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Logistics

assignments
• Exercise 1 is due next Wednesday (individual)


• Project proposals are due next Friday (team)

meetings
• Meet the instructor at least once by week 5


• Welcome to schedule as much as you need
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Basic RL concepts
• State: ; action: ; reward: 


• Dynamics:  for stochastic;  for deterministic


• Policy:  for stochastic;  for deterministic


• Trajectory: 


• Return: 


•
Value: 

s ∈ 𝒮 a ∈ 𝒜 r(s, a) ∈ ℝ

p(st+1 |st, at) st+1 = f(st, at)

π(at |st) at = π(st)

pπ(ξ = s0, a0, s1, a1, …) = p(s0)∏
t

π(at |st)p(st+1 |st, at)

R(ξ) = ∑
t

γtr(st, at) 0 ≤ γ < 1

V(s) = 𝔼ξ∼pπ
[R |s0 = s]

Q(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]
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Example: Table Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0

https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0
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extensions: 
• Rainbow DQN 
• SQL 
• Mean DQN

Flowchart: which algorithm to choose?

on- / off-
policy?

action 
space?

robust to 
hyperparameters?

deterministic 
policy?

PPO A2C

DQN DDPG SAC

continuousdiscrete

on-policy off-policy

no, but turnkey yes

parallelization ⇒ A3C

deterministic stochastic

(2017) (2016)

(2015)

(2018)
(2017)

(2016) (2018)

(2022)

(2023)

Dreamer



Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…
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Imitation Learning (IL)
• How can we teach an agent to perform a task?


• Often there is an expert that already knows how to perform the task


‣ A human operator who controls a robot


‣ A black-box artificial agent that we can observe but not copy


‣ An agent with different representation or embodiment


• The expert can demonstrate the task to create a training dataset 


‣ Each demonstration is a trajectory 


‣ Then the learner imitates these demonstrations

𝒟 = {ξ(i)}i

ξ = s0, a0, s1, a1, …



Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

IL = Learning from Demonstrations (LfD)
• Teacher provides demonstration trajectories 


• Learner trains a policy  to minimize a loss 


• For example, negative log-likelihood (NLL):

 

𝒟 = {ξ(1), …, ξ(m)}

πθ ℒ(θ)

arg min
θ

ℒθ(ξ) = arg min
θ

(−log pθ(ξ))

= arg max
θ (log p(s0) +

T−1

∑
t=0

log πθ(at |st) + log p(st+1 |st, at))
= arg max

θ

T−1

∑
t=0

log πθ(at |st)

model-free 
= no need to know the environment dynamics p
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Behavior Cloning (BC)

• Behavior Cloning:


‣ Break down trajectories  into steps 


‣ Train  using supervised learning


{ξ(1), …, ξ(m)} {(s(1)
0 , a(1)

0 ), …, (s(m)
Tm−1, a(m)

Tm−1)}

πθ : s ↦ a

observations 
+ 

actions

training 
data 

𝒟 = {(s(i)
t , a(i)

t )}i,t

πθ(a |s)

max
θ

1
|𝒟 | ∑ log πθ(a |s)∑

(s,a)∈𝒟
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Behavior Cloning (BC)

• Benefits:


‣ Simple, flexible — can use any learning algorithm


‣ Model-free — never need to know the environment


• Drawbacks:


‣ Only as good as the demonstrator


‣ Only good in demonstrated states — how do we evaluate?


- Validation loss (on held out data)? Task success rate in rollouts?

training 
data

supervised 
learning

πθ(a |s)
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A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

[Bojarski et al., 2016]

π(at |st)
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Stochastic policies

• Learned models are often deterministic functions 


• To implement a stochastic policy: output distribution parameters


• Examples:


‣ Discrete action space: categorical distribution


- ; 


‣ Continuous action space: Gaussian distribution


- ; 

fθ : x ↦ y

πθ : s ↦ {λa}a πθ(a |s) = softmaxaλa ∝ exp λa

πθ : s ↦ (μ, Σ) πθ(a |s) = 𝒩(μ, Σ)
π(at |st)



Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

π(at |st)
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A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

ot−1 ot

observation action
π(at |ot)
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ALVINN

• Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)


[Pomerleau, 1989]
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Inaccuracy in BC

• We could evaluate on held out teacher data, but really interested in using 


• If the policy approximates the teacher 


‣ The trajectory distribution will also approximate teacher behavior 


• But errors accumulate over time


‣ May reach states not seen in the training dataset

πθ

πθ(at |st) ≈ π*(at |st)

pθ(ξ) ≈ p*(ξ)
no data here!

training 
data

supervised 
learning

πθ(a |s)

Image: Sergey Levine
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Modeling partially observable behavior

• Partial observations are not Markov


‣ Generally, this means 


‣ Reactive policy  may not be optimal


- May need , or even ; but how?


• Can use RNNs , or other memory models


• But memory state is latent in demonstrations


‣ Modeling memory is hard

p(ot+1 |ot, at) ≠ p(ot+1 |o≤t, a≤t)

πθ(at |ot)

πθ(at |o≤t) πθ(at |o≤t, a<t)

fθ : (ht−1, at−1, ot) ↦ ht



Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Modeling memory

st+1stst−1

at−1 atagent

environment

ot−1 ot
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Modeling memory

• A common architecture:


‣ A recurrent model ; and an action model mt = fθ(mt−1, at−1, ot) πθ(at |mt)

st+1stst−1

at−1 at

agent

environment

ot−1 ot

mt−1 mt

πθ(mt, at |mt−1, at−1, ot)
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Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…
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Example: Breakout

→ → ← ←

+0 +1 +0 +0reward:
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Formulating reward: considerations

• We define , is that general enough?


• What if the reward depends on the next state ?


‣ If we only care about expected reward, define 


• What if the reward is a random variable ?


‣ Define 


‣ In practice we see  ⇒ don't just assume you know  = 

r(s, a)

s′ 

r(s, a) = 𝔼(s′ |s,a)∼p[r(s, a, s′ )]

r̃

r(s, a) = 𝔼[r̃ |s, a]

r̃ r(s, a) r̃



Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

RL objective: expected return

• We need a scalar to optimize


• Step 1: we have a whole sequence of rewards 


‣ Summarize as return 


• Step 2:  is a random variable, induced by 


‣ Take expectation 


•  can be calculated and optimized

{rt = r(st, at)}t≥0

R(ξ) = ∑
t≥0

γtr(st, at)

R(ξ) pπ(ξ)

Jπ = 𝔼ξ∼pπ
[R(ξ)]

Jπ
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

π(pick |available) = 1

r(available, pick) = 0

p(dropped |available, pick) = 0.1

0.9

0.9

0.1

(1, −10)

(1,3)

π(a |s) r(s, a)

1

donep(s′ |s, a)
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

1

done

0.1

ξ

pπ(ξ) = 1 ⋅ 0.9 ⋅ 1 ⋅ 0.9 = 0.81

R(ξ) = 0 + γ ⋅ 3 = 2.7

γ = 0.9

(1,0)

(1,3)
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1 ξ

pπ(ξ) = 1 ⋅ 0.1 ⋅ 1 ⋅ 1 = 0.1

R(ξ) = 0 + γ ⋅ (−10) = −9

γ = 0.9

(1,0)
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Monte Carlo (MC) policy evaluation

• Computing  can be hard


‣ Exponentially many trajectories


‣ Model-based = requires , which may not be known


• Monte Carlo: estimate expectation using empirical mean


 


‣ Model-free = can sample with rollouts, without knowing 

Jπ = 𝔼ξ∼pπ
[R(ξ)] = ∑

ξ

pπ(ξ)R(ξ)

p(s′ |s, a)

Jπ ≈ 1
m ∑

i

R(ξ(i)) ξ(i) ∼ pπ

p
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Value function

• RL objective: maximize expected return 


• We don't control , can break down: 


‣ with the value function 


•  is the expected reward-to-go (= future return):


‣ For any , define 


‣ Then 

Jπ = 𝔼ξ∼pπ
[R]

s0 Jπ = 𝔼s0∼p[Vπ(s0) |s0]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

Vπ(s)

t0 R≥t0 = ∑
t≥t0

γt−t0r(st, at)

Vπ(s) = 𝔼ξ∼pπ
[R≥t0 |st0 = s]

future reward after being 
in state  in time s t0
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MC for value-function estimation

• Why not use the same samples for non-initial states?

<latexit sha1_base64="DW1efNYNoycHV9Xvrsh+pI8UdRM=">AAADgniclZHPbtNAEMa3doFi/jSFI5cViaUUQWQX2l4QqtRLOCCVBqeVupG1dibOiPV6ZW/agpXH4Wm4woG3YW1MUWMkylw8nv2+b1a/jZTAQnvejzXLXr91+87GXefe/QcPNztbj8ZFtshjCOJMZPlpxAsQKCHQqAWcqhx4Ggk4iT4eVucn55AXmMkP+pOCScoTiTOMuTajcMt6wyJIUJYpSlQ8geVZPCm9wf4u03CpL3Cq50un0XCRZDnqebo8G04cFnNVhZTvDuksy+k5Fwt4MVvIuJpSKDSm9Za2H2MzG2muoXwrUSMX+Blob9wvtilLQBfU69WZXAjaKyhDSUc94zkGBVw7lDbuEU+VME52iZQVmFIVMoVGeaUI1NR86uzQM+k6o8d9I9+u4gKpUTgM5HTlbtcmzf8VIcdxbwLN/Ss19z+wtRKqu7m/Ibj/puDeCIPbcHDbINxVEu4KirDT9QZeXbTd+E3TJU0dhZ3n5jHVQpfTzOQ7LAcJF3GWptzkMj2HP8vKOt5fDWs3452Bvzd49X6nezBsFm2QJ+Qp6ROf7JMDMiRHJCCx9cX6an2zvtvr9jPbt1/+klprjecxuVb265/zzBqE</latexit>

Algorithm MC for value-function estimation
Initialize + (B)  0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (B0) ! '(b)

<latexit sha1_base64="RrI8XMvWiZOlrLrMc7U4rvG1Pck="></latexit>

Algorithm MC for value-function estimation (version 2)
Initialize + (B)  0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (BC) ! '�C (b) for all C � 0

“update LHS towards RHS” 
i.e.  
with learning rate 

V(s0) += α(R(ξ) − V(s0))
α
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MC with function approximation

• What if the state space is large?


‣ Can't represent  as a big table


‣ Won't have enough data to estimate each 


• Function approximation: represent 


‣ , a parametric family of functions; for example, a neural network


• Generalization over state space ⇒ data efficiency

V(s)

V(s)

Vθ : S → ℝ

θ ∈ Θ

<latexit sha1_base64="QSXFq8KRCNPHSjQJbjW2aEX3GsQ="></latexit>

Algorithm MC with function approximation
Initialize +\

repeat
Sample b ⇠ ?c
Descend on L\ =

Õ
C�0('�C (b) �+\ (BC))2

with tabular representation: 
 

same as in previous slide
V(st) += −α∇V(st)ℒ = 2α(R≥t(ξ) − V(st))
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Policy evaluation: example

pick up dish place dish clean floor

dish 1 available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

dish 2 available

0.1

⋯

# trajectories = exponential in # dishes

(1,0)
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MC inefficiency
• The MC estimator is unbiased (correct expectation), but high variance


‣ Requires many samples to give good estimate


• But MC misses out on the sequential structure


• Credit assignment problem:


‣ Day 1: I take route 1 to work — 40 minutes; I take route 2 home — 10 minutes


‣ Day 2: I take route 3 to work — 30 minutes; I take route 4 home — 30 minutes


• Which route should I take to work?


‣ Route 1 → 50-minute daily commute, route 3 → 60-minute; is route 1 better?
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Dynamic Programming (DP)

• Dynamic Programming = remember reusable partial results


• Value recursion:


 

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

= 𝔼ξ∼pπ
[r(s0, a0) + γR≥1 |s0 = s]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼ξ∼pπ
[R≥1 |s0 = s, a0 = a]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′ |s,a)∼p[𝔼ξ∼pπ
[R≥1 |s1 = s′ ]]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′ |s,a)∼p[Vπ(s′ )]]

break down sum of rewards

first reward only depends on a

 is a state, all that matters for s′ R≥1

definition of Vπ(s′ )

Richard Bellman

[Bellman, 1956]

Dynamic Programming (DP)
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1

(1,0)

V(done) = 0

V(dropped) = 1 ⋅ (−10 + γ ⋅ (1 ⋅ V(done))) = −10

γ = 0.9

V(grasped) = 1 ⋅ (3 + γ ⋅ (0.9 ⋅ V(done) + 0.1 ⋅ V(dropped))) = 2.1

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′ |s,a)∼p[Vπ(s′ )]]

V(available) = 1 ⋅ (0 + γ ⋅ (0.9 ⋅ V(grasped) + 0.1 ⋅ V(dropped))) = −0.801

π(clean |dropped) r(dropped, clean) p(done |dropped, clean)
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DP + MC: Temporal Difference (TD)

• Policy evaluation with DP: 


‣ Drawback: model-based = need to know 


• MC: , where  and 


‣ Drawback: high variance


• Put together: 


‣ where , , and  in some trajectory


‣ In other words: 

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′ |s,a)∼p[Vπ(s′ )]]

p

V(s) → R≥t(ξ) ξ ∼ pπ st = s

V(s) → r + γV(s′ )

s = st r = r(st, at) s′ = st+1

V(s) ← V(s) + α(r + γV(s′ ) − V(s))
temporal difference 
between  and V(s′ ) V(s)

recursion from  to  
= backward in time!

s′ s
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Q function
• To approach  when we update , we need on-policy data


‣ Roll out  to see transition  with reward 


• On-policy data is expensive: need more every time  changes


• Action-value function: 


‣ Compare: 


• Action-value backward recursion: 


• Advantage: benefit of counterfactual 

Vπ V(s) → r + γV(s′ )

π (s, a) → s′ r

π

Qπ(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s] = 𝔼(a|s)∼π[Qπ(s, a)]

Qπ(s, a) = r(s, a) + γ𝔼(s′ |s,a)∼p[Vπ(s′ )]

Aπ(s, a) = Qπ(s, a) − Vπ(s) = a
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The RL scheme

policy evaluation

policy improvement
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Q-learning

policy evaluation

policy improvement π(s) = arg max
a

Q(s, a)

Qπ(s, a) → r(s, a) + γVπ(s′ )

Vπ(s′ ) = max
a′ 

Qπ(s′ , a′ )
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<latexit sha1_base64="Dh5J4Qw7EmT3dT7CY1s1Sa0A0Dk="></latexit>

Algorithm Q-Learning

Initialize &
B reset state

repeat
Take some action 0
Receive reward A
Observe next state B0

Update&(B, 0) !
(
A B0 terminal

A + W max00 &(B0, 00) otherwise

B reset state if B0 terminal, else B B0

Q-Learning

[Watkins and Dayan, 1992]
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After the break: 
Deep RL
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Experience policy

• Which distribution should the training data have?


‣ The policy may not be good on other distributions / unsupported states


‣ ⇒ ideally, the test distribution  for the final 


• On-policy methods (e.g. MC): must use on-policy data (from the current 


• Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)


‣ But both should eventually use  or suffer train–test distribution mismatch

pπ π

π)

pπ
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Exploration policies
• Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}


‣ Suppose route 1 really has expected time 30min, should you commit to it forever?


• To avoid overfitting, we must try all actions infinitely often


• -greedy exploration: select uniform action with prob. , otherwise greedy


• Boltzmann exploration:


 


‣ Becomes uniform as the inverse temperature , greedy as 

ϵ ϵ

π(a |s) = soft max
a

(Q(s, a); β) =
exp(βQ(s, a))

∑ā exp(βQ(s, ā))

β → 0 β → ∞
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Experience replay
• On-policy methods are inefficient: throw out all data with each policy update


• Off-policy methods can keep the data = experience replay


‣ Replay buffer: dataset of past experience


‣ Diversifies the experience (beyond current trajectory)


• Variants differ on


‣ How often to add data vs. sample data


‣ How to sample from the buffer


‣ When to evict data from the buffer, and which
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Why use target network?
• Fitted-Q loss: 


• Target network = lagging copy of 


‣ Periodic update:  every  steps


‣ Exponential update: 


•  is more stable


‣ Less of a moving target


‣ Less sensitive to data ⇒ less variance


• But  introduces bias

ℒθ = (r + γ max
a′ 

Qθ̄(s′ , a′ ) − Qθ(s, a))2

Qθ(s, a)

θ̄ ← θ Ttarget

θ̄ ← (1 − η)θ̄ + ηθ

Qθ̄

θ̄ ≠ θ

no gradient from the target term

Qθ(s, a)

r + γ max
a′ 

Qθ̄(s′ , a′ )

square lossupdate

s′ 

s

stop gradient
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Putting it all together: DQN

policy evaluation

policy improvement

fitted-Q loss 
ℒθ = (r + γ max

a′ 

Qθ̄(s′ , a′ ) − Qθ(s, a))2

greedy policy 
π(s) = arg max

a
Q(s, a)

exploration 
e.g. -greedyϵ
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<latexit sha1_base64="ivZhiA3FiKZDfZXNKOLLTQwENgo="></latexit>

Algorithm DQN
Initialize \, set \̄  \

B reset state
for each interaction step

Sample 0 ⇠ n-greedy for &\ (B, ·)
Get reward A and observe next state B

0

Add (B, 0, A, B0) to replay buffer D
Sample batch (ÆB, Æ0, ÆA, ÆB0) ⇠ D

H8  
(
A8 B

0
8
terminal

A8 + W max00 &\̄
(B0

8
, 0
0) otherwise

Descend L\ = (ÆH �&\ (ÆB, Æ0))2

every )target steps, set \̄  \

B reset state if B0 terminal, else B B
0

Deep Q-Learning (DQN)

[Mnih et al., 2015]
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Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…
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Value-based vs. policy-based methods

policy evaluation

policy improvement

Qθ(s, a)

arg max
a

Qθ(s, a)

value-based

πθ(a |s)

𝔼ξ∼pθ
[R(ξ)]

policy-based
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Policy Gradient (PG)

• Gradient-based learning: 


‣ Expectation gradient = expected gradient, estimate with samples


• Policy-Gradient RL: , with 


‣ Can we also use samples  to estimate ?


• The sampling distribution itself depends on 


‣ Problem 1: data must be on-policy


‣ Problem 2: cannot backprop gradient through samples

θ → θ − ∇θ𝔼x∼D[ℒθ(x)]

θ → θ + ∇θJθ Jθ = 𝔼ξ∼pθ
[R]

ξ ∼ pθ ∇θJθ

θ
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Score-function gradient estimation

• Log-derivative + chain rule: 


• Log-derivative / score-function / REINFORCE trick:


 


‣ Allows estimating  using samples 

∇θlog pθ(ξ) =
1

pθ(ξ)
∇θ pθ(ξ)

∇θJθ = ∑
ξ

R(ξ)∇θ pθ(ξ)

= ∑
ξ

R(ξ)pθ(ξ)∇θlog pθ(ξ)

= 𝔼ξ∼pθ
[R(ξ)∇θlog pθ(ξ)]

∇θJθ ξ ∼ pθ
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REINFORCE
• To find , sample , then:


 


‣ Model-free, but on-policy and high variance (like MC)


∇θJθ = 𝔼ξ∼pθ
[R(ξ)∇θlog pθ(ξ)] ξ ∼ pθ

∇θlog pθ(ξ) = ∇θ(log p(s0) + ∑
t

log πθ(at |st) + log p(st+1 |st, at))
= ∇θ ∑

t

log πθ(at |st)

<latexit sha1_base64="mrDLueFLsBjaif9qKVqsrbFlCDs=">AAACjHicZZDPbtNAEMbX5l8xUFI4clmRHlIJRU5V6KGqVKm0Si9QDG4rdSNrbQ/OiPXuyp40LSbPxNNw4AKvwqZYqdrMZWdnft83s5tahTWF4W/Pv3f/wcNHK4+DJ0+frT7vrL04qc2kyiDOjDLVWSprUKghJiQFZ7YCWaYKTtNv+/P+6QVUNRr9ha4sjEpZaPyKmSRXSta8oUihQN2UqNHKAmbn2agJ+9tvBcElTTGn8SxoGakKUyGNy9n5cBSITNq5SRMdHH04/BjtHyyDmLnaZ5IEzZFGQqnwO/B1YTERNAaS664fgQVJAectGRmluJmQ4y6RixpLbm/wBRbb3B186ubwopI5gnaSgosCqOZRz4k3nHpSJsSFlqmSrQkXyjhssUNPOuIHrxPamK8Ta0IVCND5nXfcqrT3xbcFSacb9sPr4MvJoE26rI3jpPNGoLYTanLj3ANRgYZpZspSOt/5Zjezmmv7wV2z5eRksz9419/6tNnde98OWmGv2GvWYwO2zfbYkB2zmGXeT++X98f766/6W/6Ov/sf9b1W85LdCv/wH3tkxNU=</latexit>

Algorithm REINFORCE

Initialize c\
repeat

Roll out b ⇠ ?\
Update with gradient 6  '(b)ÕC r\ log c\ (0C |BC)

[Williams, 1992]
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actor  
uses critic to improve

πθ(a |s)

Actor–Critic (AC) methods

policy evaluation

policy improvement

critic  
evaluates actor

Qϕ(s, a)
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Advantage Actor–Critic (A2C)

<latexit sha1_base64="mlNMMjSOTLTR9jtlPYMVZ8E0fyI="></latexit>

Algorithm Advantage Actor–Critic
Initialize c\ and +q

repeat
Roll out b ⇠ ?\
Update �\  Õ

C ('�C (b) �+q (BC))r\ log c\ (0C |BC)
Descend !q =

Õ
C ('�C (b) �+q (BC))2

[Mnih et al., 2016]
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Importance Sampling

• Suppose you want to estimate 


‣ but only have samples 


• Importance sampling:


 


‣ Importance (IS) weights: 


‣ Estimate:  with 

𝔼x∼p[ f(x)]

x ∼ p′ 

𝔼x∼p[ f(x)] = 𝔼x∼p′ [ p(x)
p′ (x)

f(x)]
ρ(x) =

p(x)
p′ (x)

ρ(x)f(x) x ∼ p′ 
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Finding best next policy

• Performance Difference Lemma: 


‣ Idea: with current policy , find  by maximizing the RHS


• Step 1: use  to evaluate ; step 2: estimate 


‣ But we don't have data  ; idea: sample from 





• When is it reasonable to use  instead? i.e. drop 


‣ Intuitively, when  is small

Jπ − Jπ̄ = ∑
t

γt𝔼(st,at)∼pπ
[Aπ̄(st, at)]

π̄ max
π

Jπ − Jπ̄

π̄ Aπ̄ 𝔼(st,at)∼pπ
[Aπ̄(st, at)]

(st, at) ∼ pπ π̄

max
π ∑

t

γt𝔼ξ≤t∼pπ̄
[ρπ

π̄(ξ≤t)Aπ̄(st, at)]

ρπ
π̄(at |st) =

π(at |st)
π̄(at |st)

ρπ
π̄(ξ<t) = ∏

t′ <t

π(at′ |st′ )

π̄(at′ |st′ )

𝔻[π̄θ(a |s)∥π(a |s)]

high variance!
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Proximal Policy Optimization (PPO)

• Idea: ascend  with  staying near 


‣ PPO-Penalty: add a penalty term for 


‣ PPO-Clip: ascend  with


 


• Positive / negative advantage ⇒ increase / decrease 


‣ But no incentive beyond 

𝔼(s,a)∼pθ̄
[ρθ

θ̄(a |s)Aθ̄(s, a)] πθ πθ̄

𝔼s∼pθ̄
[𝔻[πθ̄(a |s)∥πθ(a |s)]]

𝔼(s,a)∼pθ̄
[Lθ

θ̄(s, a)]

Lθ
θ̄(s, a) = min(ρθ

θ̄(a |s)Aθ̄(s, a), Aθ̄(s, a) + |ϵAθ̄(s, a) | )

ρθ
θ̄(a |s) =

πθ(a |s)
πθ̄(a |s)

ρθ
θ̄(a |s) = 1 ± ϵ

• no incentive ≠ doesn't happen 
• PPO has lots more tricks to 

limit divergence
[Schulman et al., 2017]
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Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…
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Bounded optimality
• Bounded optimizer = trades off value and divergence from prior 


 


•  is the tradeoff coefficient between value and relative entropy


‣ As , the agent will fall back to the prior 


‣ As , the agent will be a perfect value optimizer 


• Early in training,  should be finite to avoid overfitting


• Bellman recursion: 

π0(a |s)

max
π

𝔼(s,a)∼pπ
[r(s, a)] − τ𝔻[π∥π0] = max

π
𝔼(s,a)∼pπ [r(s, a) − τ log π(a |s)

π0(a |s) ]
τ = 1

β

τ → ∞ π → π0

τ → 0 π → π*

τ

V(s) = max
π

𝔼(a|s)∼π [r(s, a)−τ log π(a |s)
π0(a |s) +γ𝔼(s′ |s,a)∼p[V(s′ )]]

optimal π ∝ π0 exp(βQ(s, a))



Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Soft Actor–Critic (SAC)

• Optimally: 


• In continuous action spaces, we can't explicitly softmax  over 


• We can train a critic off-policy


 


• And a soft-greedy actor = imitate the critic


 


• Can optimize  to match a target entropy 

π(a |s) =
π0(a |s)exp βQ(s, a)

exp βV(s) V(s) = Q(s, a)− 1
β log π(a |s)

π0(a |s)

Q(s, a) a

Lϕ(s, a, r, s′ , a′ ) = (r + γ (Qϕ̄(s′ , a′ )− 1
β log

πθ(a′ |s′ )
π0(a′ |s′ ) ) − Qϕ(s, a))

2

Lθ(s) = 𝔼(a|s)∼πθ
[log πθ(a |s) − log π0(a |s) − βQϕ(s, a)]

τ Lτ(s, a) = − τ log πθ(a |s) − τH
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Dreamer

• Dreamer learns a latent state process to


‣ Reconstruct observation


‣ Predict reward


‣ Predict next latent state distribution


• Then performs RL in this model


‣ We really only need the rewards and transitions


‣ Reconstruction is an auxiliary task

[Hafner et al., Mastering Diverse Domains through World Models, 2023]
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The interface of a world model

• We would like a model where we can run RL algorithms


‣ That gives the same  as the world for all 


• But that’s not possible without seeing the observations


‣ But here we can’t run RL in imagination


• How to keep the imagination and interaction modes matched?


‣ Method 1: in imagination, predict  (or its embedding) and feed it back


‣ Method 2: keep  and  close

𝔼ξ∼pπ
[R(ξ)] π

ot+1

̂p(mt |a<t) 𝔼o≤t|a<t∼p[ ̂p(mt |o≤t, a<t)]

mt
at−1 rt

mt

at−1

ot

rt
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extensions: 
• Rainbow DQN 
• SQL 
• Mean DQN

Flowchart: which algorithm to choose?

on- / off-
policy?

action 
space?

robust to 
hyperparameters?

deterministic 
policy?

PPO A2C

DQN DDPG SAC

continuousdiscrete

on-policy off-policy

no, but turnkey yes

parallelization ⇒ A3C

deterministic stochastic

(2017) (2016)

(2015)

(2018)
(2017)

(2016) (2018)

(2022)

(2023)

Dreamer
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Why so many algorithms?
• We may have different modeling assumptions


‣ Is the environment stochastic or deterministic?


‣ Is the state / action space continuous or discrete?


‣ Is the horizon episodic or infinite?


• We may care about different tradeoffs


‣ Sample efficiency? Computational efficiency while learning / executing? Succinct representation?


‣ Algorithmic stability, reproducibility, ease of use (existing code), ease of adaptation


• Different difficulty to represent or learn in different domains


‣ Represent / learn a policy or a model?


‣ Discover structure? Memory? Transfer / share with other tasks? Non-stationarity / multi-agent?
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On- or off-policy data?

• The faster our simulator ⇒ the faster we can refresh our data


‣ And still keep sufficient diversity for training


• Fast enough ⇒ can use on-policy data


‣ No need for replay buffer


‣ No train test distributional mismatch (= covariate shift)


‣ Can still use off-policy algorithms with on-policy data


• Extremely slow simulator ⇒ not even off-policy, just offline RL

→
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Reward shaping

• Ideal reward:  for any suboptimal action  as hard to provide as 


‣ We need supervision signal that's sufficiently easy to program  generate more data


• Sparse reward functions may be easier than dense ones


‣ E.g., may be easy to identify good goal states, safety violations, etc.


• Reward shaping: art of adjusting the reward function for easier RL; some tips:


‣ Reward “bottleneck states”: subgoals that are likely to lead to bigger goals


‣ Break down long sequences of coordinated actions  better exploration


- E.g. reward beacons on long narrow paths, for exploration to stumble upon

r(s, a) = − ∞ ⟹ π*

⟹

⟹
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Logistics

assignments
• Exercise 1 is due next Wednesday (individual)


• Project proposals are due next Friday (team)

meetings
• Meet the instructor at least once by week 5


• Welcome to schedule as much as you need


