
Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

CS 175: Project in
Artificial Intelligence

Winter 2025
Reinforcement Learning

in a Nutshell

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Logistics

assignments
• Exercise 1 is due next Wednesday (individual)

• Project proposals are due next Friday (team)

meetings
• Meet the instructor at least once by week 5

• Welcome to schedule as much as you need

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Basic RL concepts
• State: ; action: ; reward:

• Dynamics: for stochastic; for deterministic

• Policy: for stochastic; for deterministic

• Trajectory:

• Return:

•
Value:

s ∈ 𝒮 a ∈ 𝒜 r(s, a) ∈ ℝ

p(st+1 |st, at) st+1 = f(st, at)

π(at |st) at = π(st)

pπ(ξ = s0, a0, s1, a1, …) = p(s0)∏
t

π(at |st)p(st+1 |st, at)

R(ξ) = ∑
t

γtr(st, at) 0 ≤ γ < 1

V(s) = 𝔼ξ∼pπ
[R |s0 = s]

Q(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Example: Table Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0

https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

extensions:
• Rainbow DQN
• SQL
• Mean DQN

Flowchart: which algorithm to choose?

on- / off-
policy?

action
space?

robust to
hyperparameters?

deterministic
policy?

PPO A2C

DQN DDPG SAC

continuousdiscrete

on-policy off-policy

no, but turnkey yes

parallelization ⇒ A3C

deterministic stochastic

(2017) (2016)

(2015)

(2018)
(2017)

(2016) (2018)

(2022)

(2023)

Dreamer

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Imitation Learning (IL)
• How can we teach an agent to perform a task?

• Often there is an expert that already knows how to perform the task

‣ A human operator who controls a robot

‣ A black-box artificial agent that we can observe but not copy

‣ An agent with different representation or embodiment

• The expert can demonstrate the task to create a training dataset

‣ Each demonstration is a trajectory

‣ Then the learner imitates these demonstrations

𝒟 = {ξ(i)}i

ξ = s0, a0, s1, a1, …

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

IL = Learning from Demonstrations (LfD)
• Teacher provides demonstration trajectories

• Learner trains a policy to minimize a loss

• For example, negative log-likelihood (NLL):

𝒟 = {ξ(1), …, ξ(m)}

πθ ℒ(θ)

arg min
θ

ℒθ(ξ) = arg min
θ

(−log pθ(ξ))

= arg max
θ (log p(s0) +

T−1

∑
t=0

log πθ(at |st) + log p(st+1 |st, at))
= arg max

θ

T−1

∑
t=0

log πθ(at |st)

model-free
= no need to know the environment dynamics p

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Behavior Cloning (BC)

• Behavior Cloning:

‣ Break down trajectories into steps

‣ Train using supervised learning

{ξ(1), …, ξ(m)} {(s(1)
0 , a(1)

0), …, (s(m)
Tm−1, a(m)

Tm−1)}

πθ : s ↦ a

observations
+

actions

training
data

𝒟 = {(s(i)
t , a(i)

t)}i,t

πθ(a |s)

max
θ

1
|𝒟 | ∑ log πθ(a |s)∑

(s,a)∈𝒟

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Behavior Cloning (BC)

• Benefits:

‣ Simple, flexible — can use any learning algorithm

‣ Model-free — never need to know the environment

• Drawbacks:

‣ Only as good as the demonstrator

‣ Only good in demonstrated states — how do we evaluate?

- Validation loss (on held out data)? Task success rate in rollouts?

training
data

supervised
learning

πθ(a |s)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

[Bojarski et al., 2016]

π(at |st)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Stochastic policies

• Learned models are often deterministic functions

• To implement a stochastic policy: output distribution parameters

• Examples:

‣ Discrete action space: categorical distribution

- ;

‣ Continuous action space: Gaussian distribution

- ;

fθ : x ↦ y

πθ : s ↦ {λa}a πθ(a |s) = softmaxaλa ∝ exp λa

πθ : s ↦ (μ, Σ) πθ(a |s) = 𝒩(μ, Σ)
π(at |st)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

π(at |st)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

ot−1 ot

observation action
π(at |ot)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

ALVINN

• Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)

[Pomerleau, 1989]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Inaccuracy in BC

• We could evaluate on held out teacher data, but really interested in using

• If the policy approximates the teacher

‣ The trajectory distribution will also approximate teacher behavior

• But errors accumulate over time

‣ May reach states not seen in the training dataset

πθ

πθ(at |st) ≈ π*(at |st)

pθ(ξ) ≈ p*(ξ)
no data here!

training
data

supervised
learning

πθ(a |s)

Image: Sergey Levine

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Modeling partially observable behavior

• Partial observations are not Markov

‣ Generally, this means

‣ Reactive policy may not be optimal

- May need , or even ; but how?

• Can use RNNs , or other memory models

• But memory state is latent in demonstrations

‣ Modeling memory is hard

p(ot+1 |ot, at) ≠ p(ot+1 |o≤t, a≤t)

πθ(at |ot)

πθ(at |o≤t) πθ(at |o≤t, a<t)

fθ : (ht−1, at−1, ot) ↦ ht

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Modeling memory

st+1stst−1

at−1 atagent

environment

ot−1 ot

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Modeling memory

• A common architecture:

‣ A recurrent model ; and an action model mt = fθ(mt−1, at−1, ot) πθ(at |mt)

st+1stst−1

at−1 at

agent

environment

ot−1 ot

mt−1 mt

πθ(mt, at |mt−1, at−1, ot)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Example: Breakout

→ → ← ←

+0 +1 +0 +0reward:

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Formulating reward: considerations

• We define , is that general enough?

• What if the reward depends on the next state ?

‣ If we only care about expected reward, define

• What if the reward is a random variable ?

‣ Define

‣ In practice we see ⇒ don't just assume you know =

r(s, a)

s′￼

r(s, a) = 𝔼(s′￼|s,a)∼p[r(s, a, s′￼)]

r̃

r(s, a) = 𝔼[r̃ |s, a]

r̃ r(s, a) r̃

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

RL objective: expected return

• We need a scalar to optimize

• Step 1: we have a whole sequence of rewards

‣ Summarize as return

• Step 2: is a random variable, induced by

‣ Take expectation

• can be calculated and optimized

{rt = r(st, at)}t≥0

R(ξ) = ∑
t≥0

γtr(st, at)

R(ξ) pπ(ξ)

Jπ = 𝔼ξ∼pπ
[R(ξ)]

Jπ

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

π(pick |available) = 1

r(available, pick) = 0

p(dropped |available, pick) = 0.1

0.9

0.9

0.1

(1, −10)

(1,3)

π(a |s) r(s, a)

1

donep(s′￼|s, a)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

1

done

0.1

ξ

pπ(ξ) = 1 ⋅ 0.9 ⋅ 1 ⋅ 0.9 = 0.81

R(ξ) = 0 + γ ⋅ 3 = 2.7

γ = 0.9

(1,0)

(1,3)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1 ξ

pπ(ξ) = 1 ⋅ 0.1 ⋅ 1 ⋅ 1 = 0.1

R(ξ) = 0 + γ ⋅ (−10) = −9

γ = 0.9

(1,0)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Monte Carlo (MC) policy evaluation

• Computing can be hard

‣ Exponentially many trajectories

‣ Model-based = requires , which may not be known

• Monte Carlo: estimate expectation using empirical mean

‣ Model-free = can sample with rollouts, without knowing

Jπ = 𝔼ξ∼pπ
[R(ξ)] = ∑

ξ

pπ(ξ)R(ξ)

p(s′￼|s, a)

Jπ ≈ 1
m ∑

i

R(ξ(i)) ξ(i) ∼ pπ

p

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Value function

• RL objective: maximize expected return

• We don't control , can break down:

‣ with the value function

• is the expected reward-to-go (= future return):

‣ For any , define

‣ Then

Jπ = 𝔼ξ∼pπ
[R]

s0 Jπ = 𝔼s0∼p[Vπ(s0) |s0]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

Vπ(s)

t0 R≥t0 = ∑
t≥t0

γt−t0r(st, at)

Vπ(s) = 𝔼ξ∼pπ
[R≥t0 |st0 = s]

future reward after being
in state in time s t0

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

MC for value-function estimation

• Why not use the same samples for non-initial states?

<latexit sha1_base64="DW1efNYNoycHV9Xvrsh+pI8UdRM=">AAADgniclZHPbtNAEMa3doFi/jSFI5cViaUUQWQX2l4QqtRLOCCVBqeVupG1dibOiPV6ZW/agpXH4Wm4woG3YW1MUWMkylw8nv2+b1a/jZTAQnvejzXLXr91+87GXefe/QcPNztbj8ZFtshjCOJMZPlpxAsQKCHQqAWcqhx4Ggk4iT4eVucn55AXmMkP+pOCScoTiTOMuTajcMt6wyJIUJYpSlQ8geVZPCm9wf4u03CpL3Cq50un0XCRZDnqebo8G04cFnNVhZTvDuksy+k5Fwt4MVvIuJpSKDSm9Za2H2MzG2muoXwrUSMX+Blob9wvtilLQBfU69WZXAjaKyhDSUc94zkGBVw7lDbuEU+VME52iZQVmFIVMoVGeaUI1NR86uzQM+k6o8d9I9+u4gKpUTgM5HTlbtcmzf8VIcdxbwLN/Ss19z+wtRKqu7m/Ibj/puDeCIPbcHDbINxVEu4KirDT9QZeXbTd+E3TJU0dhZ3n5jHVQpfTzOQ7LAcJF3GWptzkMj2HP8vKOt5fDWs3452Bvzd49X6nezBsFm2QJ+Qp6ROf7JMDMiRHJCCx9cX6an2zvtvr9jPbt1/+klprjecxuVb265/zzBqE</latexit>

Algorithm MC for value-function estimation
Initialize + (B) 0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (B0) ! '(b)

<latexit sha1_base64="RrI8XMvWiZOlrLrMc7U4rvG1Pck=">AAAD3XicnZFNb9NAEIa3MR/FfKVw5LIiKUokSJ0I6LVSL+GAVBqcVqoja+1MnBHr9cqetAUrR26IK+Kn8W9YO06rJpGomMuOXs+87/rZQEvMyHH+bNWsO3fv3d9+YD989PjJ0/rOs2GWzNIQ3DCRSXoaiAwkKnAJScKpTkHEgYST4Mth8f3kHNIME/WZvmoYxSJSOMFQkJH8ndrvXS+ACFUeo0ItIpifhaPc6ey/8wgu6QLHNJ3byyEhoyRFmsbzs/7IqKHQhU/+8ZBPkpSfCzmDN5OZCguVQ0YYl0EbHDAsxAEJgvyDQkIh8Rvw5rCVtbkXAWXcaZauQkrezLiHig+axdIxaBBk73Je7Q9ErKXZ9S6RexnGXPuexmL2asTVY3OU9r5jAijhxy0z3y4dXUUozQlqvHrDG9JSuIJl27fBt5HereHxVvWCvNde9ypu+T8YlxT/DXEjQ6oY+rkJ4TRfsLwOoiLcRJugBdx1tqtoV8j69YbTccri6023ahqsqiO//tr8m55RPk7C4mFSUHARJnEsjK9HU7jOykv77qrZejPsdbrvO28/9RoH/Spom71gL1mLddk+O2B9dsRcFlrMemXtWY7lW9+tH9bPxWhtq9p5zm6U9esv5fQ3Yg==</latexit>

Algorithm MC for value-function estimation (version 2)
Initialize + (B) 0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (BC) ! '�C (b) for all C � 0

“update LHS towards RHS”
i.e.
with learning rate

V(s0) += α(R(ξ) − V(s0))
α

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

MC with function approximation

• What if the state space is large?

‣ Can't represent as a big table

‣ Won't have enough data to estimate each

• Function approximation: represent

‣ , a parametric family of functions; for example, a neural network

• Generalization over state space ⇒ data efficiency

V(s)

V(s)

Vθ : S → ℝ

θ ∈ Θ

<latexit sha1_base64="QSXFq8KRCNPHSjQJbjW2aEX3GsQ=">AAAFQHiczZLPbtNAEMa3rYES/qVw5DIiqZRINHIioCekinIoEkilIWmlOlibzSRZsbZX9qQJWH4ArvBGvAVvwA1xRRxYO05Kk0ggISH2sqvPM983+1t3tZIR2fbntfUN69LlK5tXC9eu37h5q7h1ux0Fo1BgSwQqCE+6PEIlfWyRJIUnOkTudRUed9/sp9+PzzCMZOC/orcaOx4f+LIvBScjuVsbP7adLg6kH3vSl5oPMDkVndiu7T50CCc0lj0aJoVZEVeDIJQ09JLTg45RBdepT/xiH/pBCGdcjXCnP/JFqgJGJL0saIWDFKnYJE4YP/MlSa7kO4RyuxJVwRkgRWCXM1euFJQjcKQPzXLadIQaORW2AfL+Jve0Mr3ORIITSQ+062iZ1s5LWrpntszetU0ABXBUMfXVzLHlk1RmR7+3OOEFaSbMYRUK/4QfVPJHhEb1/2JJOUs3NjlAyZTpeRal+Sb9Lyn/CeSVjH9FPDYqzOlyrcNgMv9BVzFdhdR1aIjEzYVm7H6Pbl7xFCNhbgYmvuyY5KHgKn6e5J7w2LSNPDfOoSVQWQALOzAbYMq++rqRTjIluwx2kesCVrdYsmt2tmD5UM8PJZavQ7d43/w5ekRxLxDpq4To41gEnseNbzrXeVac2dcXzZYP7Uat/qj24GWjtPckD9pkd9k9VmF1tsv22AE7ZC0mLGG9tz5YH61P1hfrq/VtWrq+lvfcYReW9f0n+9e5/g==</latexit>

Algorithm MC with function approximation
Initialize +\

repeat
Sample b ⇠ ?c
Descend on L\ =

Õ
C�0('�C (b) �+\ (BC))2

with tabular representation:

same as in previous slide
V(st) += −α∇V(st)ℒ = 2α(R≥t(ξ) − V(st))

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Policy evaluation: example

pick up dish place dish clean floor

dish 1 available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

dish 2 available

0.1

⋯

trajectories = exponential in # dishes

(1,0)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

MC inefficiency
• The MC estimator is unbiased (correct expectation), but high variance

‣ Requires many samples to give good estimate

• But MC misses out on the sequential structure

• Credit assignment problem:

‣ Day 1: I take route 1 to work — 40 minutes; I take route 2 home — 10 minutes

‣ Day 2: I take route 3 to work — 30 minutes; I take route 4 home — 30 minutes

• Which route should I take to work?

‣ Route 1 → 50-minute daily commute, route 3 → 60-minute; is route 1 better?

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Dynamic Programming (DP)

• Dynamic Programming = remember reusable partial results

• Value recursion:

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

= 𝔼ξ∼pπ
[r(s0, a0) + γR≥1 |s0 = s]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼ξ∼pπ
[R≥1 |s0 = s, a0 = a]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[𝔼ξ∼pπ
[R≥1 |s1 = s′￼]]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

break down sum of rewards

first reward only depends on a

 is a state, all that matters for s′￼ R≥1

definition of Vπ(s′￼)

Richard Bellman

[Bellman, 1956]

Dynamic Programming (DP)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1

(1,0)

V(done) = 0

V(dropped) = 1 ⋅ (−10 + γ ⋅ (1 ⋅ V(done))) = −10

γ = 0.9

V(grasped) = 1 ⋅ (3 + γ ⋅ (0.9 ⋅ V(done) + 0.1 ⋅ V(dropped))) = 2.1

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

V(available) = 1 ⋅ (0 + γ ⋅ (0.9 ⋅ V(grasped) + 0.1 ⋅ V(dropped))) = −0.801

π(clean |dropped) r(dropped, clean) p(done |dropped, clean)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

DP + MC: Temporal Difference (TD)

• Policy evaluation with DP:

‣ Drawback: model-based = need to know

• MC: , where and

‣ Drawback: high variance

• Put together:

‣ where , , and in some trajectory

‣ In other words:

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

p

V(s) → R≥t(ξ) ξ ∼ pπ st = s

V(s) → r + γV(s′￼)

s = st r = r(st, at) s′￼ = st+1

V(s) ← V(s) + α(r + γV(s′￼) − V(s))
temporal difference
between and V(s′￼) V(s)

recursion from to
= backward in time!

s′￼ s

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Q function
• To approach when we update , we need on-policy data

‣ Roll out to see transition with reward

• On-policy data is expensive: need more every time changes

• Action-value function:

‣ Compare:

• Action-value backward recursion:

• Advantage: benefit of counterfactual

Vπ V(s) → r + γV(s′￼)

π (s, a) → s′￼ r

π

Qπ(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s] = 𝔼(a|s)∼π[Qπ(s, a)]

Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

Aπ(s, a) = Qπ(s, a) − Vπ(s) = a

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

The RL scheme

policy evaluation

policy improvement

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Q-learning

policy evaluation

policy improvement π(s) = arg max
a

Q(s, a)

Qπ(s, a) → r(s, a) + γVπ(s′￼)

Vπ(s′￼) = max
a′￼

Qπ(s′￼, a′￼)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

<latexit sha1_base64="Dh5J4Qw7EmT3dT7CY1s1Sa0A0Dk=">AAAI13ictVVbbxtFFN62QBZzS+GRlyOyi2OwIyei9AmpqGlIpQrqNm6LOsGanT22R92bZsZJzWrhDfGK+HX8FZ44s7ve2LFTtQjmxbMz53zn8n1zHGSR1Kbf/+va9Rtvvf3Olvtu6733P/jwo+2bHz/R6UwJHIo0StWzgGuMZIJDI02EzzKFPA4ifBq8uGvvn56h0jJNTsw8w9OYTxI5loIbOhrd3PqTBTiRSR7LRGZ8gsVzcZr3927fYgZfmnMZmmnRqm14NEmVNNO4eH582mKCZxYkH/QeIFeJTCbrllLQ2WPDDeb3E2kkj+TPCN7Aa449DWyCRnugUKMBbU/p9hFmyE0LoLY74S8QdBojcGHDgscJpLl+hALlGRLIOVcheGr58odAo6LLhEqqAoCn28sWwywsTwe7ugu8A8ykUNciqL3amtql4HPQ7bI3ORhU1DYeFcBYc/8llcPjmAOL+ctRztsFEGibUNsdcq5cUzNFdS41VrgMk7COs5zUxtaAHJfJN9G7gJG2BVXGUBbGhomRUasEXiVj5aT+bshvtfzX0YO/URB+o4jHPCbxJpOelWYIR9IY+hn07lPOpfA2QNjk/A1SYdQqY6n2F5LwmwaVcUgQEHAjpuDtsjMUuS66UG54QURqGRMVMwvQ+B0hpUMM090s4iZV9oOat4qjFji6aHdW/A9RC+obJRdzMxU8yh8UoypR+AYW3pelUOdkBUEfAVd55VIUi7zbTeKklR6ZVQYbyur8dFC2pKLZX+fZv0y0/78wfTj4/s257IJVs7fcglq7S2S/cjr47ChV97iY5jKxmqomgjaYFevy8HitAsy0jNLE600UCWAOYyLea5pMD5+JMDWrVH9HQS9mCnBiPb1qmlx4fRuSeTlKuqCoXNKPlZjCLOJzCGbjMVJodjc/LLwNGV8l53qzIkz4BdZxvPlILlq6MsX8ekzRtR1kI7lplC0ZbZpml8VrYa4cb/76fHuzdzQvXvkS6ofQQCL9283BO6Eky1QMV9SGovBKdejXkd5/MX99di8JSaP/6mmOtnf6e/1ywfpmv97sOPV6ONruMplkM5OHKeG3mMIEz0VKvBGuLewiWF7C718GW988Odjb/3rvq8HBzp3jOpDrfOp85uw6+85t545z7Dx0ho7Y+tsFt+N+4f7o/ur+5v5emV6/Vvt84qws949/AH3N8Fw=</latexit>

Algorithm Q-Learning

Initialize &
B reset state

repeat
Take some action 0
Receive reward A
Observe next state B0

Update&(B, 0) !
(
A B0 terminal

A + W max00 &(B0, 00) otherwise

B reset state if B0 terminal, else B B0

Q-Learning

[Watkins and Dayan, 1992]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

After the break:
Deep RL

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Experience policy

• Which distribution should the training data have?

‣ The policy may not be good on other distributions / unsupported states

‣ ⇒ ideally, the test distribution for the final

• On-policy methods (e.g. MC): must use on-policy data (from the current

• Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)

‣ But both should eventually use or suffer train–test distribution mismatch

pπ π

π)

pπ

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Exploration policies
• Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}

‣ Suppose route 1 really has expected time 30min, should you commit to it forever?

• To avoid overfitting, we must try all actions infinitely often

• -greedy exploration: select uniform action with prob. , otherwise greedy

• Boltzmann exploration:

‣ Becomes uniform as the inverse temperature , greedy as

ϵ ϵ

π(a |s) = soft max
a

(Q(s, a); β) =
exp(βQ(s, a))

∑ā exp(βQ(s, ā))

β → 0 β → ∞

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Experience replay
• On-policy methods are inefficient: throw out all data with each policy update

• Off-policy methods can keep the data = experience replay

‣ Replay buffer: dataset of past experience

‣ Diversifies the experience (beyond current trajectory)

• Variants differ on

‣ How often to add data vs. sample data

‣ How to sample from the buffer

‣ When to evict data from the buffer, and which

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Why use target network?
• Fitted-Q loss:

• Target network = lagging copy of

‣ Periodic update: every steps

‣ Exponential update:

• is more stable

‣ Less of a moving target

‣ Less sensitive to data ⇒ less variance

• But introduces bias

ℒθ = (r + γ max
a′￼

Qθ̄(s′￼, a′￼) − Qθ(s, a))2

Qθ(s, a)

θ̄ ← θ Ttarget

θ̄ ← (1 − η)θ̄ + ηθ

Qθ̄

θ̄ ≠ θ

no gradient from the target term

Qθ(s, a)

r + γ max
a′￼

Qθ̄(s′￼, a′￼)

square lossupdate

s′￼

s

stop gradient

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Putting it all together: DQN

policy evaluation

policy improvement

fitted-Q loss
ℒθ = (r + γ max

a′￼

Qθ̄(s′￼, a′￼) − Qθ(s, a))2

greedy policy
π(s) = arg max

a
Q(s, a)

exploration
e.g. -greedyϵ

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

<latexit sha1_base64="ivZhiA3FiKZDfZXNKOLLTQwENgo=">AAAI13icrVVLb9tGEGYerVn15STHXgY1U1mtZMhGHqcCKeI4CRC0UWIlKUJXWC5H0iLkkthd2VEJIrei16K/Ln+lp86SFFVKcpCg2YuWs7PfPL5vR0EaCW36/bcXLl66/MmnW+5nrc+/+PKrr7evXH2mk5niOORJlKgXAdMYCYlDI0yEL1KFLA4ifB68umvPn5+i0iKRx2ae4knMJlKMBWeGTKMrW39f9wOcCJnFQoqUTTB/yU+y/t7tm77B1+ZMhGaatxZOLJokSphpnL98cEJWzlKLkw16j5ApKeRkg6/g1vjUMIPZQymMYJH4HcEbeEu7p8GfoNEeKNRoQFurPX6CKTLTug5QeR6zVwg6iREYt7HBYxanPn+CHMUpEs4ZUyF4qnH6S6BR0amk2sog4Ol2w2WYhoV5sKu7wDrgmwSqkjh1Whe+din4DnS7aFMGBhV1kEU5+P7S4QeqisUxAz9mr0cZa+dAsG3CbXfodnk3MVNUZ0JjheyjDKtQjcQ29gjEuKigTqALGGlbVekMZXX+UBoR0a/FXmGmYVoYajm0Wh9FIU9ZTHqWk55VawhHwhj6GfQeUt6FFj9AOD41zBSsr8ujiEPagIAZPgVv1z9Fnum8C8WG5USoFjERMms09wgpHWKazmYRM4myH9TAJo5a4Oi83WncP0TNqW+UXMzMlLMoe5SPykThR1jcXhVElZOVBX0ETGXllTxf5N2uEyfF9MitdNhQVue3g//L9PsQvZHnmubDwc/rLjb4+TR2wYrZ+2/1lXRrnt89JPyjRN1jfJoJacVUTgVtMM1bq7LwWMU+plpEifR6E0XEz2FMhHt1c+nh+zxMjKW4hrhPEZdDBRiRnZw3TepLP4XkXQySLiiqlFRjhaUwjdgcgtl4jBTYv5sd5t56uudpuNo01FgVtorkzUdi0c7GEKtGFJ3aKTYSm+bY0mfTIFtVrEU5d7KtD7YPejrz/J3iL7VfIyL95c3BO6YMizwMU9SBPPcKWej3UNzHGLr+PRmSNFvrL3H1Ia68w9H2Tn+vXyxY3+xXmx2nWo9H211fyHRmsjDh9hkrlHjGE+KLcG1Ny1hZAb+/Cra+eXawt39r78bgYOfOURXIdb5xvnV2nX3ntnPHeeA8doYO3/rHBbfjfu/+6r5x/3D/LF0vXqjuXHMay/3rXxLv8RI=</latexit>

Algorithm DQN
Initialize \, set \̄ \

B reset state
for each interaction step

Sample 0 ⇠ n-greedy for &\ (B, ·)
Get reward A and observe next state B

0

Add (B, 0, A, B0) to replay buffer D
Sample batch (ÆB, Æ0, ÆA, ÆB0) ⇠ D

H8
(
A8 B

0
8
terminal

A8 + W max00 &\̄
(B0

8
, 0
0) otherwise

Descend L\ = (ÆH �&\ (ÆB, Æ0))2

every)target steps, set \̄ \

B reset state if B0 terminal, else B B
0

Deep Q-Learning (DQN)

[Mnih et al., 2015]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Value-based vs. policy-based methods

policy evaluation

policy improvement

Qθ(s, a)

arg max
a

Qθ(s, a)

value-based

πθ(a |s)

𝔼ξ∼pθ
[R(ξ)]

policy-based

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Policy Gradient (PG)

• Gradient-based learning:

‣ Expectation gradient = expected gradient, estimate with samples

• Policy-Gradient RL: , with

‣ Can we also use samples to estimate ?

• The sampling distribution itself depends on

‣ Problem 1: data must be on-policy

‣ Problem 2: cannot backprop gradient through samples

θ → θ − ∇θ𝔼x∼D[ℒθ(x)]

θ → θ + ∇θJθ Jθ = 𝔼ξ∼pθ
[R]

ξ ∼ pθ ∇θJθ

θ

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Score-function gradient estimation

• Log-derivative + chain rule:

• Log-derivative / score-function / REINFORCE trick:

‣ Allows estimating using samples

∇θlog pθ(ξ) =
1

pθ(ξ)
∇θ pθ(ξ)

∇θJθ = ∑
ξ

R(ξ)∇θ pθ(ξ)

= ∑
ξ

R(ξ)pθ(ξ)∇θlog pθ(ξ)

= 𝔼ξ∼pθ
[R(ξ)∇θlog pθ(ξ)]

∇θJθ ξ ∼ pθ

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

REINFORCE
• To find , sample , then:

‣ Model-free, but on-policy and high variance (like MC)

∇θJθ = 𝔼ξ∼pθ
[R(ξ)∇θlog pθ(ξ)] ξ ∼ pθ

∇θlog pθ(ξ) = ∇θ(log p(s0) + ∑
t

log πθ(at |st) + log p(st+1 |st, at))
= ∇θ ∑

t

log πθ(at |st)

<latexit sha1_base64="mrDLueFLsBjaif9qKVqsrbFlCDs=">AAACjHicZZDPbtNAEMbX5l8xUFI4clmRHlIJRU5V6KGqVKm0Si9QDG4rdSNrbQ/OiPXuyp40LSbPxNNw4AKvwqZYqdrMZWdnft83s5tahTWF4W/Pv3f/wcNHK4+DJ0+frT7vrL04qc2kyiDOjDLVWSprUKghJiQFZ7YCWaYKTtNv+/P+6QVUNRr9ha4sjEpZaPyKmSRXSta8oUihQN2UqNHKAmbn2agJ+9tvBcElTTGn8SxoGakKUyGNy9n5cBSITNq5SRMdHH04/BjtHyyDmLnaZ5IEzZFGQqnwO/B1YTERNAaS664fgQVJAectGRmluJmQ4y6RixpLbm/wBRbb3B186ubwopI5gnaSgosCqOZRz4k3nHpSJsSFlqmSrQkXyjhssUNPOuIHrxPamK8Ta0IVCND5nXfcqrT3xbcFSacb9sPr4MvJoE26rI3jpPNGoLYTanLj3ANRgYZpZspSOt/5Zjezmmv7wV2z5eRksz9419/6tNnde98OWmGv2GvWYwO2zfbYkB2zmGXeT++X98f766/6W/6Ov/sf9b1W85LdCv/wH3tkxNU=</latexit>

Algorithm REINFORCE

Initialize c\
repeat

Roll out b ⇠ ?\
Update with gradient 6 '(b)ÕC r\ log c\ (0C |BC)

[Williams, 1992]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

actor
uses critic to improve

πθ(a |s)

Actor–Critic (AC) methods

policy evaluation

policy improvement

critic
evaluates actor

Qϕ(s, a)

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Advantage Actor–Critic (A2C)

<latexit sha1_base64="mlNMMjSOTLTR9jtlPYMVZ8E0fyI=">AAAOPHic7VZNb9NAEJ0WKCVgaOmRi0WKlKolSiI+TkhFLVAkPtLQuJVIiRx7SVb4S7bTFtIcucI/4n9w54a4cubt2qR23bQ5tLQgHHk9O/v2zc7sPCktz+JBWCp9HRs/d/7CxMXJS7nLV5Sr16amr2uB2/UNVjdcy/U3WnrALO6weshDi214PtPtlsXWW++WxPr6FvMD7jpr4XuPbdp62+FvuaGHcLnTE7t0ixrUIkZt4uRQj2z55eSRDh+jPr0mgzaxUqIi3ae7wIfw72DcBs7EtwNULsOkkwXbJR9zgbEl1wq4IqwBhIcVDozA1+gRPaUX9Jhewl7CbDRWDqbfyFfw6fJ8PXA5EsPlHk4f4FVpFigPs6bMowOf2DE7YKjB4+EVLMKj4pfmrSG6hZ+Kbxe+iHMHnAIZ4GvD8oZEyPLVgTXjmSprKnapyNKH18ScIZMoTlvubkvOAHaNCnHsuTh6F9GbEt3ALh21szCmzyLWLJw+YstWoyB3CI5dvIG05xI1qsvzcHBEc3E+88i7GY7aj8j2YO6ATji9Tn0ITyjw6gz61I+7zECtqvQEY4FWMW4hgi/7Qeya+6PdrGIUtRSIVbnqYZWfoT4ffvI9BWT7Pd3hycwKcZ8uyNyjjj05DRydXbrqyayeo2dUeecqrdHyf1WNrCrtDKlK+2dVVcDrx/Z8jNSxakvVaBnN9YCcpzJOKBR3uqrT/hLVHZfmRlfcQXozoSZd5h/FVYdqcJRYe7iTUth+fR2vukbR1jIsa9DJ6b4+TE81qZNGXOUQ8ZL/224fqKvwhPWUzVdkF+AW2eAOniVOpdKDY8/tDVUGd5tU4ig6PEqFh2qwOZUvFUvyUbNGOTbyFD/V5tRCgzteN+yZrtHP5Ro+c9i24dq27pi9RthhutV2fR527H6vL+jL+8myhlYplu8V76xW8osrcaBJukE3UaQyZL8I6VZRFkNpKh+VT8pn5YvyTfmu/Iig42PxnhlKPcrPX+fhmuM=</latexit>

Algorithm Advantage Actor–Critic
Initialize c\ and +q

repeat
Roll out b ⇠ ?\
Update �\ Õ

C ('�C (b) �+q (BC))r\ log c\ (0C |BC)
Descend !q =

Õ
C ('�C (b) �+q (BC))2

[Mnih et al., 2016]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Importance Sampling

• Suppose you want to estimate

‣ but only have samples

• Importance sampling:

‣ Importance (IS) weights:

‣ Estimate: with

𝔼x∼p[f(x)]

x ∼ p′￼

𝔼x∼p[f(x)] = 𝔼x∼p′￼[p(x)
p′￼(x)

f(x)]
ρ(x) =

p(x)
p′￼(x)

ρ(x)f(x) x ∼ p′￼

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Finding best next policy

• Performance Difference Lemma:

‣ Idea: with current policy , find by maximizing the RHS

• Step 1: use to evaluate ; step 2: estimate

‣ But we don't have data ; idea: sample from

• When is it reasonable to use instead? i.e. drop

‣ Intuitively, when is small

Jπ − Jπ̄ = ∑
t

γt𝔼(st,at)∼pπ
[Aπ̄(st, at)]

π̄ max
π

Jπ − Jπ̄

π̄ Aπ̄ 𝔼(st,at)∼pπ
[Aπ̄(st, at)]

(st, at) ∼ pπ π̄

max
π ∑

t

γt𝔼ξ≤t∼pπ̄
[ρπ

π̄(ξ≤t)Aπ̄(st, at)]

ρπ
π̄(at |st) =

π(at |st)
π̄(at |st)

ρπ
π̄(ξ<t) = ∏

t′￼<t

π(at′￼|st′￼)

π̄(at′￼|st′￼)

𝔻[π̄θ(a |s)∥π(a |s)]

high variance!

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Proximal Policy Optimization (PPO)

• Idea: ascend with staying near

‣ PPO-Penalty: add a penalty term for

‣ PPO-Clip: ascend with

• Positive / negative advantage ⇒ increase / decrease

‣ But no incentive beyond

𝔼(s,a)∼pθ̄
[ρθ

θ̄(a |s)Aθ̄(s, a)] πθ πθ̄

𝔼s∼pθ̄
[𝔻[πθ̄(a |s)∥πθ(a |s)]]

𝔼(s,a)∼pθ̄
[Lθ

θ̄(s, a)]

Lθ
θ̄(s, a) = min(ρθ

θ̄(a |s)Aθ̄(s, a), Aθ̄(s, a) + |ϵAθ̄(s, a) |)

ρθ
θ̄(a |s) =

πθ(a |s)
πθ̄(a |s)

ρθ
θ̄(a |s) = 1 ± ϵ

• no incentive ≠ doesn't happen
• PPO has lots more tricks to

limit divergence
[Schulman et al., 2017]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more…

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Bounded optimality
• Bounded optimizer = trades off value and divergence from prior

• is the tradeoff coefficient between value and relative entropy

‣ As , the agent will fall back to the prior

‣ As , the agent will be a perfect value optimizer

• Early in training, should be finite to avoid overfitting

• Bellman recursion:

π0(a |s)

max
π

𝔼(s,a)∼pπ
[r(s, a)] − τ𝔻[π∥π0] = max

π
𝔼(s,a)∼pπ [r(s, a) − τ log π(a |s)

π0(a |s)]
τ = 1

β

τ → ∞ π → π0

τ → 0 π → π*

τ

V(s) = max
π

𝔼(a|s)∼π [r(s, a)−τ log π(a |s)
π0(a |s) +γ𝔼(s′￼|s,a)∼p[V(s′￼)]]

optimal π ∝ π0 exp(βQ(s, a))

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Soft Actor–Critic (SAC)

• Optimally:

• In continuous action spaces, we can't explicitly softmax over

• We can train a critic off-policy

• And a soft-greedy actor = imitate the critic

• Can optimize to match a target entropy

π(a |s) =
π0(a |s)exp βQ(s, a)

exp βV(s) V(s) = Q(s, a)− 1
β log π(a |s)

π0(a |s)

Q(s, a) a

Lϕ(s, a, r, s′￼, a′￼) = (r + γ (Qϕ̄(s′￼, a′￼)− 1
β log

πθ(a′￼|s′￼)
π0(a′￼|s′￼)) − Qϕ(s, a))

2

Lθ(s) = 𝔼(a|s)∼πθ
[log πθ(a |s) − log π0(a |s) − βQϕ(s, a)]

τ Lτ(s, a) = − τ log πθ(a |s) − τH

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Dreamer

• Dreamer learns a latent state process to

‣ Reconstruct observation

‣ Predict reward

‣ Predict next latent state distribution

• Then performs RL in this model

‣ We really only need the rewards and transitions

‣ Reconstruction is an auxiliary task

[Hafner et al., Mastering Diverse Domains through World Models, 2023]

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

The interface of a world model

• We would like a model where we can run RL algorithms

‣ That gives the same as the world for all

• But that’s not possible without seeing the observations

‣ But here we can’t run RL in imagination

• How to keep the imagination and interaction modes matched?

‣ Method 1: in imagination, predict (or its embedding) and feed it back

‣ Method 2: keep and close

𝔼ξ∼pπ
[R(ξ)] π

ot+1

̂p(mt |a<t) 𝔼o≤t|a<t∼p[̂p(mt |o≤t, a<t)]

mt
at−1 rt

mt

at−1

ot

rt

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

extensions:
• Rainbow DQN
• SQL
• Mean DQN

Flowchart: which algorithm to choose?

on- / off-
policy?

action
space?

robust to
hyperparameters?

deterministic
policy?

PPO A2C

DQN DDPG SAC

continuousdiscrete

on-policy off-policy

no, but turnkey yes

parallelization ⇒ A3C

deterministic stochastic

(2017) (2016)

(2015)

(2018)
(2017)

(2016) (2018)

(2022)

(2023)

Dreamer

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Why so many algorithms?
• We may have different modeling assumptions

‣ Is the environment stochastic or deterministic?

‣ Is the state / action space continuous or discrete?

‣ Is the horizon episodic or infinite?

• We may care about different tradeoffs

‣ Sample efficiency? Computational efficiency while learning / executing? Succinct representation?

‣ Algorithmic stability, reproducibility, ease of use (existing code), ease of adaptation

• Different difficulty to represent or learn in different domains

‣ Represent / learn a policy or a model?

‣ Discover structure? Memory? Transfer / share with other tasks? Non-stationarity / multi-agent?

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

On- or off-policy data?

• The faster our simulator ⇒ the faster we can refresh our data

‣ And still keep sufficient diversity for training

• Fast enough ⇒ can use on-policy data

‣ No need for replay buffer

‣ No train test distributional mismatch (= covariate shift)

‣ Can still use off-policy algorithms with on-policy data

• Extremely slow simulator ⇒ not even off-policy, just offline RL

→

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Reward shaping

• Ideal reward: for any suboptimal action as hard to provide as

‣ We need supervision signal that's sufficiently easy to program generate more data

• Sparse reward functions may be easier than dense ones

‣ E.g., may be easy to identify good goal states, safety violations, etc.

• Reward shaping: art of adjusting the reward function for easier RL; some tips:

‣ Reward “bottleneck states”: subgoals that are likely to lead to bigger goals

‣ Break down long sequences of coordinated actions better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

r(s, a) = − ∞ ⟹ π*

⟹

⟹

Roy Fox | CS 175 | Winter 2025 | RL in a Nutshell

Logistics

assignments
• Exercise 1 is due next Wednesday (individual)

• Project proposals are due next Friday (team)

meetings
• Meet the instructor at least once by week 5

• Welcome to schedule as much as you need

