UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2021

Lecture 9: Planning

P
i o/ \
= &u,,_."‘/‘ "}\
WiLL PREss &
| EVER
FOR)

Roy Fox -
Department of Computer Science %
Bren School of Information and Computer Sciences .
University of California, Irvine Rt D

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Logistics

_ * Assignment 3 to be published this week

 Due next Friday

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Today's lecture

ILQR, DDP

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Optimal control: properties

mxn

e Linear control policy: u, = L,x, L el
- Feedback gain: L, = — (R + B1S,, \B)"'B1S,, |A

. Quadratic value (cost-to-go) function f (x,)* = %xtTStxt

» Cost Hessian §, = V)zct S ¥ is the same for all x,
« Ricatti equation for S, can be solved recursively backward
S, =0 +AN(Sy; — S B(R + B'S,,1B)"'BTS,, A

> Without knowing any actual states or controls (!) = at system design time

» Woodbury matrix identity shows S, = Q + AT(SiH + BR7'BT)'A > 0

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Kalman filter

e, =y — CX;
. . / .
o Linear belief update: X, = AX,_; + Ke, = (I — KC)AX,_, + K.y,

» Kalman gain: K, = 2.C1(CX/.CT + Zw)_l
 Covariance update — Ricatti equation:
1 =AC - ZCI(CZCT+2,)"'CEDAT+ £,
» Compare to prior (no observations): 2. = AthAT + 2

Xt41

> Observations help, but actual observation not needed to say by how much

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Control as inference

» View Bayesian inference as optimization: minimizes MSE [E[||x, —)Actﬂz]

e Control and inference are deeply connected:
1 =AC - ZCH(CZCT+Z) 'CIDAT+ X,

S=0+A%S,,,—S,.B(R+B'S,,,B)"'BTS_ A

* The shared form (Ricatti) suggests duality: LQR LQE
backward forward
51—t 2
A ATl
B CT
Q 2
R 2,

 Information filter: recursion on (Z;)_l, presents better principled duality

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Linear—-Quadratic—Gaussian (LQG) control

Xr—1 Xy Arr1

\ /)
W o

 Putting it all together:

X, =Ax,+ Bu, + o, w, ~ N(0,X) Y. € R™"

)

y, = Cx, + vy, yw, ~ N(0,Z,) C e R Y e R

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

LQE with control

* How does control affect estimation?

» Shifts predicted next state x;, | =

AX, + Bu,
> But known — no change In covariances, Ricatti equation still holds
> Same Kalman gain K,

)Act — A)Act—l + Ke, = (— KtC)(Ajet—l T But—l) + K.y,

 And... that's it, everything else the same

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

LQR with partial observability

» Bellman recursion must be expressed in terms of what 1, can depend on: X,

> Problem: but value depends on the true state X,

e Value recursion for full state:

jt(xta)/eta l/t) —

» In terms of only X;:

jt(ﬁza l/t) — _[jt(xta)lét, l/t) ‘ﬁt] —

_[C(Xta I/tt) + jt+1(xt+1’)/et+1’) ‘xt’)%t]

works because X, , is sufficient for x,_ ;, separating it from x,

e, u) + F 1 (s X) | X] =

=[x,) + F 1 (K ys 1) | X

» Certainty equivalent control: u, = L x, with the same feedback gain L.

 And... that's it, everything else the same

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

LQG separability

Given (A,B,C, 2, va’ 0, R), solve LQG = LQR + LQE separately

* LQR: e LQE:
» Compute value Hessian recursively backwards > Compute belief covariance recursively forward
S=0+A'S,, -5, BR+B'S_,B)"'BTS A Y =AC - ZICH(CE,CT+ X)) 'CEDAT+ 3,
> Compute feedback gain: > Compute Kalman gain:
L =-(R+B'S_B)"'B'S_,A K,=Z,C(CZCT+Z)"

~ Control policy: u, = L/X, > Belief update: X, = AXx,_; + K¢,

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Extensive cost-to-go term

. Optimal cost-to-go: *(x,) = %xtTStxt + £ 7(0)

o Extensive (linearin 1) term:

T
|
FH0) =2) (t(Q%,) + (S, 1 (Zpsy — Zpp)
=t ——— ~- J
/ \
immediate cost of uncertainty in x, cost-to-go of uncertainty added by 1-step prediction

o Infinite horizon: f£* = %tr(QZ)+%tr(S(Z’ —2))

> S and 2’ are solutions of algebraic Ricatti equation

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Today's lecture

Linear—-Quadratic-Gaussian control

ILQR, DDP

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Planning

* Planning is finding a good policy when we “know” the MIDP
> MDP = dynamics + reward function
 What does it mean to have a “known model”?
> A really fast simulator
> A simulator that can be reset to any given state
> A differentiable model

> An analytic model that can be manipulated symbolically

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use a really fast simulator

 Monte Carlo policy evaluation

» Sample many trajectories using the greedy policy
~ Evaluate by optimizing the loss £ y(&) = (R — Qy(sp, a()))2
 Problem: the greedy policy doesn't explore

> Solution: use near-greedy exploration policy

 How to explore optimally?

> Very little iIs known in this case

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Deterministic dynamics

e With deterministic dynamics, policy can be just a sequence of actions

max R(@’) = max r(sy, dg) + yr(f(sp, ap), ap) + v°r(f(f(sp, ap)» @), ap) + ++-

a A

 Use any black-box optimizer; e.g., Cross Entropy Method (CEM):
> Sample ay,..., a yfrom z

» [ake top % “elite” samples

» Fit £ to the elites

> Repeat

e Scales poorly with the dimension of @

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Discrete action space: optimal exploration

. S
* Action sequences have a tree structure R
> Shallow (short) prefixes are visited often — possible to learn their value 51
> Deep (long) sequences are visited rarely = we can only explore |1

 Monte Carlo Tree Search (MCTS):

S| 5111
> Select leaf random
| actions
> EXxplore to end of episode
> Update nodes along branch to leaf
o0 if Nyisits(child) = 0
Selecting a leaf: recursively maximize log N, icit<(SEIT)
. V(child) + C visits otherwise

Nyisits ©MNIA)

R

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use an arbitrary-reset simulator

o Arbitrary-reset simulator allows sampling from s’| s, a ~ p for any (s, a) we want

 Small state space — Value Iteration with tabular parametrization: § —

(—

V(s;) < max(r(s;, a) + yEy s 4, V(s)])

» [arge state space — Fitted Value lteration?

ZLo(s) = (minr(s;, a) + yEgy, o[ValsH] = Vi(s))?

» Problem: we need s; ~ py(&), or we have covariate shift (train—test mismatch)
» — we need to start sampling from s, arbitrary-reset is no help

> Simulator does enable data augmentation: perturb s, ~ p,(£) and see how it evolves

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for perturbation (0x, ou) around a trajectory (X, it):

/ hiding dependence on x; and i,
fOq w) = f(&, 1) + O(e)

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for perturbation (0x, ou) around a trajectory (X, it):

‘// linear dependence on x, and u,

fx, u) = f&, i) + V. .05+ V., f.6u, + O(e?)

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for perturbation (0x, ou) around a trajectory (X, it):

fx, u) = f&, 1) + V. _f.x,+ V. f.6u, + O(e?)

c(x,u) =c(x,u,)+ 0(6),\

hiding dependence on x, and i,

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for perturbation (0x, ou) around a trajectory (X, it):

fox.u) = f&,4) + V. f,6x,+ V, f,ou, + O(e?)
c(x,u) =c(X,i,)+ V. ¢,0x,+ V,C.ou + O(e?)

'\\

linear dependence on x, and u,
optimal control: oo

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for perturbation (0x, ou) around a trajectory (X, it):

NOW we can neglect these

flx,u) = f&,4) + V. f.ox, + V, f.ou + O(?).

c(x, u) =c(x,u,)~+ V. .ox +V,kCou,

+§(5x; V2¢,5x, + ouT V2e du, + 26xT V., ¢,6u,) + O(e?)

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

lterative LQR (iLQR)

AlgOI'lt hm 1 ILQR /7/ linearize dynamics around current trajectory (X, i)

Compute A B« vxft; uft _ quadratic cost approximation around (X, i)
compute Q, R, N,q,r < VQCta Vtha VauCty VaCty VG
Lt; Zt < LQR Ol 533t — L — ZCt, 5Ut — U — ut = solve with LQR
0x™, 0u™ «— execute policy ou; = Lt5:1:t + ét in the simulator / environment
T— T+ 0x™, U<—u+ou” T
roll out to get new trajectory (X, it)
repeat to convergence

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Newton's method

. Compare iLQR to Newton's method for optimizing min f(x)
X

Algorithm 1 Newton’s method

g < vxf/\

H < V.f

T« argmin, s0xTHdx + g7
repeat to convergence

. ILQR approximates this method for min ¥ ()

u

* This would be exact if we expanded the dynamics to 2nd order

> Differential Dynamic Programming (DDP)

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Recap

o A fast simulator is good for any RL algorithm, particularly MC

» MCTS explores optimally in the discrete deterministic case
 An arbitrary-reset simulator has surprisingly little use

 \We can plan in a differentiable model by iterative linearization (ILQR)

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

Logistics

_ * Assignment 3 to be published this week

 Due next Friday

Roy Fox | CS 277 | Winter 2021 | Lecture 9: Planning

