U CI University of
California, Irvine

CS 175: Project in

Artificial Intelligence
Winter 2026

Reinforcement Learning
In a Nutshell

Roy Fox

Department of Computer Science
School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Logistics

* Project proposals are due next Friday (team)

 Meet the instructor at least once by next Friday

_ Exercise 1 is due next Wednesday (individual)

 \Welcome to schedule as much as you need

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Basic RL concepts

e State: s € &; action: a € ; reward: r(s,a) € |
» Dynamics: p(s,, | $;, a,) for stochastic; s, | = f(s,, a,) for deterministic

» Policy: n(a,|s,) for stochastic; a, = n(s,) for deterministic

Trajectory: p_(& = sy, Ay, S1, A1y -..) = p(SO)H m(a,| s)p(S,.1 18, a,)
[

Return: R(&) = Z y'r(s,a,) 0<y<l
[

Value: Vi(s) = Eg, [R5y = 5]

Q,(s,a) = "ngn[R |59 =, a9 = al

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Example: Table Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0O

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

https://www.youtube.com/watch?v=CIF2SBVY-J0

Flowchart: which algorithm to choose?

discrete continuous

on-policy off-policy deterministic stochastic

l

(2015)

extensions: (2016) (2018)
 Rainbow DQN (2018)

 SQL (2017)

« Mean DQN (2022)

(2017) (2023) parallelization = A3C (2016)

no, but turnkey

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Today's lecture

and more...

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Imitation Learning (IL)

« How can we teach an agent to perform a task?
e Often there is an expert that already knows how to perform the task

> A human operator who controls a robot

> A black-box artificial agent that we can observe but not copy

> An agent with different representation or embodiment

. The expert can demonstrate the task to create a training dataset @ = {£®) i

~ Each demonstration is a trajectory & = s, @y, 51,4y, - - .

» Then the learner imitates these demonstrations

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

IL = Learning from Demonstrations (LfD)

» Teacher provides demonstration trajectories & = {5(1), Cee 5(’")}

» Learner trains a policy 7z, to minimize a loss Z£'(0)

* For example, negative log-likelinood (NLL):

arg mgin Zy(5) = arg mein(—k)g Pe(S))

-1
= arg max (log p(sy) + Z log my(a,|s,) +1og p(s,.115, at))
=0
model-free
.~ =no need to know the environment dynamics p

T—1
= arg max Z log my(a, | s,)
0
=0

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Behavior Cloning (BC)

 Behavior Cloning:

. Break down trajectories {1, ..., £} into steps {(s'V, aél)), . (S}mll, a}mll)}

B observatlons

ﬁ my(a|s)

> [rain ;y . § — a using supervised learning
—_ max Zlo nals
training E2 grylals)

data (s,0)ED

D = {1, a")};,

acuons

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

» q my(a | s)

supervised
learning

e Benefits: —
training

data
> Simple, flexible — can use any learning algorithm

» Model-free — never need to know the environment
e Drawbacks:

> Only as good as the demonstrator

> Only good in demonstrated states — how do we evaluate?

- Validation loss (on held out data)? Task success rate in rollouts?

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

A policy is a (stochastic) function

environment S, S 1

usje|d

suoJnau
[suoinau 0l |

ouon 5 S
|oulay gx/

m(a,|s,)

[Bojarski et al., 2016]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Stochastic policies

» Learned models are often deterministic functions f, : x — y

 Jo Implement a stochastic policy: output distribution parameters

 Examples:

> Discrete action space: categorical distribution
- Ty s {4} m(als) = softmax A o« exp 4,

» Continuous action space: Gaussian distribution

Ly s e (D) myals) = N, Z)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

A policy is a (stochastic) function

environment S, S 1

usje|d

suoJnau
[suoinau 0l |

ouon 5 S
|oulay gx/

m(a,|s,)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

A policy is a (stochastic) function

environment

n(a,|o,)
observation action

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

ALVINN

 Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)

30x32 Sensor
Input Retina

[Pomerleau, 1989]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Inaccuracy in BC

. 2 ¥
e ~ . : .« f%
. - ; .
“,“ v} ‘ - 9
Ny y v 4]
o~ . »
Xe o

C, L
S * q 7o(als)
— supervised
training learning
data

» We could evaluate on held out teacher data, but really interested in using 7,
» If the policy approximates the teacher my(a,|s,) ~ n*(a,|s,)
~ The trajectory distribution will also approximate teacher behavior py(&) = p*(&)

. - no data herel
e But errors accumulate over time N L i A

> May reach states not seen in the training dataset

Image: Sergey Levine

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Modeling partially observable behavior

* Partial observations are not Markov
~ Generally, this means p(o,,; |0, a,) # p(0,,1 |0« a-;)
» Reactive policy my(a,| 0,) may not be optimal
- May need my(a,| 0,), or even my(a,|o,, a_,); but how?
» Canuse RNNs f, : (h,_y,a,_{,0,) = h, or other memory models

 But memory state is latent in demonstrations

> Modeling memory is hard

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Modeling memory

environment S:_q S, S 1

\ /)
-) a0 -0

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Modeling memory

environment

e A common architecture:

> A recurrent model m, = f,(m,_,,a,_;,0,); and an action model my(a, | m,)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Today's lecture

Behavior Cloning

Policy Gradient

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Example: Breakout
ook S 1 B OOk S5 1

reward: +0 +1 +0 +0

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Formulating reward: considerations

« We define (s, a), is that general enough?

« What if the reward depends on the next state §'?

~ If we only care about expected reward, define r(s, a) = E g5 4~ 7(S, a, 57)]

« What if the reward is a random variable r?

» Define r(s,a) = E[F]|s, a]

> |n practice we see 7 = don't just assume you know r(s,a) =7

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

RL objective: expected return

 We need a scalar to optimize

. Step 1: we have a whole sequence of rewards {r, = r(s,, a,) } ¢

Summarize as return R(&) = Z y'r(s, a,)

>0

>

« Step 2: R(&) is a random variable, induced by p_(€)

» Take expectation J, = k., [R(S)]

» J_can be calculated and optimized

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Policy evaluation: example

dish available o(s'| s, a) done
r(pick |available) = 1 \
r(available, pick) = 0 0.9 |

0.9 (1,3)
dish grasped —
0.1
p(dropped | available, pick) = 0.1 (1, =10)
dish dropped (as) F(S/ 2

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Policy evaluation: example

y =0.9

dish available done

(1,0) i 0.97
0.9 (1,3)
dish grasped —

0.1 (1, —10)

p.(&)=1-09-1-0.9=0.81
RE=0+y-3=2.7

dish dropped

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Policy evaluation: example

y =0.9

dish available done

0.9 |

0.9 (1,3)
dish grasped —
0.1
0.1 g (1, -10)

p(E=1-01-1-1=0.1
RE =0+y-(=10)= =9

dish dropped

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Monte Carlo (MC) policy evaluation

~ Computing J. = 5Npﬂ[R(§)] — 2 p.(E)R(E) can be hard
S

> Exponentially many trajectories

» Model-based = requires p(s’| s, a), which may not be known

 Monte Carlo: estimate expectation using empirical mean

Jom—) RED) &0 ~p,

> Model-free = can sample with rollouts, without knowing p

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Value function

. RL objective: maximize expected return J_ = [E Enp |R]
» We don't control s, can break down: J, = [E¢ [V(s0) | 5]
> with the value function V,(s) = k., [R | 59 = 5]

» V (s) is the expected reward-to-go (= future return):

For any 7, define R, = Z yAtr(St Ap Qi Ar)

>

Ar>0 future reward after being
/ in state s in time ¢
~ Then V (s) = E;_, [R5, |5, = 5] B

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

MC for value-function estimation

Algorithm MC for value-function estimation

Initialize V(s) < O forall s € S

repeat “update LHS towards RHS”
N i.e. V(sy) += a(R(S) — V(sp))
Sample é: Pr / with learning rate a
Update V(sg) — R(&)

 Why not use the same samples for non-initial states?

Algorithm MC for value-function estimation (version 2)

Initialize V(s) < Oforall s € S
repeat
Sample & ~ p,
Update V(s;) — R>;(&) forallr > 0

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

MC with function approximation

Algorithm MC with function approximation

Initialize Vjy
 What if the state space is large? repeat

Sample & ~ p,
> Can't represent V(s) as a big table Descend on Ly = ¥,50(Rx(€) = Vo(s1))* I

» Won't have enOUgh data to estimate each V(S) \with tabular representation:

V(St) += — VV(St)g — ZG(RZZ(f) - V(St))
e Function approximation: represent Vg S — | same as in previous slide

» 0 € O, a parametric family of functions; for example, a neural network

 (Generalization over state space = data efficiency

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Policy evaluation: example

dish 1 available dish 2 available
(1,0) 0.9 1
0.9 (1,3)
dish grasped —
0.1
0.1 (1, —10)

dish dropped

trajectories = exponential in # dishes

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

MC inefficiency

 The MC estimator is unbiased (correct expectation), but high variance

> Requires many samples to give good estimate

e But MC misses out on the sequential structure

e Credit assignment problem:
> Day 1: | take route 1 to work — ; | take route 2 home —
> Day 2: | take route 3 to work — ; | take route 4 home —

* Which route should | take to work"?

> Route 1 = 50-minute daily commute, route 3 = 60-minute; is route 1 better?

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Dynamic Programming (DP)

 Dynamic Programming = remember reusable partial results

e \alue recursion:

Va(s)

SRR -y
"5Npﬂ[l’(Soa ag) + 7R21 | Sy = S| Richard Be"ma:
-(a‘s),%[r(s, a)+vy -5Npﬂ[R21 | 59 = 5, a5 = al]

= a5yl 708> @) + YE (15 ypl By [Rsy |51 = 57111
"(a\s)Nyz[l” (s,a)+y '(s'\s,a)Np[Vﬂ(S)11

break down sum of rewards

first reward only depends on a

s’ is a state, all that matters for R,

definition of V_(s)

[Bellman, 1956]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Policy evaluation: example

Va($) = Bjonal (s, @) + YE 5150y pl Vals)]] V(done) = 0

y =0.9

dish available done

V(available) = 1 - (0 + (0.9 - V(grasped) + 0.1 - V(dropped))) = —0.801

(1,0) 0.9 1
V(grasped)=1:-3+y:-(0.9-V(done) + 0.1 - V(dropped))) = 2.1

0.9 (1,3)
dish grasped —

0.1
0.1 (1, —10)

dish dropped V(dropped)=1-(-10+y-(l-V(done))) =—10

N ™~

n(clean | dropped) (dropped, clean) P(done|dropped, clean)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

DP + MC: Temporal Difference (TD)

« Policy evaluation with DP: V () = " (4l S)N,,[I’(S, a)+vy = (5] S,a)Np[Vn(S)]

> Drawback: model-based = need to know p \

« MC: V(s) = R, /(&), where S ~ p and s, = s

recursion from s’ to s
= backward in time!

> Drawback: high variance
» Put together: V(s) = r+ yV(s')

~ wheres =s,, r = r(s,,a,), and s' = s,, | in some trajectory
temporal difference

between V(s') and V()
> In other words: V(s) <« V(s) + a(r + yV(s') — V(s))

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Q function

» To approach V_ when we update V(s) — r + yV(s’), we need on-policy data
> Roll out 7 to see transition (s, a) — s’ with reward r

 On-policy data is expensive: need more every time & changes

. Action-value function: Q (s, a) = [R|sy=s,ay = al]

—E~p,

> Compare: V(s) = E;, [R|sy = 5] = E(4)5)~ Os(s, @]

» Action-value backward recursion: Q_(s,a) = r(s,a) +y = (o) S,a)Np[Vﬂ(S)]

 Advantage: A_(s,a) = Q_(s,a) — V_(s) = benefit of counterfactual a

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

The RL scheme

policy evaluation

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Q-learning

V_(s") = max Q_(s',a’)

N\

policy evaluation Q.(s,a) = r(s,a) +yV (s

n(s) = arg max Q(s, a)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Q-Learning

Algorithm Q-Learning

Initialize O

§ <— reset state

repeat
Take some action a
Receive reward r
Observe next state s’

r s’ terminal
Update O (s,a) — o |
r+ymax, Q(s’,a’) otherwise

s «— reset state if s’ terminal, else s «— s’

[Watkins and Dayan, 1992]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

U CI University of
California, Irvine

After the break:
Deep RL

Experience policy

* Which distribution should the training data have®?

> The policy may not be good on other distributions / unsupported states

> = Iideally, the test distribution p_ for the final &

» On-policy methods (e.g. MC): must use on-policy data (from the current)

o Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)

> But both should eventually use p_ or suffer train—test distribution mismatch

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Exploration policies

 Example: | tried route 1: , route 2:

» Suppose route 1 really has expected time , Should you commit to it forever?

* Jo avoid overfitting, we must try all actions infinitely often

e c-greedy exploration: select uniform action with prob. €, otherwise greedy

e Boltzmann exploration:

exp(pQ(s,a))

71'(61 ‘ S) = soft mjx(Q(s, Cl);ﬁ) — m

» Becomes uniform as the inverse temperature f — 0, greedy as f — o

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

EXperience replay

* On-policy methods are inefficient: throw out all data with each policy update

o Off-policy methods can keep the data = experience replay
> Replay buffer: dataset of past experience

> Diversifies the experience (beyond current trajectory)

e Variants differ on

> How often to add data vs. sample data
» How to sample from the buffer

> When to evict data from the buffer, and which

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Why use target network?

. Fitted-Q loss: &, = (r + ymax Q4(s’, a’) — Qu(s, a))*
TN

no gradient from the target term

» Target network = lagging copy of Qy(s, a)

- Periodic update: 0 « 0 every Ttarget steps

» Exponential update: 8 < (1 —)0 + 1o

square loss

)Ftop gradient

r+ymax Qgs’,a’)

a

e (Jjis more stable

> Less of a moving target

» Less sensitive to data = less variance

. But @ # 6 introduces bias

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Putting it all together: DQN

|' o fitted-Q loss

olicy evaluation I

P y 39 — (r+;/m£}X Qé(saa) _ QH(Sa a))z
da

exploration
e.g. €-greedy

greedy policy

n(s) = arg max Q(s, a)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Deep Q-Learning (DQN)

Algorithm DQN

Initialize 6, set @ «— 0

§ «<— reset state

for each interaction step
Sample a ~ e-greedy for Qy(s, *)
Get reward r and observe next state s’
Add (s,a,r,s’) to replay buffer D
Sample batch (5,a,7,5") ~ D

r; s: terminal
Yi <

ri +ymaxy, Qg(si,a’) otherwise

Descend Ly = (¥ — Qy(5,d))?
every Iiaroet Steps, set 6 «— 6
s « reset state 1f s’ terminal, else s <« s’

[Mnih et al., 2015]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Today's lecture

Behavior Cloning
Temporal Difference

and more...

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Value-based vs. policy-based methods

value-based policy-based

Qy(s, a) policy evaluation e R(S)]

arg max Qy(s, a)

my(a B

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Policy Gradient (PG)

o Gradient-based learning: @ — 0 — V, k.. | ZLy(x)]

> EXpectation gradient = expected gradient, estimate with samples

o Policy-Gradient RL: 0 — 0 + VJ,, with J, = [R]

~E~py
> Can we also use samples ¢ ~ p, to estimate V,J,?

« The sampling distribution itself depends on ¢

> Problem 1: data must be on-policy Y- W

> Problem 2: cannot backprop gradient through samples

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Score-function gradient estimation

., Log-derivative + chain rule: Vylog py(&) = Vopo(&)

Po(S)

e |Log-derivative / score-function / REINFORCE trick:

Voly=) R(E) Vypy&)
S

=) R©py(&) Volog py(&)
3

= [E;., [R(E) Vglog py(&)]

» Allows estimating V,J, using samples & ~ p,

oy Fox | CS 175 | Winter 2026 | RL in a Nutshell

REINFORCE

o Tofind VyJ,y = -ngg[R(f) Vylog py(&)], sample & ~ py, then:

Volog py(&) = V@(logp(so) T Z log my(a,|s,) + 1log p(s,.11S, Clt))
t

= Vg Z log my(a,| s,)
f

> Model-free, but on-policy and high variance (like MC)
Algorithm REINFORCE

Initialize mg
repeat
Roll out & ~ py
Update with gradient g < R(&))., Vg log mg(a;|s;)

[Williams, 1992]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Actor-Critic (AC) methods

critic O,(s, a)
evaluates actor

policy evaluation

actor my(a | s)
uses critic to improve

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Advantage Actor—Critic (A2C)

Algorithm Advantage Actor—Critic

Initialize g and Vi

repeat
Roll out & ~ pg
Update A8 « 2., (R>(&) — Vi (s1)) Vg log mg(ayls;)
Descend Ly = 3, (R/(€) — V(s1))?

[Mnih et al., 2016]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Importance Sampling

» Suppose you want to estimate = | f(x)]

> but only have samples x ~ p’

* Importance sampling:

] e p(x)
o=y [0

p(x)
p'(x)

Importance (IS) weights: p(x) =

>

> Estimate: p(x)f(x) withx ~ p’

)

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Finding best next policy

Trace of unconstrained optimization with trust-region method

Performance Difference Lemma: J_ — J- = Z }/t _(St,at)Npﬂ[Aﬁ'(St? a,)]

IIIIIII

[

. ldea: with current policy 7z, find max J_ — J- by maximizing the RHS
T

. Step 1: use 7 to evaluate A ; step 2: estimate = (5,.0)~p [A-(s,,a,)]

> But we don't have data (s,, a,) ~ p,; idea: sample from 7

max) y'E:__, [P2(E_)A(s, a)]
T / \

high variance!
" (a,ls,) . ma|s)
When is it reasonable to use pZ(a,|s,) = instead? i.e. drop pZ(5_,) = I I -
ﬁ(at | St) ﬂ(at, SZ/)

1'<t

» Intuitively, when D[74(a | s)||7(a|s)] is small

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Proximal Policy Optimization (PPO)

» Idea: ascend [,)., [e(a | 5)Az(s, a)] with 7y staying near 75 e

IIIIIII

» PPO-Penalty: add a penalty term for £, [D[xg(a | s)||mg(a| $)]]

. PPO-Clip: ascend [E [Lg(s, a)] with

(s,a)~Pg
L‘g(s a) = min(p H(a | 5)AH(s,a),Ag(s,a) + |€Ay(s,a)|)

mo(a B

. Positive / negative advantage = increase / decrease) Nals) =
mg(a | s)

 ho incentive # doesn't happen
 PPO has lots more tricks to

» But no incentive beyond p e(a s)=1=xc¢€ jimit divergence

[Schulman et al., 2017]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Today's lecture

Behavior Cloning
Temporal Difference

Policy Gradient

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Bounded optimality

Bounded optimizer = trades off value and divergence from prior zy(a | 5)

max —(S,a)Npﬂ[r(s, a)l| —rt

JU

1

JU

M z|[my] = max E ., [r(s, a) — tlog

n(als)]

my(al s)

T = — Is the tradeoff coefficient between value and relative entropy

p

> As 7 — 00, the agent will fall back to the prior 7 —

» As 7 — 0, the agent will be a perfect value optimizer x — 7*

Early in training, 7 should be finite to avoid overfitting

Bellman recursion: V(s) = max k)., [r(s, a)—1log

JU

- optimal 7 « 7, exp(fO(s, a))

n(als)

my(al s)

TY

= (5] S,a)Np[V(S ,)]]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Soft Actor—Critic (SAC)

mo(a | s)exp pO(s, a)
exp pV(s)

n(als)

my(al s)

Optimally: 7(a | 5) = V(s) = O, a)—% log

In continuous action spaces, we can't explicitly softmax Q(s, a) over a

We can train a critic off-policy

2
A WY, 1 ﬂg(a, s')
Ly(s,a,r,s’,a’) = (r + ¥ <Q¢(S , d)_E log -~) — Q,(s, a))

71'0(61,

And a soft-greedy actor = imitate the critic

Ly(s) = E) llog my(al s) — log zo(a| s) — PO, (s, a)]

Can optimize 7 to match a target entropy L (s, a) = — tlog n(a|s) — tH

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Dreamer

e Dreamer learns a latent state process to

» Reconstruct observation

al d .
| O o
A encode images Eas SRS

» Predict reward

compute states

» Predict next latent state distribution predict rewards

.) ; . ,-': A | \ .’/‘ . .“\.
[— . i.‘._,;_.‘ _';"A 4 aslss '. :'.’v.-...u_.*.u.i‘. ‘ .'."... #M_:E
e, : i ; ' (|
e Then performs RL in this model - Gy R, " S

> We really only need the rewards and transitions

> Reconstruction is an auxiliary task

[Hafner et al., Mastering Diverse Domains through World Models, 2023]

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

The interface of a world model

 We would like a model where we can run RL algorithms

» That gives the same |[R(&)] as the world for all z

—E~p,
 But that’s not possible without seeing the observations

> But here we can’t run RL in imagination

« How to keep the imagination and interaction modes matched?

» Method 1: in imagination, predict o, ; (or its embedding) and feed it back

> Method 2: keep p(m,|a_)and E,_, . [p(m,|0,,a)] close

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Flowchart: which algorithm to choose?

discrete continuous

on-policy off-policy deterministic stochastic

l

(2015)

extensions: (2016) (2018)
 Rainbow DQN (2018)

 SQL (2017)

« Mean DQN (2022)

(2017) (2023) parallelization = A3C (2016)

no, but turnkey

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Why so many algorithms?

* We may have different modeling assumptions
> |s the environment stochastic or deterministic?
> Is the state / action space continuous or discrete?
> Is the horizon episodic or infinite?
 We may care about different tradeoffs
> Sample efficiency? Computational efficiency while learning / executing? Succinct representation?
> Algorithmic stability, reproducibility, ease of use (existing code), ease of adaptation
e Different difficulty to represent or learn in different domains
> Represent / learn a policy or a model?

> Discover structure? Memory? Transfer / share with other tasks? Non-stationarity / multi-agent?

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

On- or off-policy data?

e The faster our simulator = the faster we can refresh our data

> And still keep sufficient diversity for training

* Fast enough = can use on-policy data

> No need for replay buffer

> No train—test distributional mismatch (= covariate shift)

> Can still use off-policy algorithms with on-policy data

o Extremely slow simulator = not even off-policy, just offline RL

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Reward shaping

e |deal reward: r(s,a) = — oo for any suboptimal action = as hard to provide as 7*

> We need supervision signal that's sufficiently easy to program — generate more data
o Sparse reward functions may be easier than dense ones

> E.g., may be easy to identify good goal states, safety violations, etc.
 Reward shaping: art of adjusting the reward function for easier RL; some tips:

> Reward “bottleneck states™; subgoals that are likely to lead to bigger goals

» Break down long sequences of coordinated actions = better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

Logistics

* Project proposals are due next Friday (team)

 Meet the instructor at least once by next Friday

_ Exercise 1 is due next Wednesday (individual)

 \Welcome to schedule as much as you need

Roy Fox | CS 175 | Winter 2026 | RL in a Nutshell

