CS 175: Project in Artificial Intelligence Winter 2025 Introduction

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Today's lecture

Course overview

What is reinforcement learning

Roy Fox | CS 175 | Winter 2025 | Introduction

What is a project

Project ideas

Learning goals

Practice AI/ML

Software Engineering

Presentation Skills

lacksquare

lacksquare

- Be creative about what problem to solve
 - Get a feel for what's practical to solve and how
 - Implement and debug a machine learning pipeline
 - Design and implement a complex software system
 - Use modern software practices
 - Experience collaborative software development
- "Sell" your ideas in writing, figures, and talk
- Present your project in a convincing manner
- Document and maintain a project website

Lectures and assignments

- Lectures in weeks 1 and 2
 - Overview of project expectations and ideas
 - Introduction of general principles of reinforcement learning (RL) in a nutshell
 - Many online resources; no discussion section
- Exercises due in weeks 3 and 4
 - Install one project platform
 - Implement and experiment with basic RL algorithm
- No exams

Project meetings and presentations

- Project timeline:
 - Week 3: team formation (3 students per team) + proposals
 - Continually: reading > thinking > implementation > experimentation > evaluation
 - Week 7: progress reports
 - Weeks 10 and 11: final reports, live presentations
- Project meetings:
 - Teams should meet regularly

Meet with course staff as often as you want; at least twice by weeks 5 and 9

Course logistics

- When: today and next Wednesday, 5pm–7:50
 - Week 11 presentations TBD
- Website: <u>https://royf.org/crs/CS175/W25</u> ← Schedule! Resources!
- Forum: <u>https://edstem.org/us/courses/71615</u>
 - For announcements and questions (do not email)
- Exercise submission: <u>https://www.gradescope.com/courses/945388</u>
- Office hours: in-person or on zoom, more times available by request \bullet
 - ► TA: JB Lanier, <u>office hours</u>

Grading policy

- Exercises (weeks 3+4)
- Project proposal (week 3)
- Progress report (week 7)
- Project report (week 10)
- Presentation (week 11)
- Grace days:
 - Exercises: 3 days total per person
 - Project: 5 days total per team

How to participate

- Meetings
 - Show up prepared, ask questions, engage in discussion
- Forum
 - Ask questions if you have any, answer if you can
 - Post relevant useful links
 - Upvote useful posts
 - Give private feedback to staff
 - Logistics questions and comments appreciated, but substance counts
- Evaluations

Today's lecture

Course overview

What is reinforcement learning

Roy Fox | CS 175 | Winter 2025 | Introduction

What is a project

Project ideas

Project paradigms

- Application-driven
 - Identify a worthwhile task (or collection) and understand why it's hard
 - Use any means necessary to get an agent to (learn how to) perform the task(s)
 - Can be off-the-shelf methods, their adaptation, combination, or something new
- Method-driven
 - Study what makes a method good and/or make it better
 - Theory (analyze and prove), empirical science (measure), or engineering (build)
 - Show benefits on toy examples, simulations (simplified or not), or real domains

Application-driven projects

- Applications inform innovation
 - Can't just define / assume / modify your way around challenges
 - Doesn't mean you can't choose your battles
 - Create stepping stones by simplifying hard problems
 - Know when to change approach, think outside the box, walk away, come back
- Bridging problems and solutions is key
 - Identify data, modeling assumptions, decompositions, pipelines, auxiliary tasks
 - May require domain knowledge, experimentation, adaptation

Method-driven projects

- Not all future applications need groundbreaking methods, but many do
- A method is measured by how it evaluates across tasks
 - Quantitatively and qualitatively
 - Benefit / applicability tradeoff
 - Narrower applicability is justified when benefits are large / value is high

Also matters: can you predict if a method is applicable / beneficial to a task?

But it's not all about the technology: there's science, art, education, recreation, ...

Quantitative evaluation

- Expected rewards: may be what we really care about, or arbitrary
- Task success rate: may be what we really care about, or undefined
- Worst-case / safety violations
- Resource requirements
- Compare to baselines / ablations
 - Don't need to win on all / any metrics to be interesting
 - Show which aspects of the method matter for which aspects of the task

Sample complexity, expert supervision, learning / deployment compute, memory

Qualitative evaluation

- Illustrate on toy examples
 - What does the solution look like? Is that expected? Desired?
 - Build intuition for the core task challenges and key method operation
 - How far can you push the method's benefits?
- What is the moonshot application(s)?
- Does the agent behavior exhibit interesting properties? Expected? Desired? \bullet
- Dirty laundry: what do failure modes look like? Any pattern? \bullet
 - Recommend when to use / avoid this approach? Detect failures? Future ideas?

FECs (Frequent Existential Crises)

- Is this project interesting? Significant? Impactful?
 - Why am I even doing this?
 - Why does anyone do anything?
- Is this task too hard? Too easy?
- Am I using the right method? Right evaluation?
- Do I have enough data? Model size? Training time?
- Do I have a bug?

Is 7 weeks enough to make progress? Will the course staff be impressed?

Today's lecture

Course overview

What is reinforcement learning

Roy Fox | CS 175 | Winter 2025 | Introduction

What is a project

Project ideas

$RL \subseteq control learning \subseteq ML$

- Reinforcement Learning = learning from reinforcement (rewards)
 - But it came to encompass many settings of learning to control
 - Distinguished by sequential decision making and learning
- Many consider RL a separate ML paradigm, but it can involve:
 - Supervised learning
 - Unsupervised learning
 - Active learning
 - Online learning

What is machine learning

- Learning = taking in information to "know" more than you did before
- ML can help when other AI methods fail:
 - Experts are scarce

- Rules / logic are hard to specify
- Search space is too large
- Models are unknown / hard to specify

Can we build "intelligent" machines? Intelligence = good decision making

The ML stack

- Math: probability theory, (linear) algebra, computational learning theory
- Algorithms: ML algorithms, optimization, data structures
- Software: ML frameworks, databases, testing, deployment

• Hardware: cloud computing, distributed systems, cyber-physical systems

ML success stories

Image generation

Figure 1: The Transformer - model architecture.

Protein folding

What is control learning (CL)?

- \bullet
 - An agent interacting with an environment
- Control = sequential decision making
 - Sense environment state s
 - ► Take action *a*
 - Repeat
- - Or by accumulating high rewards r(s, a) reinforcement learning (RL)

Intelligence appears in interaction with a complex system, not in isolation

Success can be measured by matching good actions — imitation learning (IL)

Control preference elicitation

RL success stories

Spatial navigation

Generator fine-tuning

Dextrous manipulation

RL is ML... but special

- In RL, unlike supervised, no ground truth, only feedback (online learning)
- Exploration = the learner collects data by interaction
 - The agent decides on which states to train (active learning) and test!
 - Cannot avoid some train-test mismatch
- Sequential decision making need to be coordinated
 - Optimization space is strewn with local optima
- A good policy may require memory
 - Agent state is latent \rightarrow combine control and inference

Why is RL powerful?

- Many (all?) problems can be formulated as control
 - But consider: is it sequential? multi-agent? a more specific structure?
- Active + online = very little supervision
 - Even incidental, like in evolution! Supervisor can be "surprised"
- More general CL: incorporate stronger supervision
 - ► Supervisor burden is a tradeoff between data amount ↔ informativeness

How is RL different?

What would "solving" RL look like?

Foundation model

- Foundation model?
 - Large model
 - Huge amount of data
 - Centrally trained
 - Fine-tuned, built into pipelines

modularity?

Continual learning

- Continual learning?
 - Flexible model
 - Ad-hoc data
 - **Distributed learning**
 - Mixed supervision, shared learning
- The last ML frontier?

Why is RL hard?

• It's all about the data: amount and informativeness

After the break: **Basic RL concepts**

System state

System state

$$p(s_{t+1}, s_{t+2}, \dots | s_0, s_2, \dots, s_t) = p(s_{t+1}, s_{t+2}, \dots | s_t)$$

- State = all relevant information from history for future!

• Markov property: the future is independent of the past, given the present

• Given s_t , the history $h = (s_0, \dots, s_t)$ and the future $(s_{t+1}, s_{t+2}, \dots)$ are independent

System = agent + environment

Markov Decision Process (MDP)

- Model of environment
 - $\mathcal{S} = \text{set of states}$
 - $\mathscr{A} = \text{set of actions}$
 - p(s' | s, a) = state transition probability

- Probability that $s_{t+1} = s'$, if $s_t = s$ and $a_t = a$

Agent policy

- "Model" of agent decision-making
 - Policy $\pi(a \mid s)$ = probability of taking action $a_t = a$ in state $s_t = s_t$
 - In MDP, action a_t only depends on current state s_t :
 - Markov property = S_t is all that matters in history
 - Causality = cannot depend on the future
 - Should the policy depend on time?
 - Sometimes; can add t as feature: S_t

$$\pi_t: s_t \mapsto a_t$$

$$\rightarrow (t, s_t)$$

Trajectories

- The agent's behavior iteratively uses (rolls out) the policy
- Trajectory: $\xi = (s_0, a_0, s_2, a_2, \dots, s_T)$
- MD

DP + policy induce distribution over trajectories

$$p_{\pi}(\xi) = p(s_0)\pi(a_0 | s_0)p(s_1 | s_0, a_0)\cdots\pi(a_{T-1} | s_{T-1})p(s_T | s_{T-1}, a_{T-1})$$

$$= p(s_0)\prod_{t=0}^{T-1}\pi(a_t | s_t)p(s_{t+1} | s_t, a_t)$$

- Imitation learning: learn from datase
 - Supervised learning of $\pi(a \mid s)$ from "labeled" states (s_t, a_t)

environment

agent

Learning from rewards

- Providing demonstrations is hard
 - Particularly for learner-generated trajectories
- Can the teacher just score learner actions?
 - Reward: $r(s, a) \in \mathbb{R}$
- High reward is positive reinforcement for this behavior (in this state)
 - Much closer to how natural agents learn

• Designing and programming r often easier than programming / demonstrating π

Actions have long-term consequences

- Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
 - Fly drone: slow down to avoid crash?
 - Games: slowly build strength? block opponent? all out attack?
 - Stock trading: sell now or wait for growth?
 - Infrastructure control: reduce power output to prevent blackout?
 - Life: invest in college, obey laws, get started early on course project
- Forward thinking and planning are hallmarks of intelligence

- Discount factor $\gamma \in [0,1]$
 - Higher weight to short-term rewards (and costs) than long-term
 - Good mathematical properties:
 - Assures convergence, simplifies algorithms, reduces variance
 - Vaguely economically motivated (inflation)

$$r(s_t, a_t)$$

• Summarize reward sequence $r_t = r(s_t, a_t)$ as single number to be maximized

Horizon classes

• Finite:
$$R(\xi) = \sum_{t=0}^{T-1} r(s_t, a_t)$$

• Infinite: $R(\xi) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} r(s_t, a_t)$
• Discounted: $R(\xi) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$
• Episodic: $R(\xi) = \sum_{t=0}^{T-1} r(s_t, a_t)$ s.t

$0 \le \gamma < 1$

 $t. s_T = s_f$

Basic RL concepts

- State: $s \in \mathcal{S}$; action: $a \in \mathcal{A}$; reward: $r(s, a) \in \mathbb{R}$
- Dynamics: $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- Policy: $\pi(a_t | s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic

Trajectory:
$$p_{\pi}(\xi = s_0, a_0, s_1, a_1, ...) =$$

Return:
$$R(\xi) = \sum_{t} \gamma^{t} r(s_{t}, a_{t})$$
 0 :

Value:
$$V(s) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s]$$

 $Q(s, a) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s, a_0 = s]$

 $= p(s_0) \qquad \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$

 $\leq \gamma < 1$

Special case: shortest path

• Example above: $s' = f(s, a_{\text{left}})$

• Reward: (-1) in each step (until the goal s_f is reached)

• Deterministic dynamics: in state s, take action a to get to state s' = f(s, a)

Today's lecture

Course overview

What is reinforcement learning

Roy Fox | CS 175 | Winter 2025 | Introduction

What is a project

Project ideas

Some project ideas

- Applications:
 - MineCraft
 - DuckieTown
 - Obstacle Tower
 - Hanabi
 - Halite
 - Diplomacy

MineCraft

- Open world: can define many scenarios and tasks
- Done many many times before, so you'd have to get very creative
- One interesting option: MindCraft lets language agents play MineCraft
 - https://github.com/kolbytn/mindcraft

DuckieTown

- Drive a small vehicle on a foam track
- Common tasks: lane following, multi-agent collision avoidance
- You'd mostly work in a simulator
 - Successful projects can be deployed to real DuckieBots!

Obstacle Tower

- Algorithmically generated locomotion puzzles
- Visual control + planning
- Progressively more challenging
 - Need generalization, continual learning, maybe symbolic planning

- Collaborative game, simple with many challenging expansions
- Distributed observability, solution can be centralized or not
- How to induce zero-shot cooperation?
 - Will the policy collaborate with humans / other training seeds?

- Competitive resource management (and combat) game
- Fully observable (Markov game) in a large but structured space
- Evaluation may be non-transitive: $\pi_1 > \pi_2 > \pi_3 > \pi_1$
 - Carefully evaluate against populations

- Multi-player alliance and betrayal game
- What do we even optimize? Worst-case performance is always bad
- Humans play with text communication
 - Why? Can AI learn to ally with / betray each other / humans?

More project ideas

- Applications:
 - MineCraft
 - DuckieTown
 - Obstacle Tower
 - Hanabi
 - Halite
 - Diplomacy
 - More "serious": robots, infrastructure
 Large comparative study

- Method:
 - RL from non-reward feedback
 - Off-policy to on-policy RL
 - MaxEnt RL learning dynamics
 - RL for language generation
 - Model-based multi-agent RL
 - RL with sparse rewards

Resources and tools

- GitHub sync your work with teammates and course staff
- GitHub Pages maintain project website
- Program in Python
 - Use libraries (numpy, scikit-learn, pytorch, jax)
 - Many domains and algorithms have existing implementations
 - May be a reason to prefer one over another

		TEAM TURING		
	Projec	t on solving AI in Mine	craft.	
PROPOSAL	PROGRESS	FINAL REPORT	TEAM	
Heading 2 Adipisci autem obc consectetur reicien eveniet accusamus	aecati velit natus quos dis placeat dolorem rep a ex.	beatae explicabo at tempo pellat in nam asperiores im	ora minima voluptates npedit voluptas iure rep	deserunt eum ellendus unde

Compute resources: campus-wide HPC3 cluster <u>https://rcic.uci.edu/hpc3/</u>

