

CS 175: Project in Artificial Intelligence

Winter 2026

Introduction

Roy Fox
Department of Computer Science
School of Information and Computer Sciences
University of California, Irvine

Today's lecture

Course overview

What is a project

What is reinforcement learning

Project ideas

Learning goals

Practice AI/ML

- Be creative about what problem to solve
- Get a feel for what's practical to solve and how
- Implement and debug a machine learning pipeline
- Design and implement a complex software system
- Use modern software practices
- Experience collaborative software development
- “Sell” your ideas in writing, figures, and presentation
- Present your project in a convincing manner
- Document and maintain a project website

Software Engineering

Presentation Skills

Lectures and assignments

- Lectures in weeks 1 and 2
 - ▶ Overview of project expectations and ideas
 - ▶ Introduction of general principles of reinforcement learning (RL) in a nutshell
- Exercises due in weeks 3 and 4
 - ▶ Install one project platform
 - ▶ Implement and experiment with basic RL algorithm
- Sync-up in week 5
 - ▶ Discuss common issues and challenges, share thoughts

Project reports and meetings

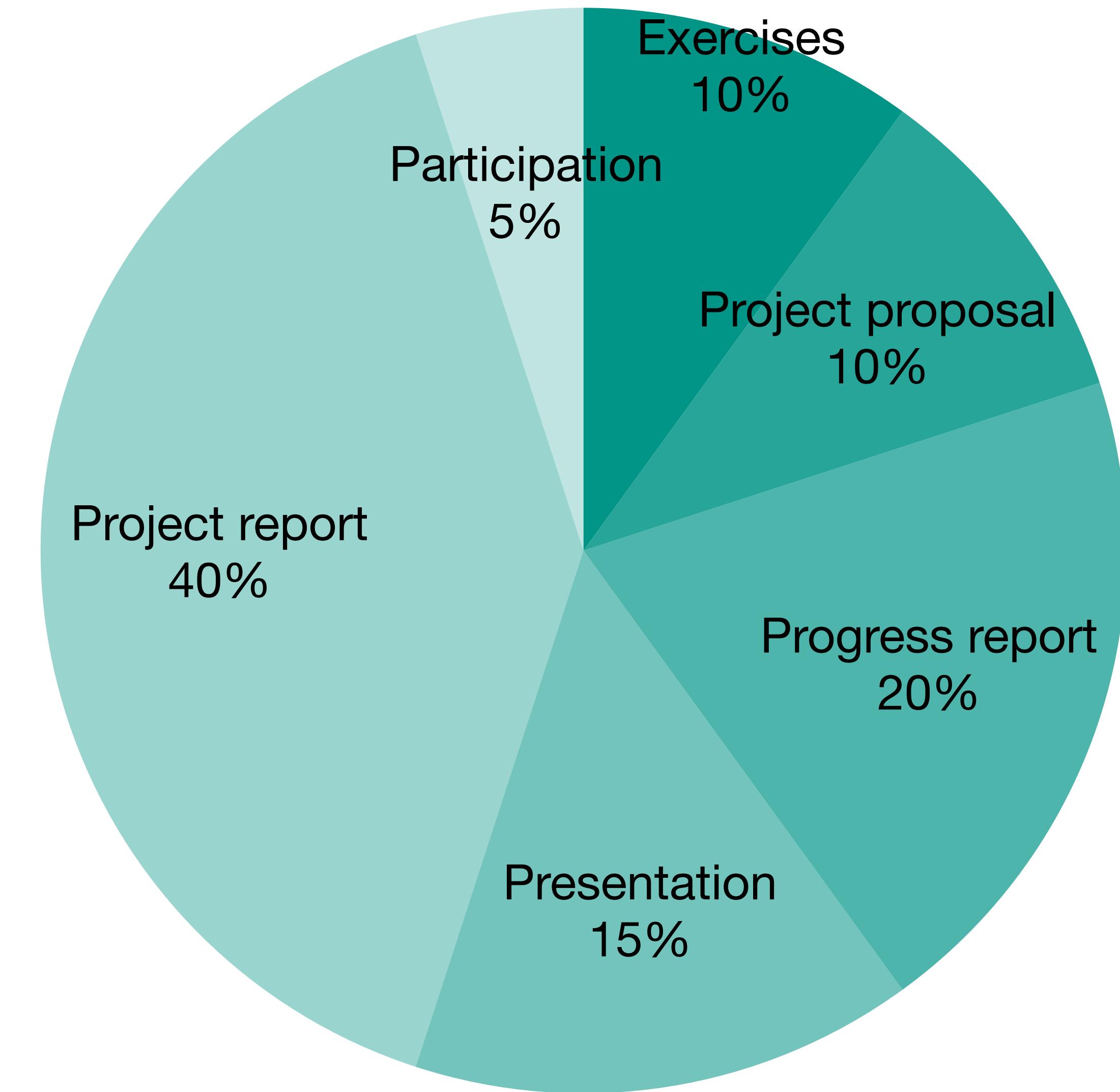
- Project timeline:
 - ▶ **Week 3**: team formation (3 students per team) + proposals
 - ▶ **Continually**: reading > thinking > implementation > experimentation > evaluation
 - ▶ **Week 7**: progress reports
 - ▶ **Week 10**: live presentations, final reports
- Project meetings:
 - ▶ Teams should **meet regularly**
 - ▶ **Meet with course staff as often as you want; at least 3 times by weeks 3, 6, and 9**

Course logistics

- **When:** lectures today and next Wednesday, 6:30–9:20pm, ICS 174
 - ▶ Also sync-up week 5, presentations week 10, same time + place
- **Website:** <https://royf.org/crs/CS175/W26> ← Schedule! Resources!
- **Forum:** <https://edstem.org/us/courses/90783>
 - ▶ For announcements, discussions, questions (do not email)
- **Exercise submission:** <https://canvas.eee.uci.edu/courses/79050>
- **Office hours:** in-person or on zoom, more times available by request
 - ▶ TAs: Yuchen Song (lead TA; office hours), Kyungmin Kim (office hours)

Grading policy

- Exercises (weeks 3+4)
- Project proposal (week 3)
- Progress report (week 7)
- Presentation (week 10)
- Project report (week 10)
- Grace days:
 - ▶ Exercises: 3 days total per person
 - ▶ Project: 5 days total per team



How to participate

- Meetings
 - ▶ Show up prepared, ask questions, engage in discussion
- Forum
 - ▶ Ask questions if you have any, answer if you can
 - ▶ Post relevant useful links
 - ▶ Upvote useful posts
 - ▶ Give private feedback to staff
 - ▶ Logistics questions and comments appreciated, but substance counts
- Evaluations

Today's lecture

Course overview

What is a project

What is reinforcement learning

Project ideas

Project paradigms

- Application-driven
 - ▶ Identify a worthwhile task (or collection) and understand why it's hard
 - ▶ Use **any** means necessary to get an agent to (learn how to) perform the task(s)
 - Can be off-the-shelf methods, their adaptation, combination, or something new
- Method-driven
 - ▶ Study what makes a method good and/or make it better
 - ▶ Theory (analyze and prove), empirical science (measure), or engineering (build)
 - Show benefits on toy examples, simulations (simplified or not), or real domains

Application-driven projects

- Applications **inform innovation**
 - ▶ Can't just define / assume / modify your way around challenges
 - ▶ Doesn't mean you can't choose your battles
 - Create stepping stones by simplifying hard problems
 - Know when to change approach, think outside the box, walk away, come back
- **Bridging problems and solutions** is key
 - ▶ Identify data, modeling assumptions, decompositions, pipelines, auxiliary tasks
 - ▶ May require domain knowledge, experimentation, adaptation

Method-driven projects

- Not all **future applications** need groundbreaking methods, but many do
- A method is measured by how it **evaluates across tasks**
 - ▶ Quantitatively and qualitatively
 - ▶ Benefit / applicability tradeoff
 - Narrower applicability is justified when benefits are large / value is high
 - Also matters: can you predict if a method is applicable / beneficial to a task?
 - ▶ Ablation study
 - ▶ But it's not all about the **technology**: there's **science, art, education, recreation, ...**

Quantitative evaluation

- **Expected rewards**: may be what we really care about, or arbitrary
- **Task success rate**: may be what we really care about, or undefined
- **Worst-case evaluation / safety violations**
- **Resource requirements**
 - Sample complexity, expert supervision, learning / deployment compute, memory
- Compare to **baselines / ablations**
 - Don't need to win on all / any metrics to be interesting
 - Show which aspects of the method matter for which aspects of the task

Qualitative evaluation

- Illustrate on **toy examples**
 - What does the solution look like? Is that expected? Desired?
 - Build intuition for the core task challenges and key method operation
 - How far can you push the method's benefits?
- What is the **moonshot application(s)**?
- Does the agent behavior exhibit **interesting properties**? Expected? Desired?
- Dirty laundry: what do **failure modes** look like? Any pattern?
 - Recommend when to use / avoid this approach? Detect failures? Future ideas?

FECs (Frequent Existential Crises)

- Is this project **interesting?** **Significant?** **Impactful?**
 - ▶ Why am I even doing this?
 - Why does anyone do anything?
- Is this task **too hard?** **Too easy?**
 - ▶ Is 7 weeks enough to make progress? Will the course staff be impressed?
- Am I using the **right method?** **Right evaluation?**
- Do I have **enough data?** **Model size?** **Training time?** **Disk space?**
- Do I have a **bug?**

What the report will look like

- Sections:
 - ▶ Video
 - ▶ Summary
 - ▶ Approaches
 - ▶ Evaluation
 - ▶ References
 - ▶ AI tool usage
- You'll also be scored for the insight you gained and the writing quality

Today's lecture

Course overview

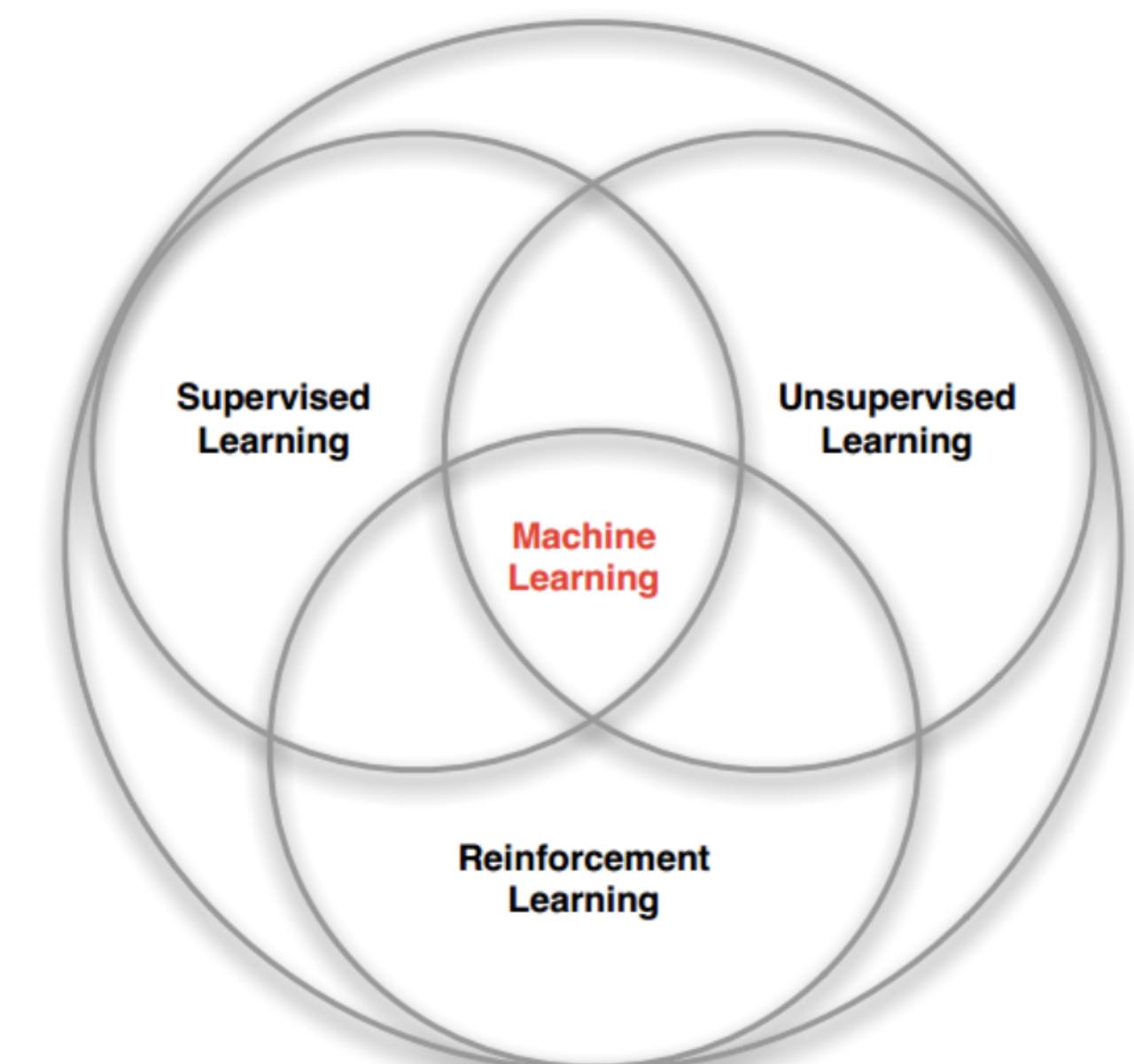
What is a project

What is reinforcement learning

Project ideas

RL \subseteq control learning \subseteq ML

- Reinforcement Learning = learning from reinforcement (**rewards**)
 - But it came to encompass many settings of **learning to control**
 - Distinguished by **data-driven sequential decision making**
- Many consider RL a separate ML paradigm, but it can involve:
 - **Supervised** learning
 - **Unsupervised** learning
 - **Active** learning
 - **Online** learning



What is machine learning

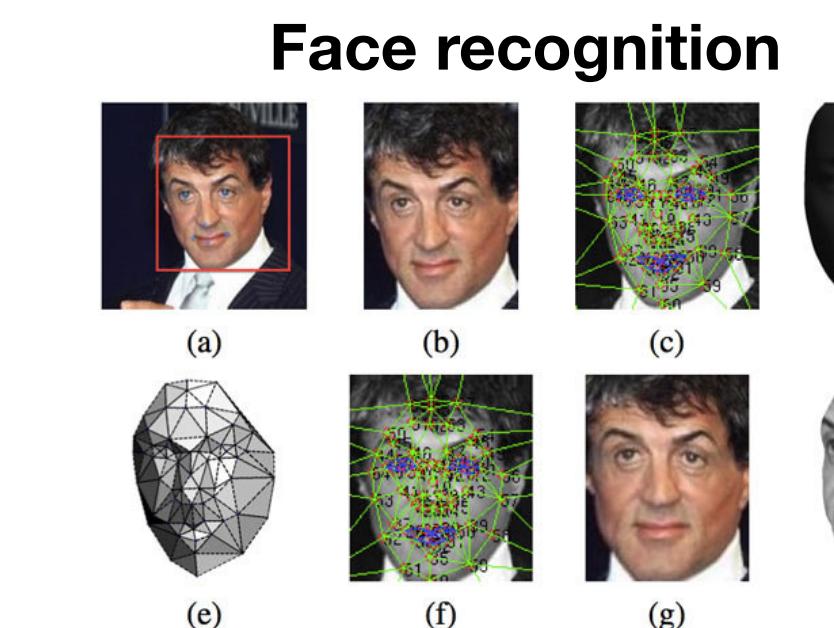
- Can we build “intelligent” machines? **Intelligence** = good decision making
- **Learning** = taking in information to “know” more than you did before
- **Machine learning** = use data to make better decisions than before [Mitchell 1997]
- ML can help when other AI methods fail:

► **Experts** are scarce

► **Rules / logic** are hard to specify

► **Search** space is too large

► **Models** are unknown / hard to specify



Speech synthesis

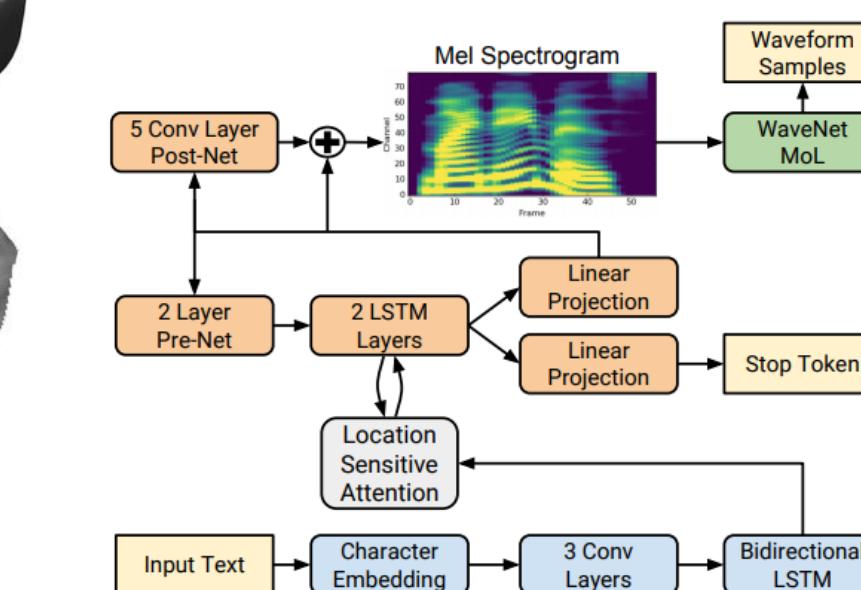
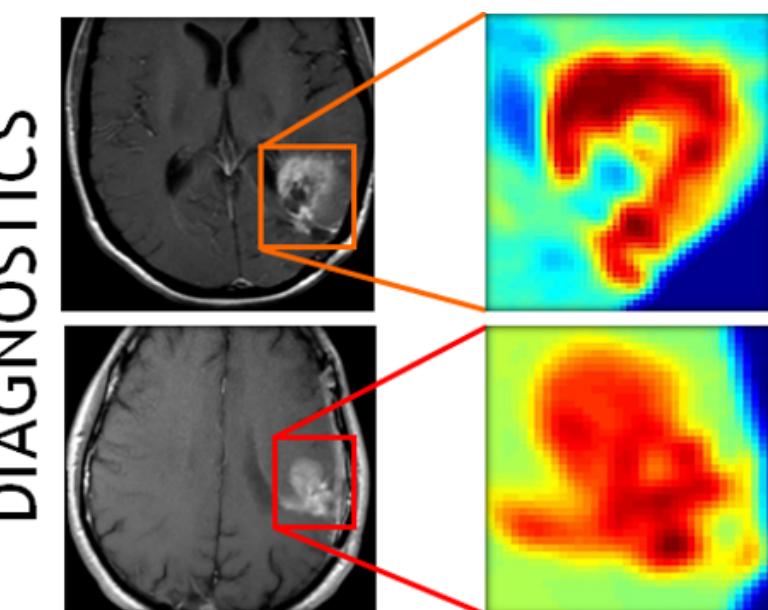


Fig. 1. Block diagram of the Tacotron 2 system architecture.

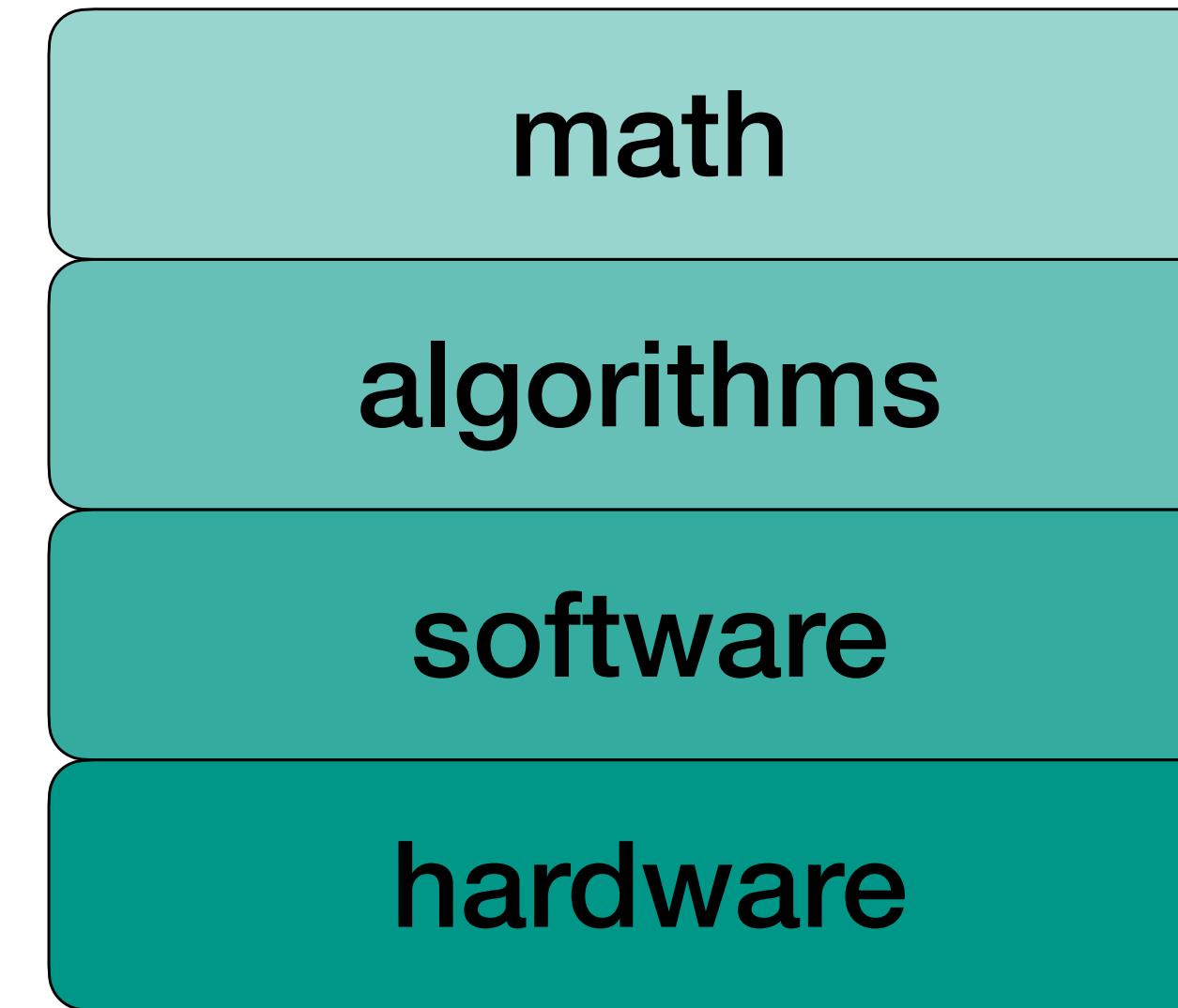
Medical diagnosis



DIAGNOSTICS

[Taigman et al., 2014; Shen et al., 2018]

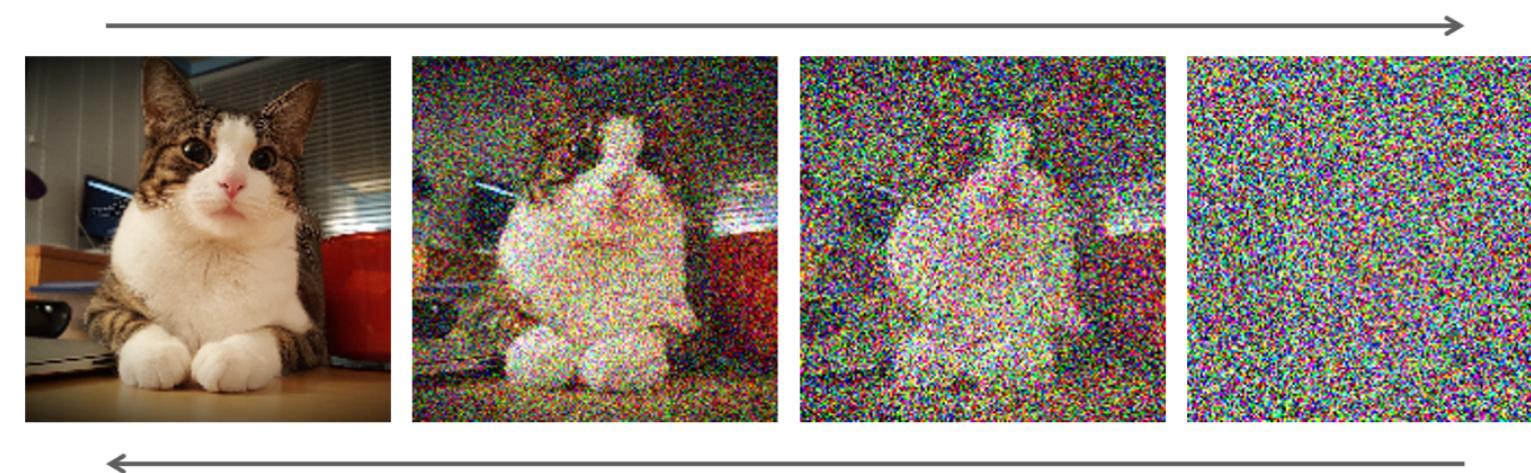
The ML stack



- **Math:** probability theory, (linear) algebra, computational learning theory
- **Algorithms:** ML algorithms, optimization, data structures
- **Software:** ML frameworks, databases, evaluation, deployment
- **Hardware:** cloud computing, distributed systems, cyber-physical systems

ML success stories

Image generation



Language generation

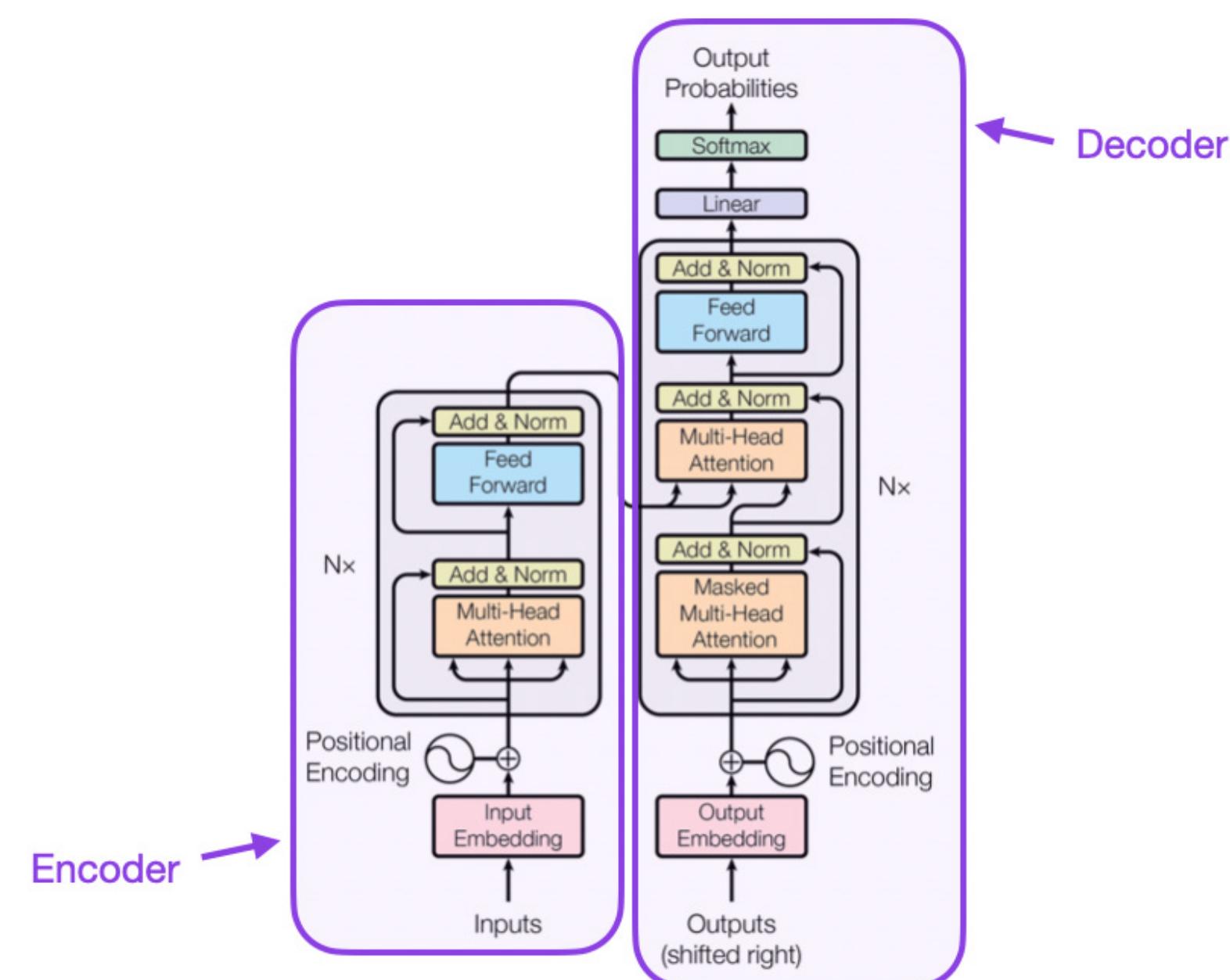
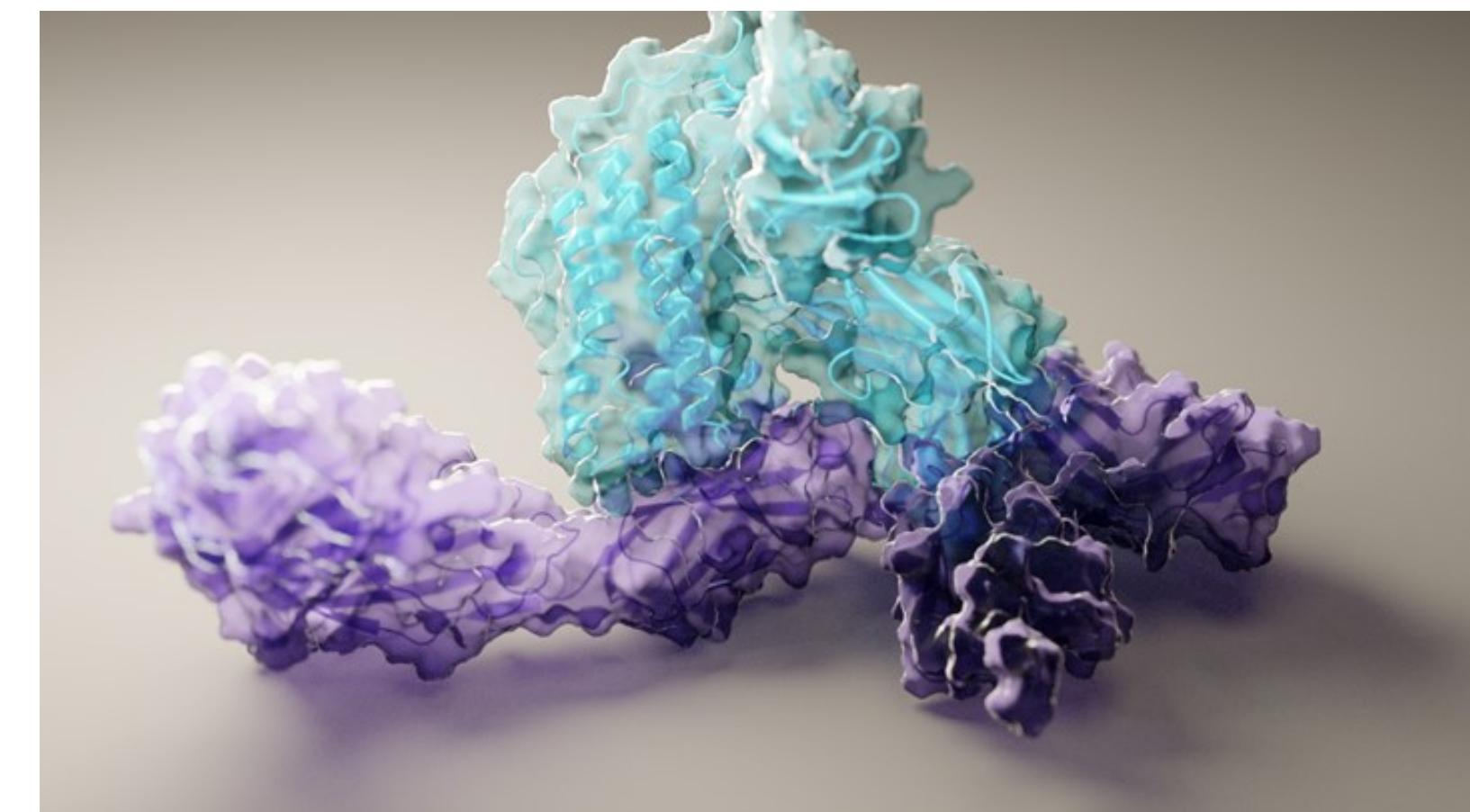


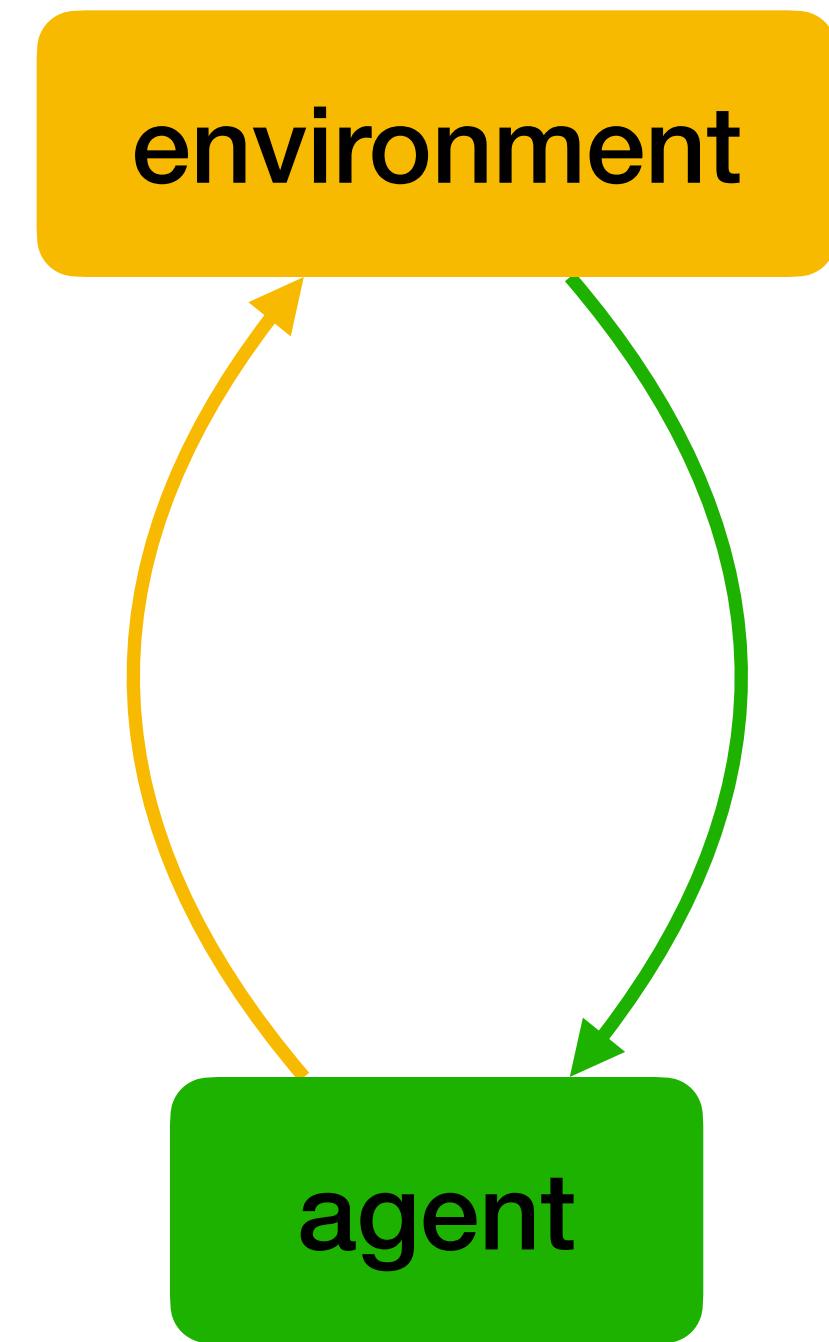
Figure 1: The Transformer - model architecture.

Protein folding

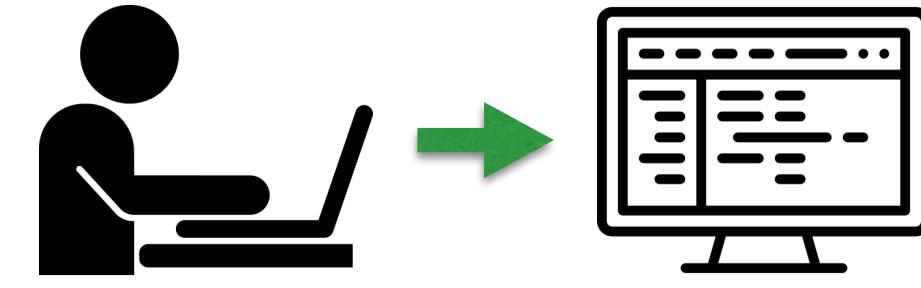
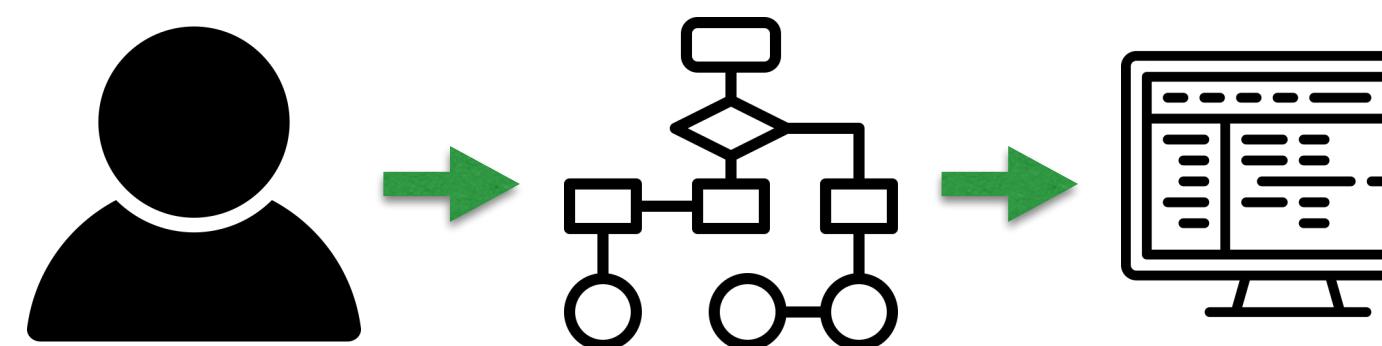


What is control learning (CL)?

- Intelligence appears in interaction with a complex **system**, not in isolation
 - An **agent** interacting with an **environment**
- **Control** = sequential decision making
 - Sense environment state s
 - Take action a
 - Repeat
- Success can be measured by matching good actions – **imitation learning (IL)**
 - Or by accumulating high rewards $r(s, a)$ – **reinforcement learning (RL)**

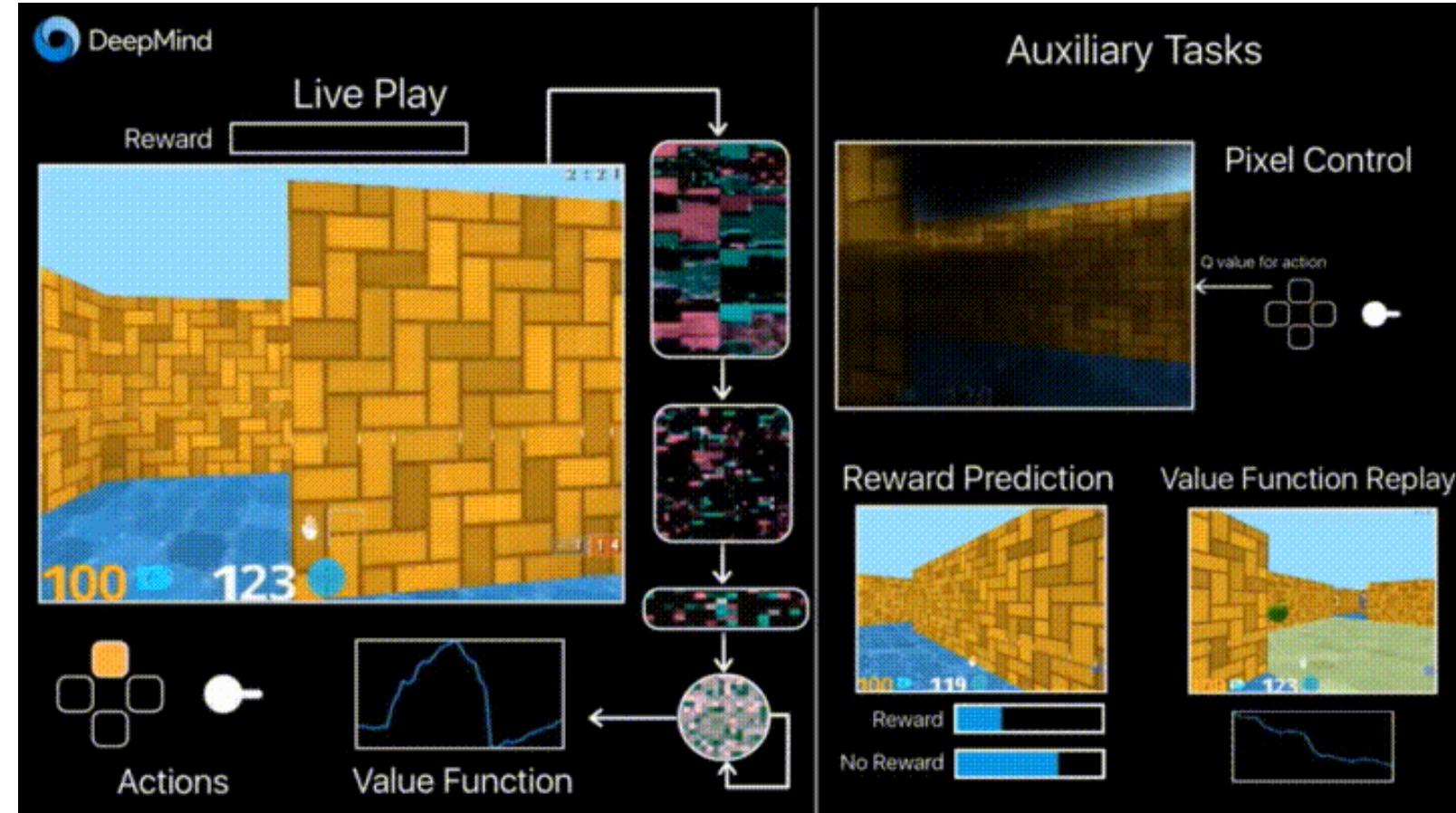


Control preference elicitation

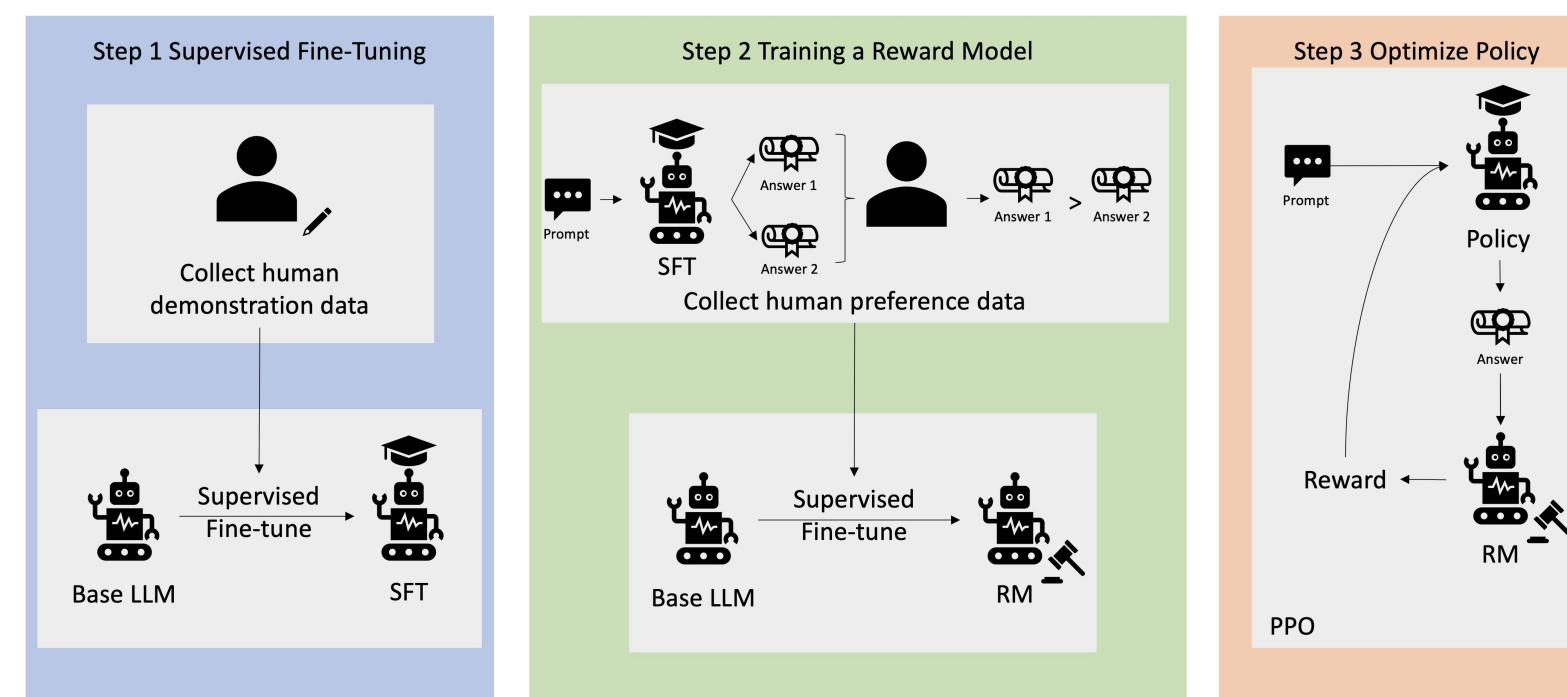
	Explicit	Implicit
"how"	<p>Programming</p> 	<p>Imitation Learning</p>
"what"	<p>Instruction Following</p> 	<p>Reinforcement Learning</p>

RL success stories

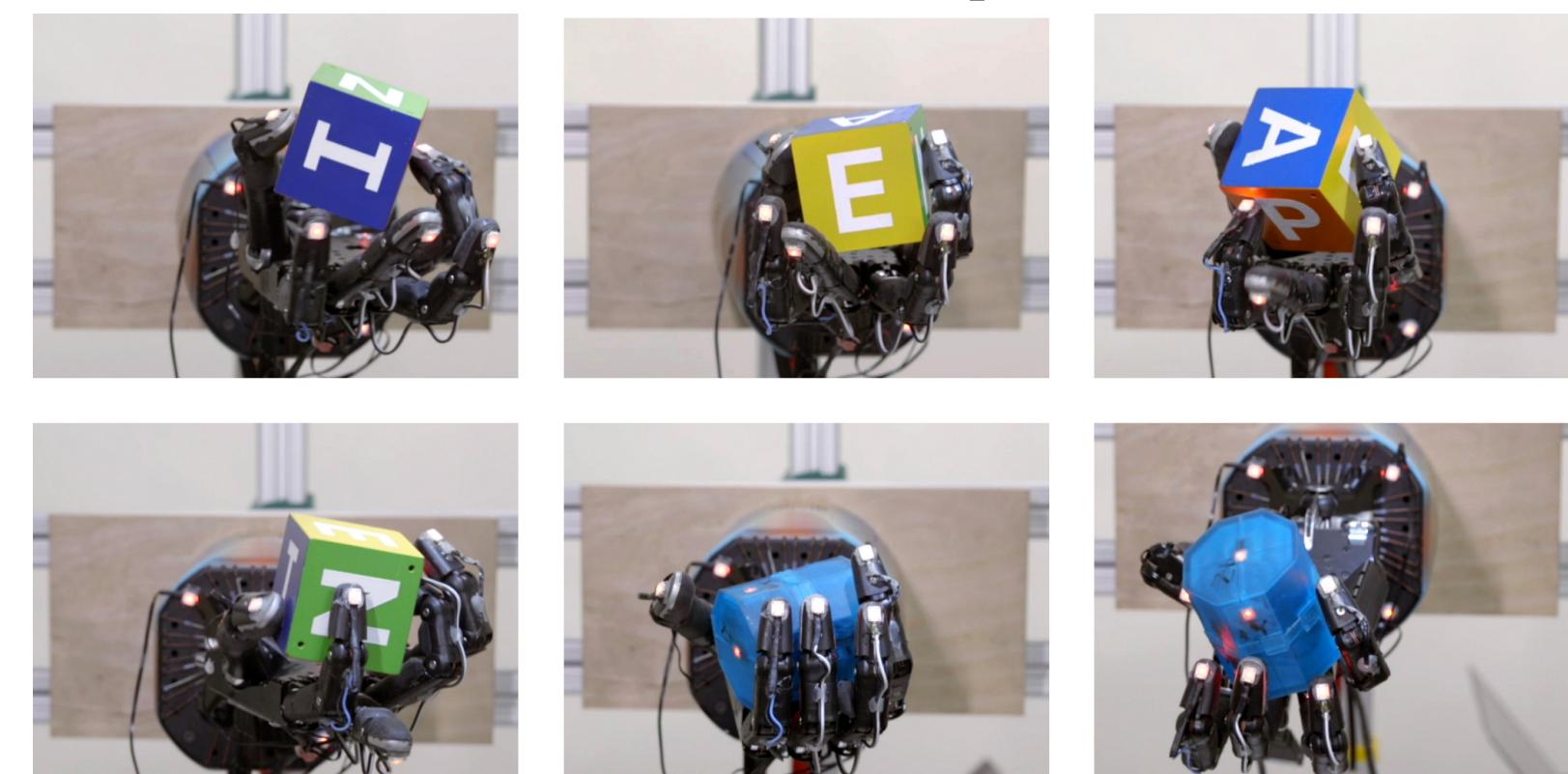
Spatial navigation



Generator fine-tuning



Dexterous manipulation

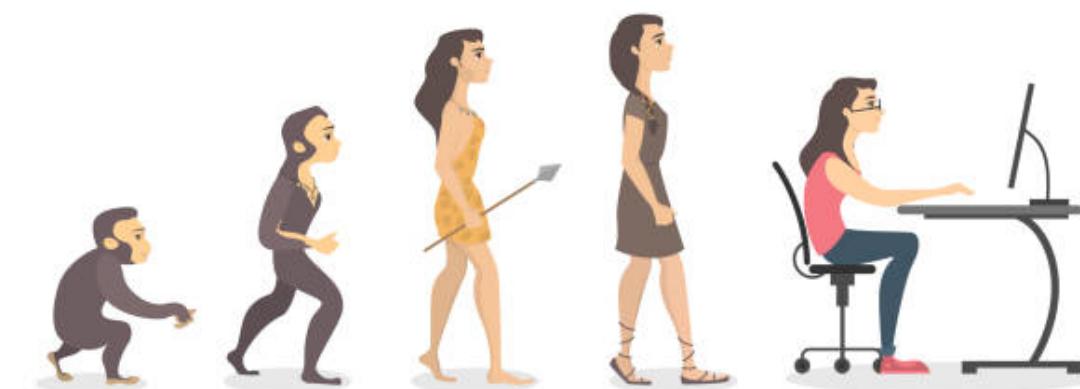


RL is ML... but special

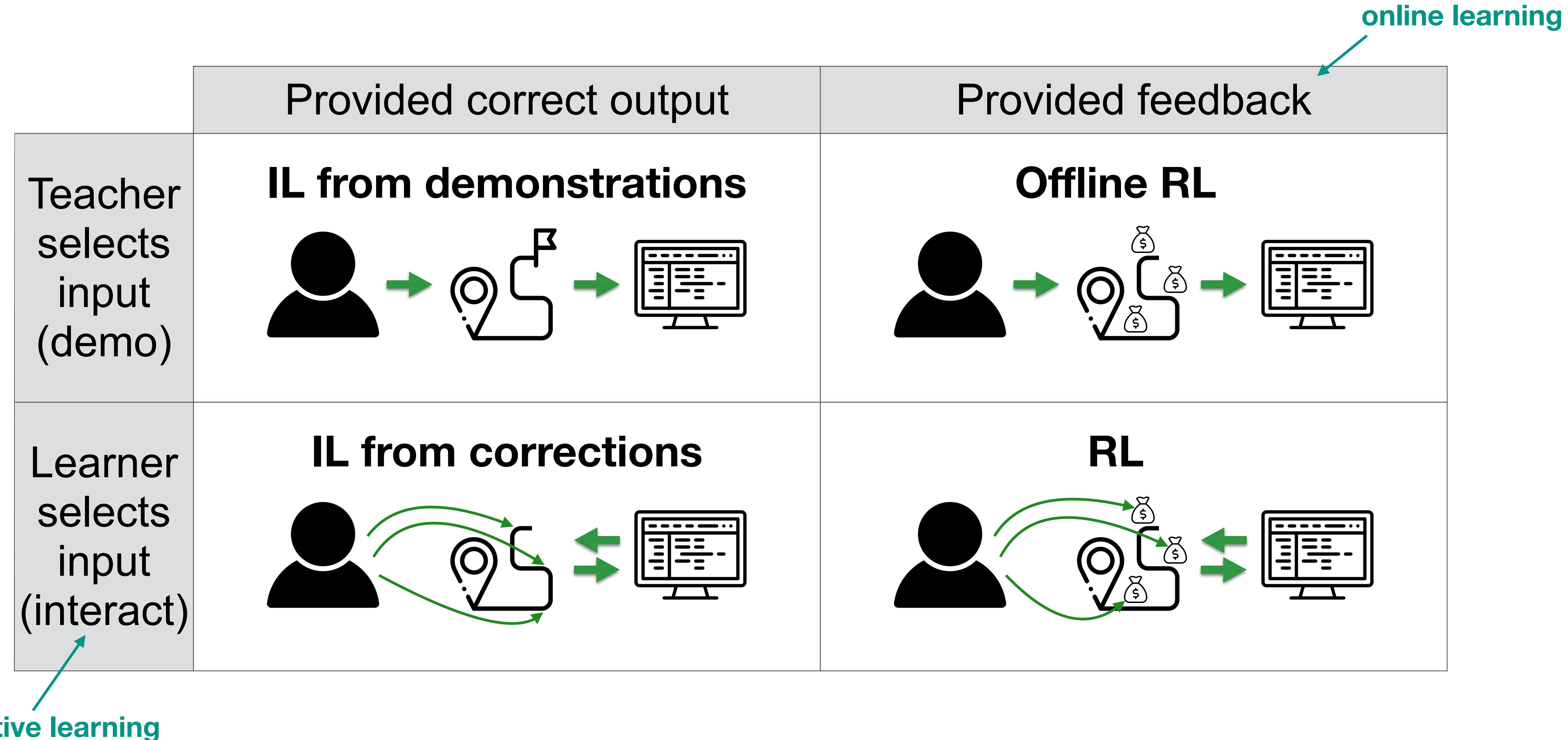
- In RL, unlike supervised, no ground truth, only feedback (**online learning**)
- **Exploration** = the learner collects data by interaction
 - ▶ The agent decides on which states to train (**active learning**) – and test!
 - ▶ Cannot avoid some train–test mismatch
- **Sequential decision making** need to be coordinated
 - ▶ Optimization space is teeming with **local optima**
- A good policy may require **memory**
 - ▶ Agent state is **latent** → combine control and inference

Why is RL powerful?

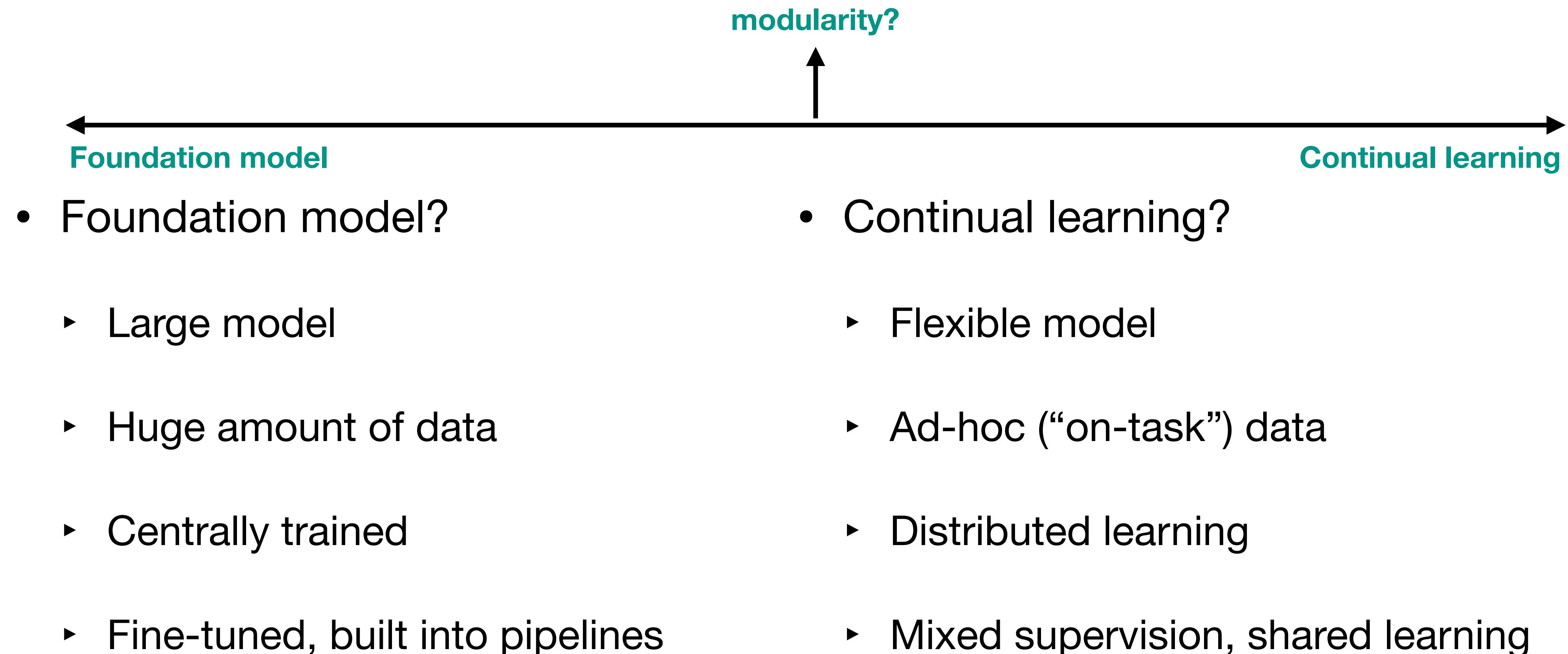
- Many (all?) problems can be formulated as **control**
 - ▶ But consider: is it **sequential**? **multi-agent**? a more specific **structure**?
- **Active** + **online** = very little supervision
 - ▶ Even incidental, like in **evolution**! Supervisor can be “surprised”
- More general CL: incorporate **stronger supervision**
 - ▶ Supervisor burden is a tradeoff between data **amount** ↔ **informativeness**



How is RL different?



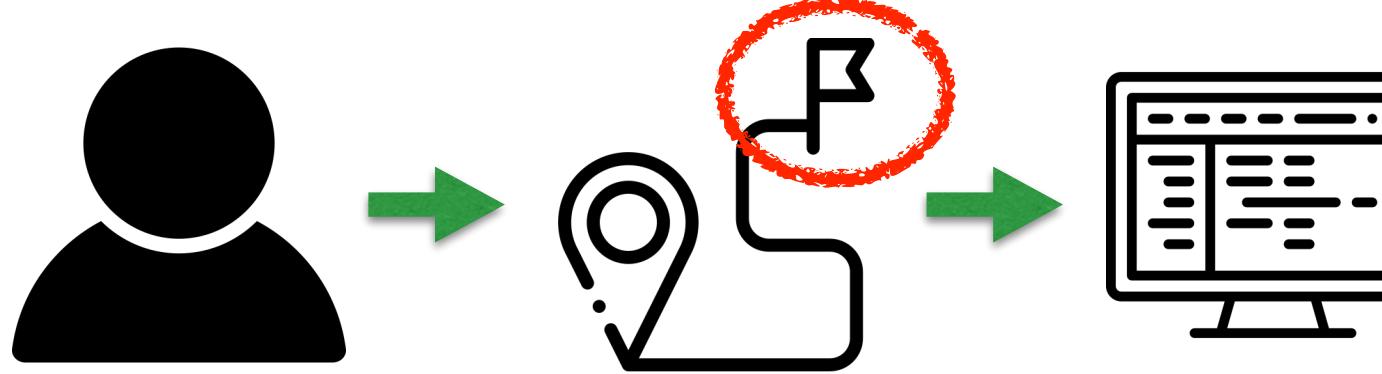
What would “solving” RL look like?



The last ML frontier?

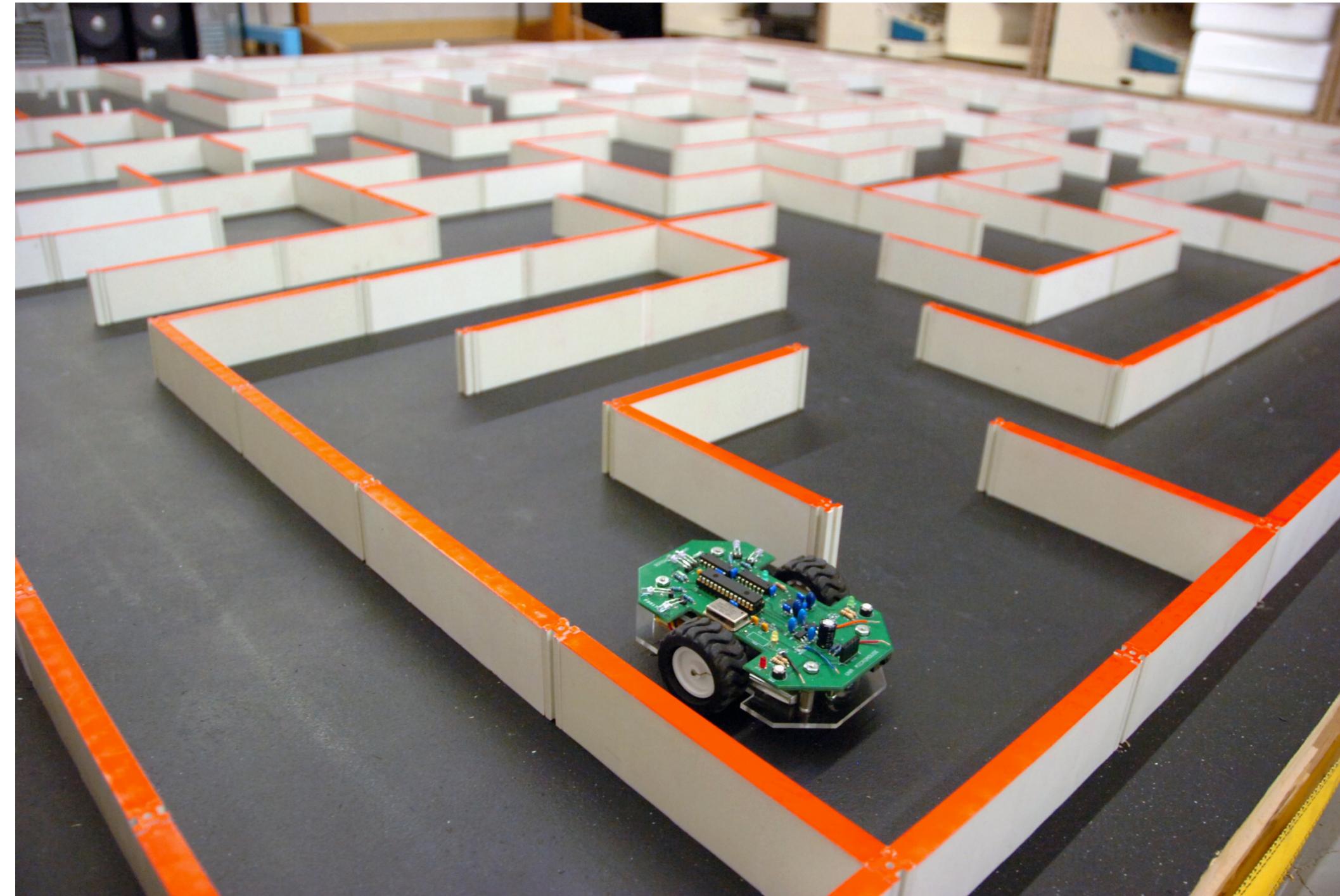
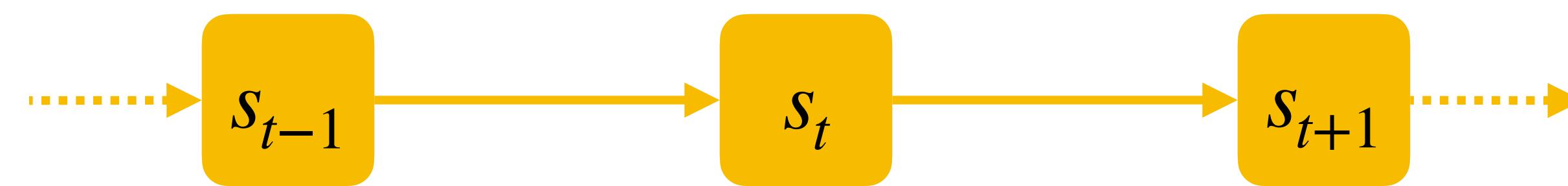
Why is RL hard?

- It's all about the data: **amount** and **informativeness**

	Provided correct output	Provided feedback
Teacher selects input (demo)	IL from demonstrations  expert, train–test mismatch	Offline RL extreme train–test mismatch
Learner selects input (interact)	IL from corrections hard to give exploration	RL weak signal, exploration

After the break: Basic RL concepts

System state



System state

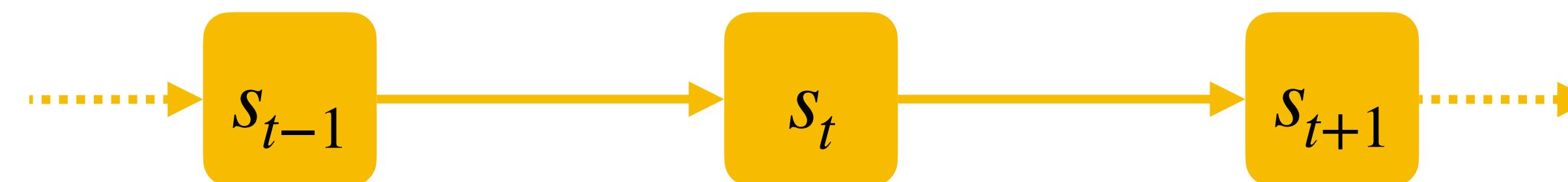
- **Markov property:** the future is independent of the past, given the present

$$p(s_{t+1}, s_{t+2}, \dots | s_0, s_1, \dots, s_t) = p(s_{t+1}, s_{t+2}, \dots | s_t)$$

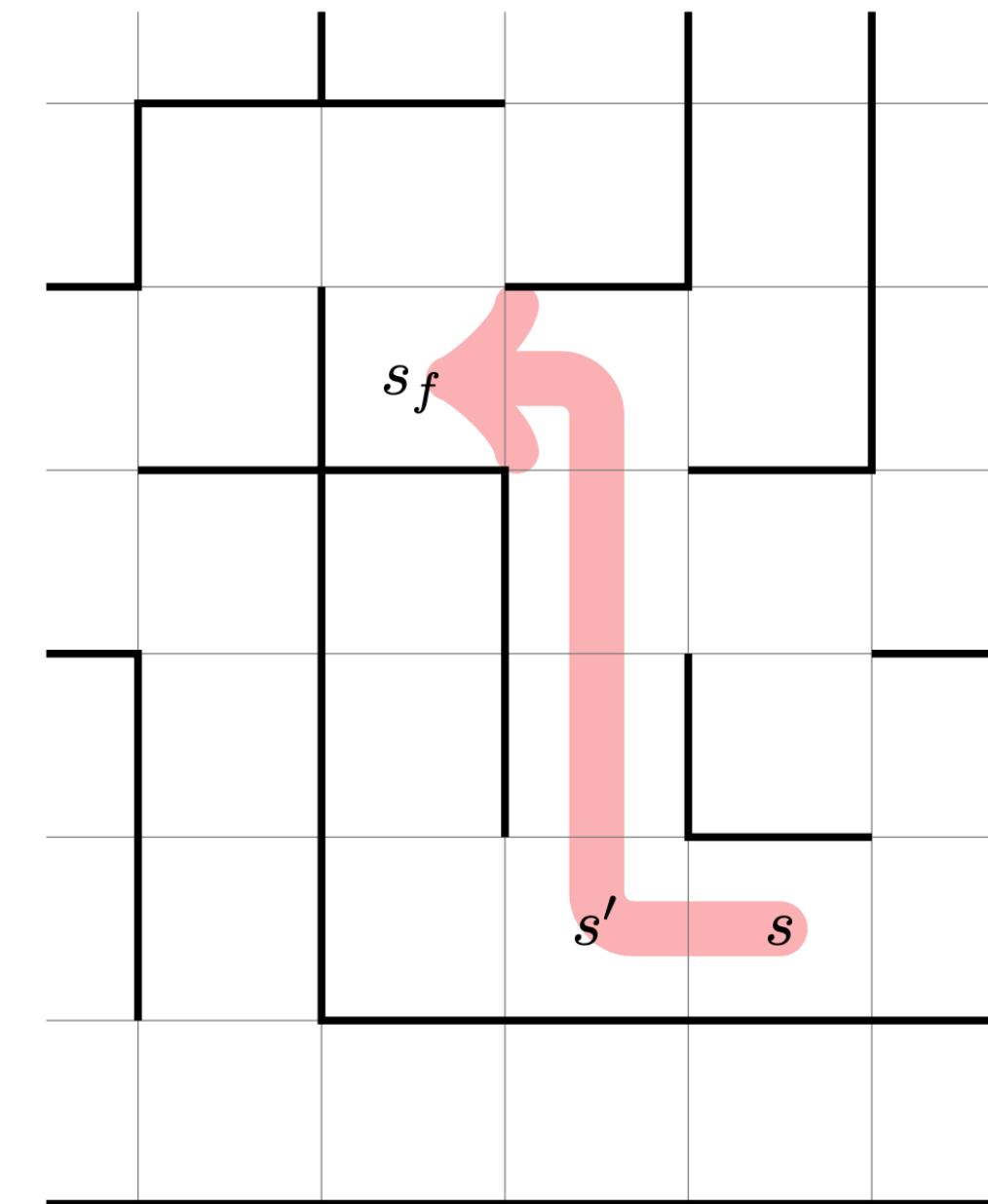
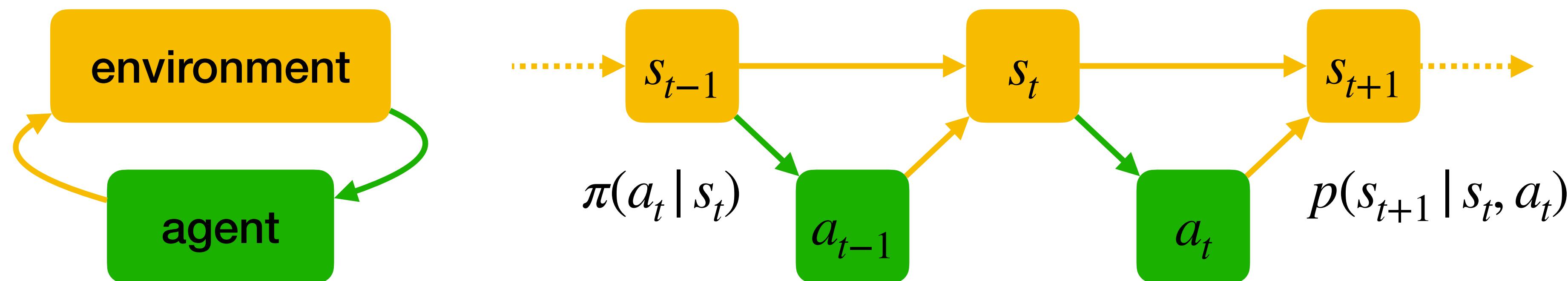
- **State** = all relevant information from history

for future!

- Given s_t , the **history** $h = (s_0, \dots, s_t)$ and the **future** $(s_{t+1}, s_{t+2}, \dots)$ are independent

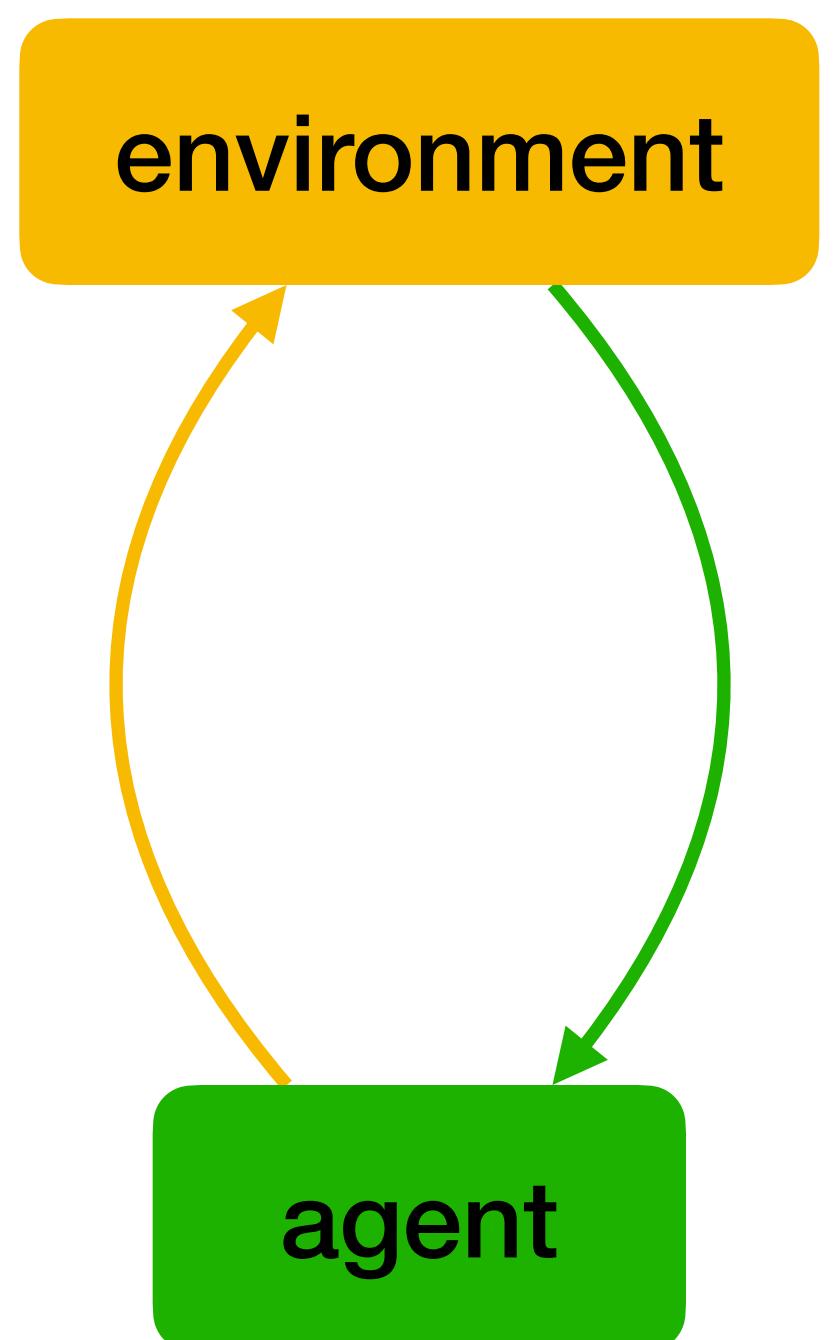


System = agent + environment



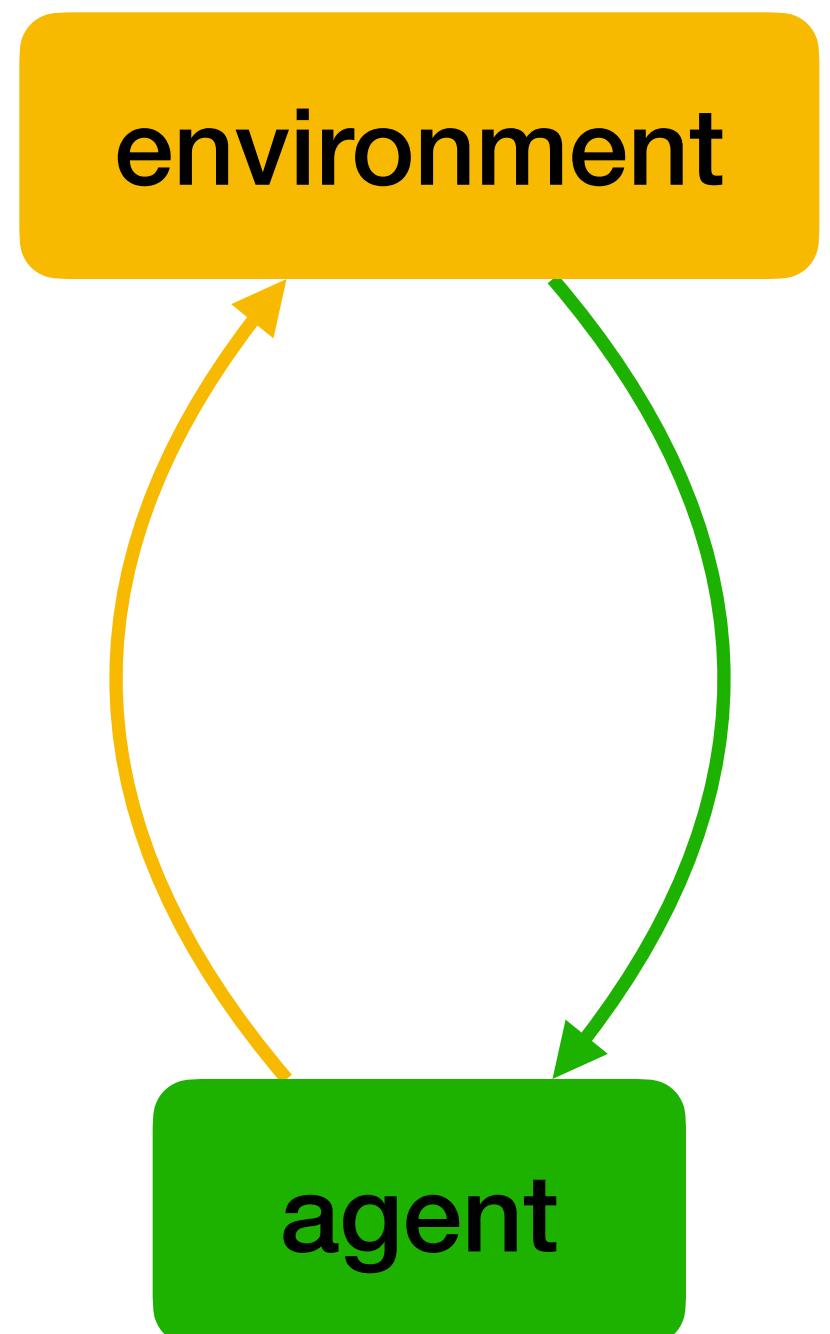
Markov Decision Process (MDP)

- Model of environment
 - ▶ \mathcal{S} = set of **states**
 - ▶ \mathcal{A} = set of **actions**
 - ▶ $p(s' | s, a)$ = state **transition** probability
 - Probability that $s_{t+1} = s'$, if $s_t = s$ and $a_t = a$



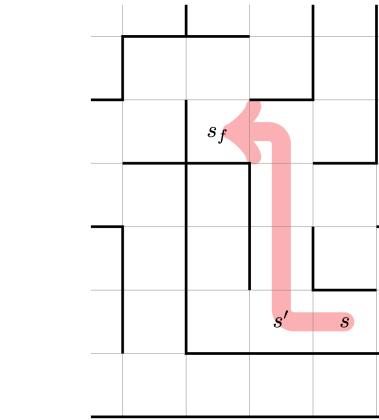
Agent policy

- “Model” of agent decision-making
 - ▶ Policy $\pi(a | s)$ = probability of taking action $a_t = a$ in state $s_t = s$
 - ▶ In MDP, action a_t needs only depend on current state s_t :
 - Markov property = s_t is all that matters in history
 - Causality = cannot depend on the future
 - ▶ Should the policy depend on time? $\pi_t : s_t \mapsto a_t$
 - Sometimes; can add t as feature: $s_t \rightarrow (t, s_t)$



Trajectories

- The agent's behavior iteratively uses (rolls out) the policy



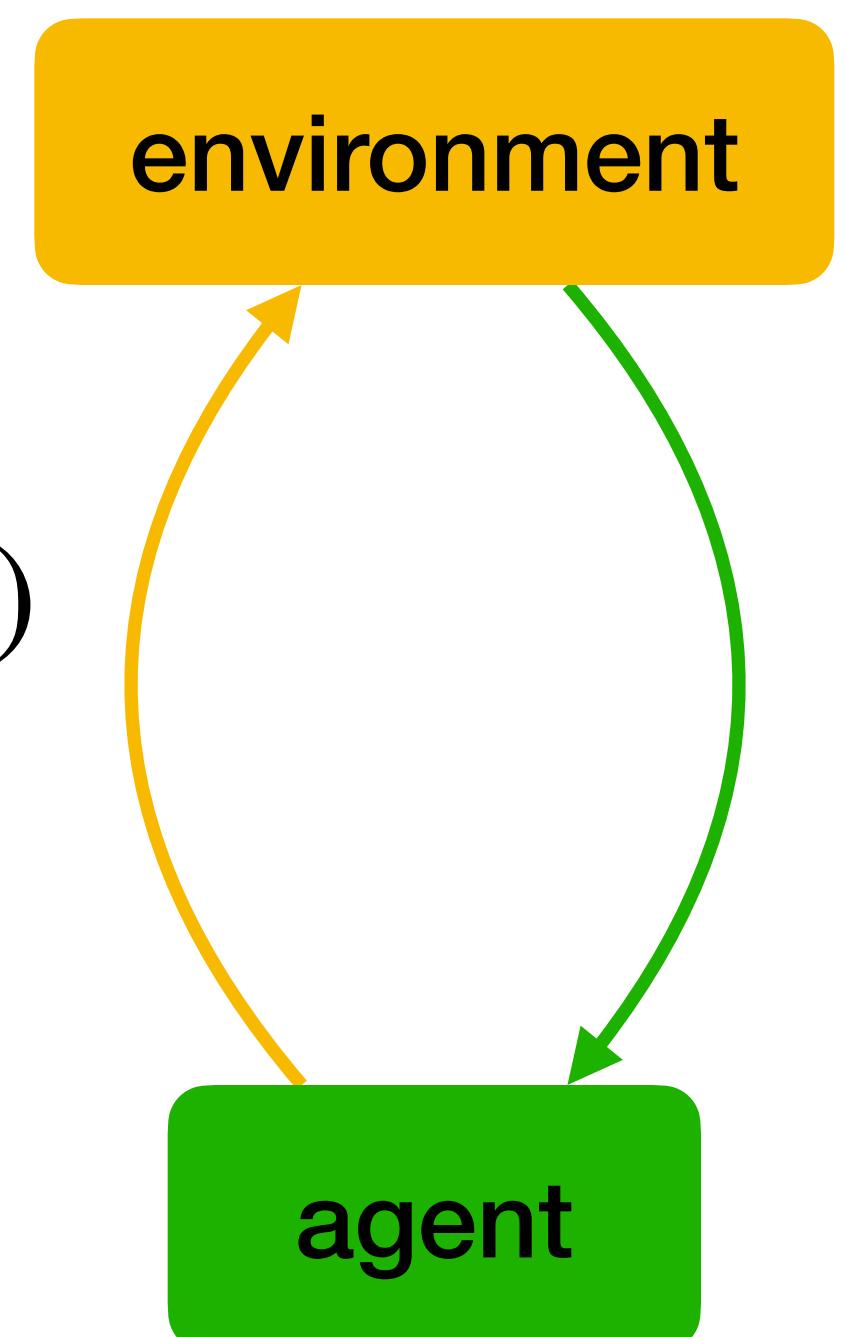
- **Trajectory:** $\xi = (s_0, a_0, s_1, a_1, \dots, s_T)$

- MDP + policy induce **distribution over trajectories**

$$\begin{aligned} p_\pi(\xi) &= p(s_0)\pi(a_0 | s_0)p(s_1 | s_0, a_0)\cdots\pi(a_{T-1} | s_{T-1})p(s_T | s_{T-1}, a_{T-1}) \\ &= p(s_0)\prod_{t=0}^{T-1}\pi(a_t | s_t)p(s_{t+1} | s_t, a_t) \end{aligned}$$

- **Imitation learning:** learn from dataset of expert demonstrations

- ▶ **Supervised learning** of $\pi(a | s)$ from “labeled” states (s_t, a_t)



Learning from rewards

- Providing demonstrations is hard
 - ▶ Particularly for learner-generated trajectories
- Can the teacher just **score** learner actions?
 - ▶ **Reward**: $r(s, a) \in \mathbb{R}$
 - High reward is positive **reinforcement** for this behavior (in this state)
 - ▶ Much closer to how natural agents learn
 - ▶ Designing and **programming** r often easier than programming / demonstrating π

as in online learning

Actions have long-term consequences

- Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
 - ▶ Fly drone: **slow down** to **avoid crash?**
 - ▶ Games: **slowly** build **strength?** block opponent? all out attack?
 - ▶ Stock trading: **sell now** or wait for **growth?**
 - ▶ Infrastructure control: **reduce power output** to prevent **blackout?**
 - ▶ Life: **invest** in college, obey **laws**, get started **early** on course project
- Forward thinking and planning are hallmarks of **intelligence**

Discounted returns

- **Return** = total reward = $R(\xi) = \sum_{t \geq 0} \gamma^t r(s_t, a_t)$
 - ▶ Summarize reward sequence $r_t = r(s_t, a_t)$ as single number to be **maximized**
- **Discount factor** $\gamma \in [0, 1]$
 - ▶ Higher **weight** to short-term rewards (and costs) than long-term
 - ▶ Good mathematical properties:
 - Assures **convergence**, simplifies algorithms, reduces variance
- Vaguely economically motivated (inflation)

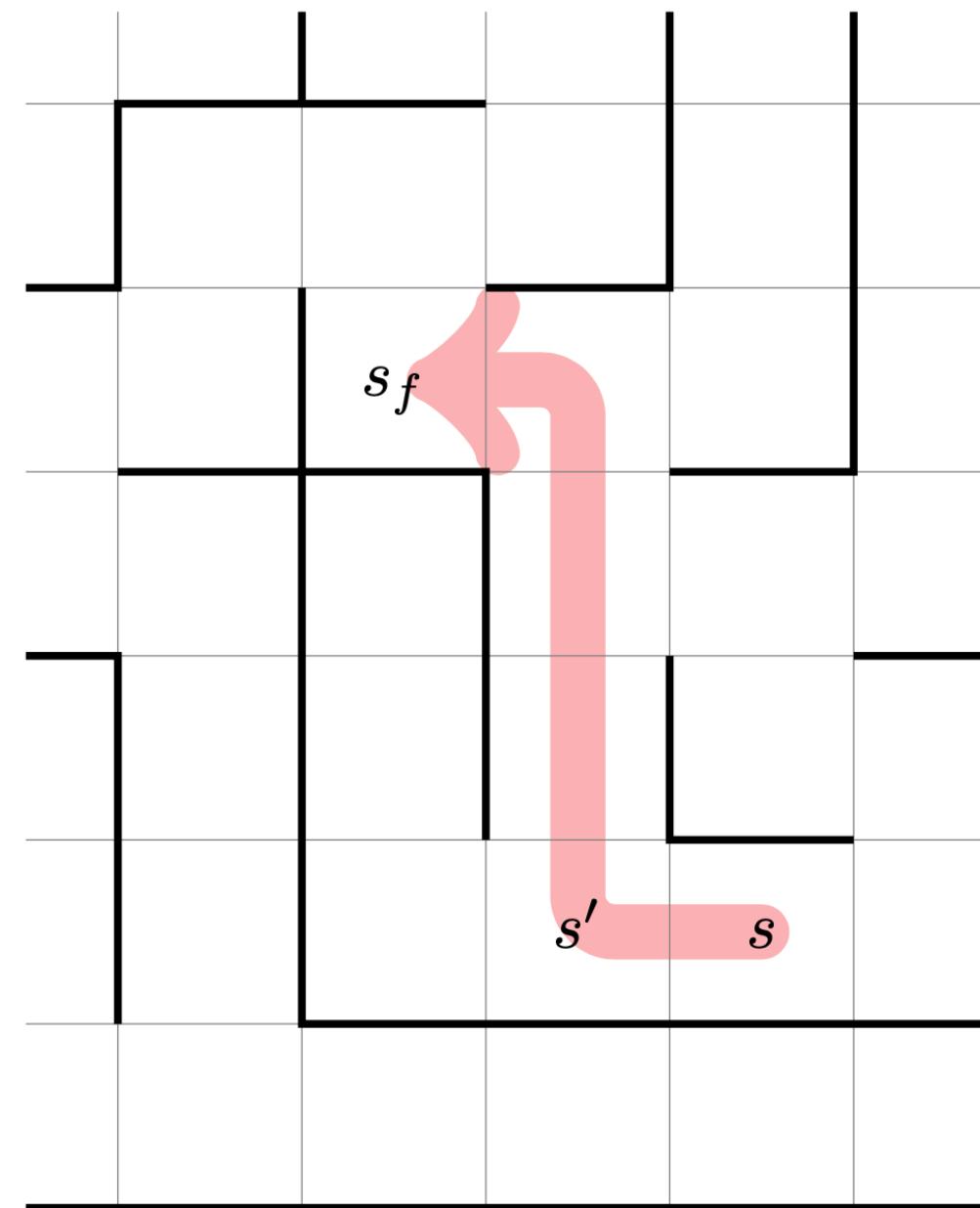
Other horizon classes

- **Finite:** $R^T(\xi) = \sum_{t=0}^{T-1} r(s_t, a_t)$
- **Infinite:** $R^{\text{avg}}(\xi) = \lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=0}^{T-1} r(s_t, a_t)$
- **Discounted:** $R^\gamma(\xi) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \quad 0 \leq \gamma < 1$
- **Episodic:** $R^{s_f}(\xi) = \sum_{t=0}^{T-1} r(s_t, a_t) \quad \text{s.t. } s_T = s_f$

Recap: basic RL concepts

- **State:** $s \in \mathcal{S}$; **action:** $a \in \mathcal{A}$; **reward:** $r(s, a) \in \mathbb{R}$
- **Dynamics:** $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- **Policy:** $\pi(a_t | s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic
- **Trajectory:** $p_\pi(\xi = s_0, a_0, s_1, a_1, \dots) = p(s_0) \prod_t \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$
- **Return:** $R(\xi) = \sum_t \gamma^t r(s_t, a_t) \quad 0 \leq \gamma < 1$
- **Value:** $V(s) = \mathbb{E}_{\xi \sim p_\pi}[R(\xi) | s_0 = s]$
- $Q(s, a) = \mathbb{E}_{\xi \sim p_\pi}[R(\xi) | s_0 = s, a_0 = a]$

Special case: shortest path



- **Deterministic dynamics:** in state s , take action a to get to state $s' = f(s, a)$
 - ▶ Example above: $s' = f(s, a_{\text{left}})$
- **Reward:** (-1) in each step (until the goal s_f is reached)

Today's lecture

Course overview

What is a project

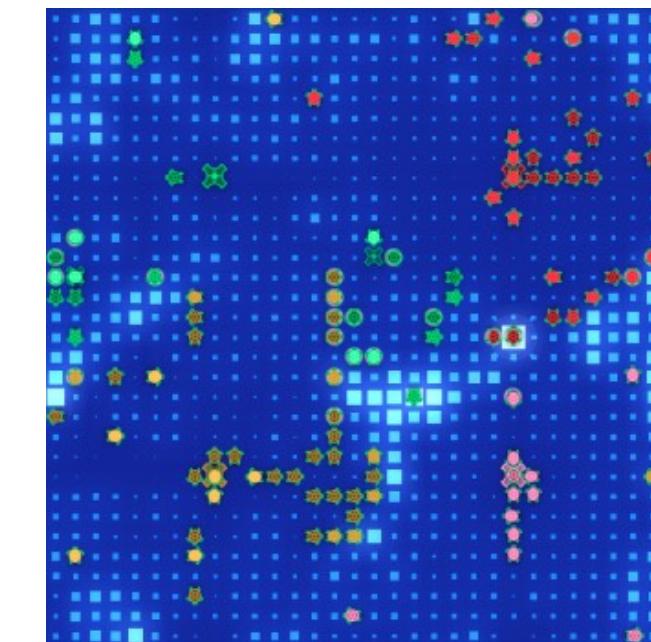
What is reinforcement learning

Project ideas

Some project ideas

- Applications:

- ▶ MineCraft
- ▶ DuckieTown
- ▶ Obstacle Tower
- ▶ Hanabi
- ▶ Halite
- ▶ Diplomacy



MineCraft

- **Open world:** can define many scenarios and tasks
- Done many many times before, so you'd have to get **very creative**
- One interesting option: **MindCraft** lets language agents play MineCraft
 - ▶ <https://github.com/kolbytn/mindcraft>

DuckieTown

- Drive a **small vehicle** on a foam track
- **Common tasks:** lane following, multi-agent collision avoidance
- You'd mostly work in a **simulator**
 - Successful projects can be deployed to real DuckieBots!

Obstacle Tower

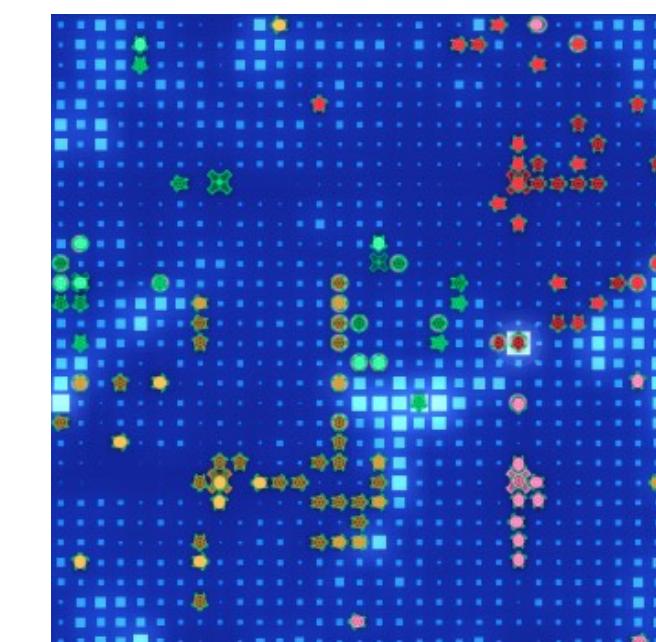
- Algorithmically generated **locomotion puzzles**
- **Visual** control + **planning**
- Progressively more **challenging**
 - ▶ Need generalization, continual learning, maybe symbolic planning

Hanabi

- Collaborative game, simple with many challenging expansions
- Distributed observability, solution can be centralized or not
- How to induce zero-shot cooperation?
 - Will the policy collaborate with humans / other training seeds?

Halite

- Competitive **resource management** (and combat) game
- Fully observable (Markov game) in a large but **structured space**
- Evaluation may be **non-transitive**: $\pi_1 > \pi_2 > \pi_3 > \pi_1$
 - ▶ Carefully evaluate against populations



Diplomacy

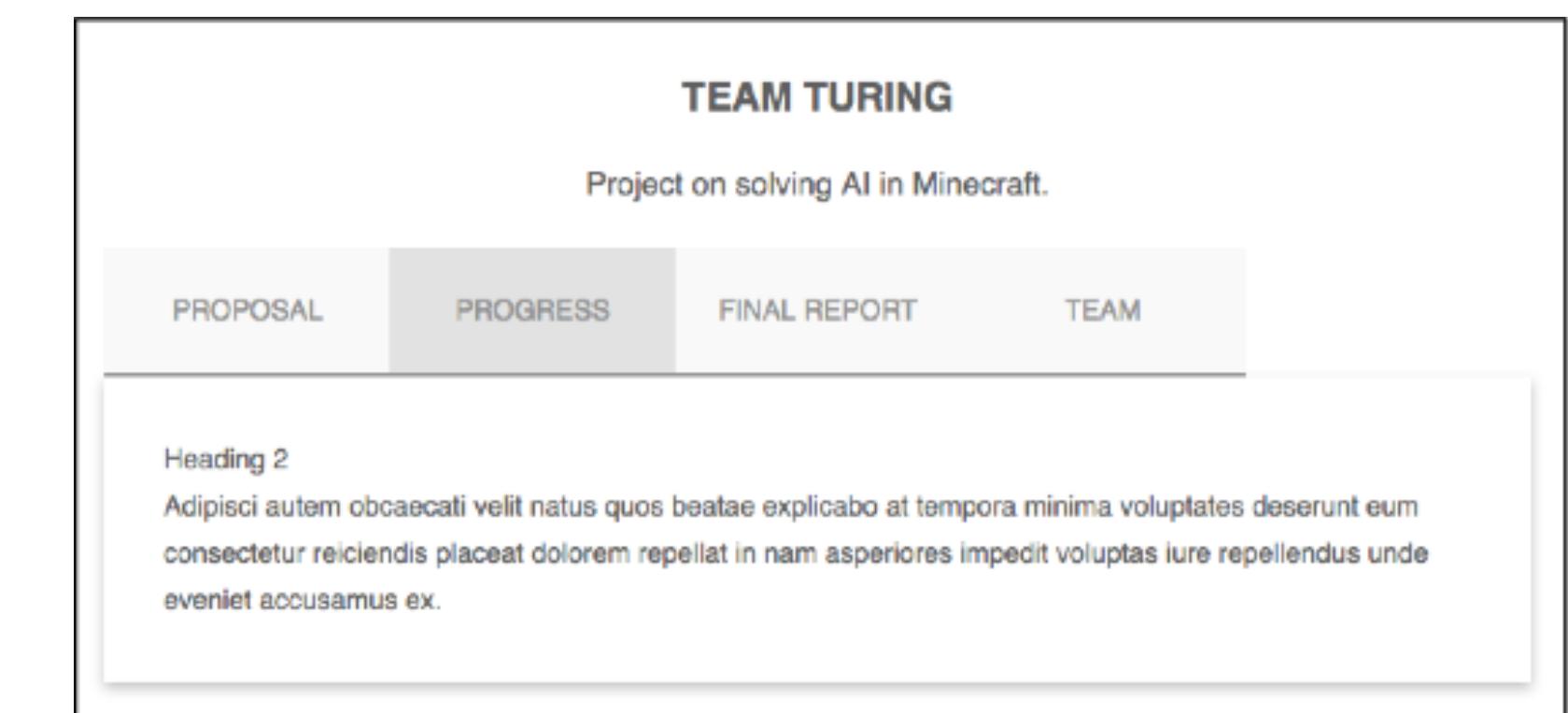
- Multi-player **alliance and betrayal** game
- What do we even **optimize**? Worst-case performance is always bad
- Humans play with **text communication**
 - ▶ Why? Can AI learn to ally with / betray each other / humans?

More project ideas

- Applications:
 - ▶ MineCraft
 - ▶ DuckieTown
 - ▶ Obstacle Tower
 - ▶ Hanabi
 - ▶ Halite
 - ▶ Diplomacy
 - ▶ More “serious”: robots, infrastructure
- Method:
 - ▶ RL from sparse / preference feedback
 - ▶ Properties of RNN policy learning
 - ▶ Properties of MaxEnt RL learning
 - ▶ RL for language generation
 - ▶ Model-based multi-agent RL
 - ▶ Off-policy to on-policy RL
 - ▶ Large comparative study

Resources and tools

- GitHub – sync your work with teammates and course staff
- GitHub Pages – maintain project website
- Program in Python
 - ▶ Use libraries (numpy, scikit-learn, pytorch, jax)
 - ▶ Many domains and algorithms have existing implementations
 - May be a reason to prefer one over another
- Compute resources: campus-wide HPC3 cluster <https://rcic.uci.edu/hpc3/>



Questions?

Good Luck!

