Sigma'_t C^{\mathsf{T}} + \Sigma_{\psi})^{-1} C\Sigma'_t) A^{\mathsf{T}} + \Sigma_{\omega}$$

Compute Kalman gain:

$$K_t = \Sigma_t' C^{\dagger} (C \Sigma_t' C^{\dagger} + \Sigma_{\psi})^{-1}$$

 $\qquad \text{Belief update: } \hat{x}_t = A\hat{x}_{t-1} + K_t e_t$

Extensive cost-to-go term

- Optimal cost-to-go: $\mathcal{J}_t^*(x_t) = \frac{1}{2}x_t^{\mathsf{T}}S_tx_t + \mathcal{J}_t^*(0)$
- Extensive (linear in T) term:

$$\mathcal{J}_{t}^{*}(0) = \frac{1}{2} \sum_{t'=t}^{T} \left(\text{tr}(Q\Sigma_{t'}) + \text{tr}(S_{t'+1}(\Sigma_{t'+1}' - \Sigma_{t'+1})) \right)$$

immediate cost of uncertainty in x_t

cost-to-go of uncertainty added by 1-step prediction

- Infinite horizon: $\mathscr{J}^* = \frac{1}{2} \mathrm{tr}(Q\Sigma) + \frac{1}{2} \mathrm{tr}(S(\Sigma' \Sigma))$
 - S and Σ' are solutions of algebraic Ricatti equation

Today's lecture

Linear-Quadratic-Gaussian control

Planning

iLQR, DDP

Planning

- Planning is finding a good policy when we "know" the MDP
 - MDP = dynamics + reward function
- What does it mean to have a "known model"?
 - A really fast simulator
 - A simulator that can be reset to any given state
 - A differentiable model
 - An analytic model that can be manipulated symbolically

How to use a really fast simulator

- Monte Carlo policy evaluation
 - Sample many trajectories using the greedy policy
 - Evaluate by optimizing the loss $\mathcal{L}_{\theta}(\xi) = (R Q_{\theta}(s_0, a_0))^2$
- Problem: the greedy policy doesn't explore
 - Solution: use near-greedy exploration policy
- How to explore optimally?
 - Very little is known in this case

Deterministic dynamics

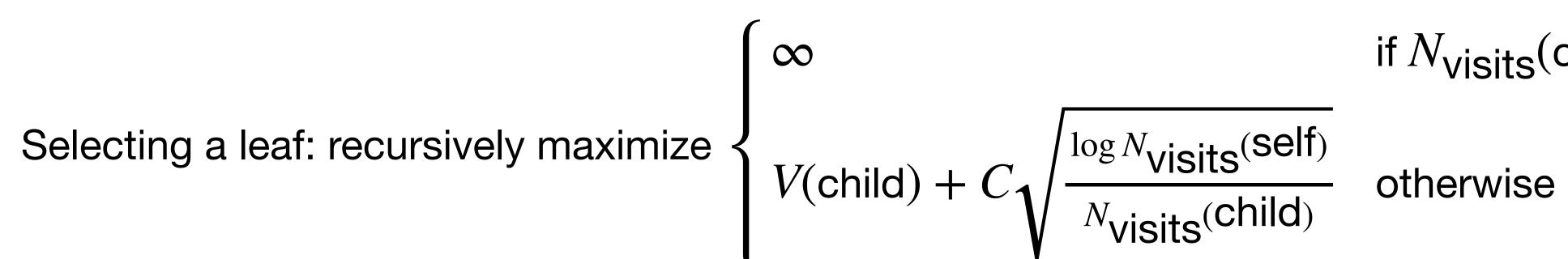
• With deterministic dynamics, policy can be just a sequence of actions

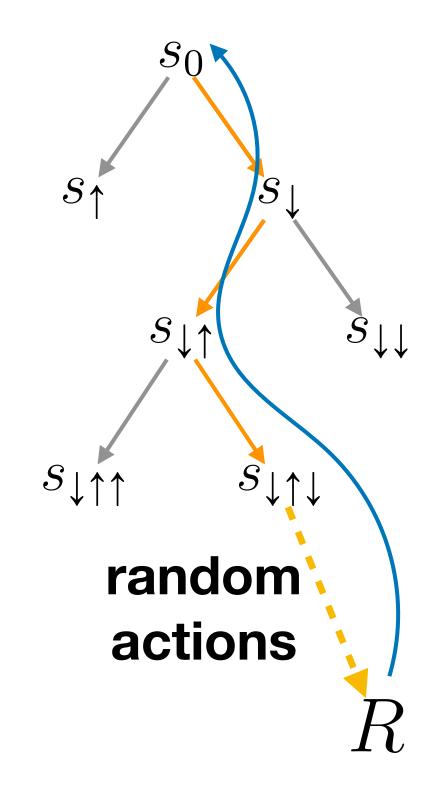
$$\max_{\overrightarrow{a}} R(\overrightarrow{a}) = \max_{\overrightarrow{a}} r(s_0, a_0) + \gamma r(f(s_0, a_0), a_1) + \gamma^2 r(f(f(s_0, a_0), a_1), a_2) + \cdots$$

- Use any black-box optimizer; e.g., Cross Entropy Method (CEM):
 - Sample $\overrightarrow{a}_1, ..., \overrightarrow{a}_N$ from π
 - ► Take top $\frac{N}{c}$ "elite" samples
 - Fit π to the elites
 - Repeat
- Scales poorly with the dimension of \overrightarrow{a}

Discrete action space: optimal exploration

- Action sequences have a tree structure
 - Shallow (short) prefixes are visited often → possible to learn their value
 - Deep (long) sequences are visited rarely → we can only explore
- Monte Carlo Tree Search (MCTS):
 - Select leaf
 - Explore to end of episode
 - Update nodes along branch to leaf

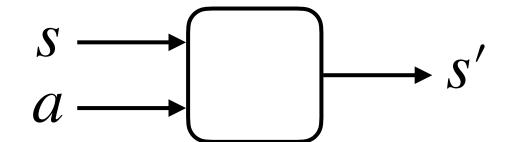




if
$$N_{\text{visits}}(\text{child}) = 0$$

How to use an arbitrary-reset simulator

- Arbitrary-reset simulator allows sampling from $s' \mid s, a \sim p$ for any (s, a) we want
- Small state space Value Iteration with tabular parametrization:



$$V(s_i) \leftarrow \max_{a} (r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V(s')])$$

Large state space — Fitted Value Iteration?

$$\mathcal{L}_{\theta}(s_i) = (\min_{a} r(s_i, a) + \gamma \mathbb{E}_{s'|s_i, a \sim p}[V_{\bar{\theta}}(s')] - V_{\theta}(s_i))^2$$

- Problem: we need $s_i \sim p_{\theta}(\xi)$, or we have covariate shift (train-test mismatch)
 - \rightarrow we need to start sampling from s_0 , arbitrary-reset is no help
 - Simulator does enable data augmentation: perturb $s_t \sim p_{\theta}(\xi)$ and see how it evolves

- Suppose we have differentiable $x_{t+1} = f(x_t, u_t)$ and $c(x_t, u_t)$
- Taylor expansion for perturbation $(\delta x, \delta u)$ around a trajectory (\hat{x}, \hat{u}) :

hiding dependence on x_t and u_t

$$f(x_t, u_t) = f(\hat{x}, \hat{u}) + O(\epsilon)$$

- Suppose we have differentiable $x_{t+1} = f(x_t, u_t)$ and $c(x_t, u_t)$
- Taylor expansion for perturbation $(\delta x, \delta u)$ around a trajectory (\hat{x}, \hat{u}) :

$$f(x_t, u_t) = f(\hat{x}, \hat{u}) + \nabla_x \hat{f}_t \delta x_t + \nabla_u \hat{f}_t \delta u_t + O(\epsilon^2)$$
 linear dependence on x_t and u_t

- Suppose we have differentiable $x_{t+1} = f(x_t, u_t)$ and $c(x_t, u_t)$
- Taylor expansion for perturbation $(\delta x, \delta u)$ around a trajectory (\hat{x}, \hat{u}) :

$$f(x_t, u_t) = f(\hat{x}, \hat{u}) + \nabla_x \hat{f}_t \delta x_t + \nabla_u \hat{f}_t \delta u_t + O(\epsilon^2)$$

$$c(x_t, u_t) = c(\hat{x}_t, \hat{u}_t) + O(\epsilon)$$

hiding dependence on x_t and u_t

- Suppose we have differentiable $x_{t+1} = f(x_t, u_t)$ and $c(x_t, u_t)$
- Taylor expansion for perturbation $(\delta x, \delta u)$ around a trajectory (\hat{x}, \hat{u}) :

$$f(x_t, u_t) = f(\hat{x}, \hat{u}) + \nabla_x \hat{f}_t \delta x_t + \nabla_u \hat{f}_t \delta u_t + O(\epsilon^2)$$

$$c(x_t, u_t) = c(\hat{x}_t, \hat{u}_t) + \nabla_x \hat{c}_t \delta x_t + \nabla_u \hat{c}_t \delta u_t + O(\epsilon^2)$$

linear dependence on x_t and u_t optimal control: ∞

- Suppose we have differentiable $x_{t+1} = f(x_t, u_t)$ and $c(x_t, u_t)$
- Taylor expansion for perturbation $(\delta x, \delta u)$ around a trajectory (\hat{x}, \hat{u}) :

$$\begin{split} f(x_t, u_t) &= f(\hat{x}, \hat{u}) + \nabla_x \hat{f}_t \delta x_t + \nabla_u \hat{f}_t \delta u_t + O(\epsilon^2) \\ c(x_t, u_t) &= c(\hat{x}_t, \hat{u}_t) + \nabla_x \hat{c}_t \delta x_t + \nabla_u \hat{c}_t \delta u_t \\ &+ \frac{1}{2} (\delta x_t^\intercal \nabla_x^2 \hat{c}_t \delta x_t + \delta u_t^\intercal \nabla_u^2 \hat{c}_t \delta u_t + 2\delta x_t^\intercal \nabla_{xu} \hat{c}_t \delta u_t) + O(\epsilon^3) \end{split}$$

Iterative LQR (iLQR)

Algorithm 1 iLQR

; linearize dynamics around current trajectory (\hat{x}, \hat{u})

```
compute A, B \leftarrow \nabla_x \hat{f}_t, \nabla_u \hat{f}_t quadratic cost approximation around (\hat{x}, \hat{u}) compute Q, R, N, q, r \leftarrow \nabla_x^2 \hat{c}_t, \nabla_u^2 \hat{c}_t, \nabla_x \hat{c}_t, \nabla_x \hat{c}_t, \nabla_u \hat{c}_t \hat{L}_t, \hat{\ell}_t \leftarrow \text{LQR on } \delta x_t = x_t - \hat{x}_t, \, \delta u_t = u_t - \hat{u}_t \leftarrow \text{solve with LQR} \delta x^*, \delta u^* \leftarrow \text{execute policy } \delta u_t = \hat{L}_t \delta x_t + \hat{\ell}_t \text{ in the simulator } / \text{environment} \hat{x} \leftarrow \hat{x} + \delta x^*, \, \hat{u} \leftarrow \hat{u} + \delta u^* roll out to get new trajectory (\hat{x}, \hat{u}) repeat to convergence
```

Newton's method

. Compare iLQR to Newton's method for optimizing $\min_{x} f(x)$

Algorithm 1 Newton's method

$$g \leftarrow \nabla_x \hat{f}$$
 $H \leftarrow \nabla_x^2 \hat{f}$
 $\hat{x} \leftarrow \operatorname{argmin}_x \frac{1}{2} \delta x^\intercal H \delta x + g^\intercal \delta x$
repeat to convergence

- . iLQR approximates this method for $\min_{u} \mathcal{J}(u)$
- This would be exact if we expanded the dynamics to 2nd order
 - Differential Dynamic Programming (DDP)

Recap

- A fast simulator is good for any RL algorithm, particularly MC
 - MCTS explores optimally in the discrete deterministic case
- An arbitrary-reset simulator has surprisingly little use
- We can plan in a differentiable model by iterative linearization (iLQR)

Logistics

assignments

- Assignment 3 to be published this week
 - Due next Friday