
CS 175 (W26): Project in Artificial Intelligence
Exercise 1
Due date: Wednesday, January 21, 2026 (Pacific Time)
Roy Fox
https://royf.org/crs/CS175/W26

In this exercise, you will familiarize yourself with HPC3. HPC3 is a shared-computing cluster at
UCI that you can use for project experiments in this course. HPC3 efficiently manages the execution
and prioritization of the jobs running on it using the Slurm job scheduling system.

Part 1 Getting an HPC3 Account
To begin your journey with HPC3, obtaining an account is the initial step. If you have already
enrolled in the class, your account should already be created and available to use, allowing you to
proceed to the next step. If your account has yet to be created for some reason, reach out to us on the
discussion boards. Please include your name and your UCINetID.

Part 2 Login to the Server
With an HPC3 account, use ssh for establishing a connection to the server. You will need the login
server name, username, and password. The login server name is hpc3.rcic.uci.edu and the username
and password are your UCINetID credentials (not your ICS credentials). Connect to the server by
executing the following command (with your username instead of panteater) in the terminal (or
PuTTY for windows). Subsequently, you will be prompted to enter ‘1’ for DUO authentication. If
you’re not on UCI’s network, you’ll likely to need to connect to it first using the UCI VPN.

ssh panteater@hpc3.rcic.uci.edu

Note that throughout these instructions we are using ‘panteater’ for the username and you should
replace this with your UCINetID.
Once you log in, you will have a bash session on HPC3’s login node. The login node at
hpc3.rcic.uci.edu should be primarily used to schedule jobs on the compute nodes via Slurm.
If you try to run compute-heavy operations on the login node, they will most likely have issues or
fail.

Part 3 Server Configuration
The most straightforward approach for managing and installing software and packages on the server
is through Conda.

https://royf.org/crs/CS175/W26
https://slurm.schedmd.com/documentation.html
https://edstem.org/us/courses/90783
https://uci.service-now.com/sp?id=kb_article_view&sysparm_article=KB0012170

Part 3.1 Creating Conda Environments
Conda comes pre-installed on your server by default. To get access to conda, you must load its
module. The provided instructions are derived from this source, albeit with some modifications.

1. Since Conda environment creation may be compute-intensive, start an interactive Slurm job
on a compute node by running

srun -c 2 -p free --pty /bin/bash -i

This can take a few seconds for the system to schedule this job.

2. Load the Conda dependency with

module load anaconda/2024.06

At this step, to confirm whether Conda environment variables have been configured for your
account, execute the following command, and the output should resemble the following.

conda --version
conda 24.5.0

3. Verify conda info by running the following command

conda info
active environment : None
user config file : /data/homezvol3/panteater/.condarc

populated config files :
conda version : 24.5.0

conda-build version : 24.5.1
python version : 3.12.4.final.0
virtual packages : __linux=5.14.0=0

__glibc=2.34=0
__unix=0=0
__archspec=1=sapphirerapids

base environment : /opt/apps/anaconda/2024.06 (read only)
conda av data dir : /opt/apps/anaconda/2024.06/etc/conda

conda av metadata url : None
channel URLs : https://repo.anaconda.com/pkgs/main/linux-64

https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/linux-64
https://repo.anaconda.com/pkgs/r/noarch

package cache : /opt/apps/anaconda/2024.06/pkgs
/data/homezvol3/panteater/.conda/pkgs

envs directories : /data/homezvol3/panteater/.conda/envs

https://rcic.uci.edu/software/user-installed.html#install-with-conda

/opt/apps/anaconda/2024.06/envs
platform : linux-64
user-agent : conda/24.5.0 requests/2.32.2 CPython/3.12.4..
UID:GID : 1234567:1234567

netrc file : None
offline mode : False

Inspect the entries for package cache and environment directories in the preceding output.
Each category should consist of two lines: one indicating the system’s installed location (lines
beginning with /opt/apps) and the other corresponding to your home path (lines beginning
with /data/homezvol. . .). If any entries are absent, pointing to your user area, you’ll need
to create a file in your $HOME directory using your preferred text editor. Name the file
‘.condarc’, and substitute the placeholders with your version, home directory, and username in
the following content:

pkgs_dirs:
- /data/homezvol3/panteater/.conda/pkgs
- /opt/apps/anaconda/2024.06/pkgs
envs_dirs:
- /data/homezvol3/panteater/.conda/envs
- /opt/apps/anaconda/2024.06/envs

4. Initialize Conda for your shell by

conda init bash

This appends several lines to your ∼/.bashrc. These lines should be positioned at the end
of your ∼/.bashrc file, delineated by the commencement and conclusion markers "conda
initialize," encapsulating all lines within this delineation.

»> conda initialize »>
!! Contents within this block are managed by ’conda init’ !!
<some lines are cut here>

__conda_setup="$(’/opt/apps/anaconda/2024.06/bin/conda’ ’shell.bash’ ’hook’
2> /dev/null)"
if [$? -eq 0]; then
eval "$__conda_setup"

else
if [-f "/opt/apps/anaconda/2024.06/etc/profile.d/conda.sh"]; then
. "/opt/apps/anaconda/2024.06/etc/profile.d/conda.sh"

else
export PATH="/opt/apps/anaconda/2024.06/bin:$PATH"

fi
fi

unset __conda_setup
«< conda initialize «<

Please be aware that your lines may exhibit slight variations contingent upon the conda module
utilized. This ensures that conda is incorporated into your environment variables every time
you log in to your server.
conda init may have directed you to close and create a new shell for changes to take effect.
Close the current shell and create a new interactive Slurm job (as in Step 1).

5. Now, you are prepared to create your local Conda environment. Proceed to create a local
environment named rl as below.

conda create -n rl python=3.11

In case you encounter a permission error, ensure that Step 3 has been executed accurately.

6. Finally, activate your environment and commence the installation of requisite packages.

conda activate rl

For an exhaustive guide on managing Conda environments, refer to this link.

Part 3.2 Installing and starting JupyterHub
Throughout the course, there may arise a need to install new packages. For now, we will install
‘jupyterlab’ to initiate a Jupyter Notebook server on your account. Following the activation of your
local Conda environment, execute the following command to install ‘jupyterlab’.

conda install jupyterlab

Once ‘jupyterlab’ has been successfully installed on your server, you can start a Jupyter server by
executing the following command.

jupyter lab --no-browser --ip=$(hostname) --port=8888
...
To access the server, open this file in a browser:
file:///data/homezvol2/panteater/.local/share/jupyter/runtime/jpserver-3512235-open.html

Or copy and paste one of these URLs:
http://login-i17:8888/?token=xxx
or http://127.0.0.1:8888/?token=xxx

...

This initiates the server on the hostname ‘login-i17’ (highlighted above) at port 8888 on your server.

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Bear in mind that the hostname may vary each time you log in, and the port may change depending
on which ports are already in use.

You may not be able to access the server’s hostname directly from your machine. In which
case, you can connect to the JupyterHub server hosted by HPC3 by executing the following command
from your local machine (replace the hostname and port accordingly).

ssh -N -L 8888:login-i17:8888 panteater@hpc3.rcic.uci.edu

This creates an ssh tunnel so that any traffic sent to localhost:8888 on your local machine is forwarded
to login-i17:8888. To access the server, visit http://127.0.0.1:8888 on your browser. Enter the
provided token (highlighted above) for server access on each occasion. Alternatively, you can
establish a password initially, enabling subsequent access without the need for a token each time you
connect.

JupyterHub server provides you a simple way to upload, download and edit the files on the server.
Also, you can use terminals provided by the server to run your programs.

Part 4 Slurm
HPC3 employs Slurm to execute submitted jobs within the cluster. Jobs fall into two categories: free
or allocated. Free jobs may be terminated at any time to release resources for allocated jobs, whereas
allocated jobs are assured completion and operate based on the current queue status. Further details
about the Slurm workload manager can be found at this link.

Part 4.1 Partitions
There are multiple free and allocated partitions available on HPC3. The complete list of partitions
along with the available resources can be found here. For this course, we only need free-gpu or gpu.
free-gpu is a free partition with GPU cores that you can use anytime. However, jobs in free-gpu
might be terminated by the Slurm workload manager to free resources for allocated jobs. gpu is an
allocated partition, and each student enrolled in this course is assigned 50 hours for completing the
exercises throughout the quarter. If you run out, please let the course staff know.

Important. It is recommended to utilize either free partitions (gpu or cpu) or your local machine
for the debugging process, and to use free-gpu as much as possible unless your jobs get terminated,
to prevent unnecessary consumption of your allocated GPU quota.

Part 4.2 Submitting a sample Job
Here, we provide a sample bash file that you can use for submitting your jobs to the cluster. Create a
file named submit.sh and place the following content in the file.

https://rcic.uci.edu/slurm/slurm.html#slurm-workload-manager
https://rcic.uci.edu/slurm/slurm.html#partitions-structure

#!/bin/bash
#SBATCH -A cs175_class_gpu ## Account to charge
#SBATCH --time=04:00:00 ## Maximum running time of program
#SBATCH --nodes=1 ## Number of nodes.

Set to 1 if you are using GPU.
#SBATCH --partition=gpu ## Partition name
#SBATCH --mem=8GB ## Allocated Memory
#SBATCH --cpus-per-task=16 ## Number of CPU cores
#SBATCH --gres=gpu:V100:1 ## Type and the number of GPUs

Don't change the GPU numbers.
Follow https://rcic.uci.edu/hpc3/specs.html#specs
to see all available GPUs.

srun python main.py

The bash file above defines the resources required for your program (in this case, python
main.py). Since it use ‘gpu’ partition, the job will consume your GPU quota from the ac-
count cs175_class_gpu. If you would like to use the free GPU partition instead, you can replace
‘gpu’ with ‘free-gpu’ in the partition setting.

In cases where your compute-intensive jobs don’t use GPU, you can use the cs175_class
account with the free, standard, highmem, or hugemem partitions. The cs175_class account
has it own quota tracked separately from the cs175_class_gpu account.

Use the following main.py as an example RL python script:

import gymnasium as gym
from stable_baselines3 import A2C

env = gym.make("CartPole-v1", render_mode="rgb_array")
model = A2C("MlpPolicy", env, verbose=1, device="cuda")
model.learn(total_timesteps=10_000)

The provided example utilizes the stable_baselines3 package to learn a policy with Advantage
Actor Critic method for the cart pole environment. To install the package, use the following command
with the rl Conda environment activated:

pip install stable_baselines3

Then you can submit your job to the cluster by

sbatch submit.sh

This will submit your job to the cluster, and you can view the program’s output in a file named
slurm-<job_id>.out. To determine if your program utilized a GPU (when using gpu partitions),
inspect the first few lines of the output file; it should indicate "Using cuda device."

To view the status of your jobs:
squeue -u $USER
JOBID PARTITION NAME USER ACCOUNT ST TIME CPUS NODE NODELIST(REASON)
26788573 gpu submit.sh panteater cs175_clas PD 0:00 1 1 (Resources)

If you want a live display of your current jobs, you can pair squeue with watch to rerun the
command every few seconds:

watch squeue -u $USER

To stop a job:

scancel <jobid>

For a complete guide to Slurm commands you can visit here.

Part 5 Exercise Submission
To submit this assignment and receive credit for it, on Canvas, submit a .jpg or .png screenshot
of your terminal showing both your username in the shell prompt and the output for the last
iteration of the main.py script like below. 10,000 total timesteps should have been collected:

Part 6 Visual Studio Code (Optional)
Connecting to your server through VSCode is also possible, there are two options for using VSCode
to connect to the server and run your code.

https://slurm.schedmd.com/quickstart.html#commands

• Requesting an interactive node to run programs through VSCode is an option, and detailed
instructions for this approach are provided in this link.

• Using VSCode primarily as an editor and file manager to connect to the server. However,
to execute programs, you still need to submit the job via ‘sbatch‘ as illustrated in Section
Part 4.2. To connect to your server using VSCode, refer to this link, and set the hostname
as panteater@hpc3.rcic.uci.edu with the password being your UCINetID password.
Subsequently, you will be prompted to enter ‘1’ for DUO authentication.

Part 7 Reference
https://rcic.uci.edu/index.html

https://rcic.uci.edu/account/login.html#using-vscode
https://code.visualstudio.com/docs/remote/ssh
https://rcic.uci.edu/index.html

	Getting an HPC3 Account
	Login to the Server
	Server Configuration
	Creating Conda Environments
	Installing and starting JupyterHub

	Slurm
	Partitions
	Submitting a sample Job

	Exercise Submission
	Visual Studio Code (Optional)
	Reference

