

CS 175: Project in Artificial Intelligence

Winter 2026

Reinforcement Learning in a Nutshell

Roy Fox
Department of Computer Science
School of Information and Computer Sciences
University of California, Irvine

Logistics

assignments

- Exercise 1 is due **next Wednesday** (individual)
- Project proposals are due **next Friday** (team)

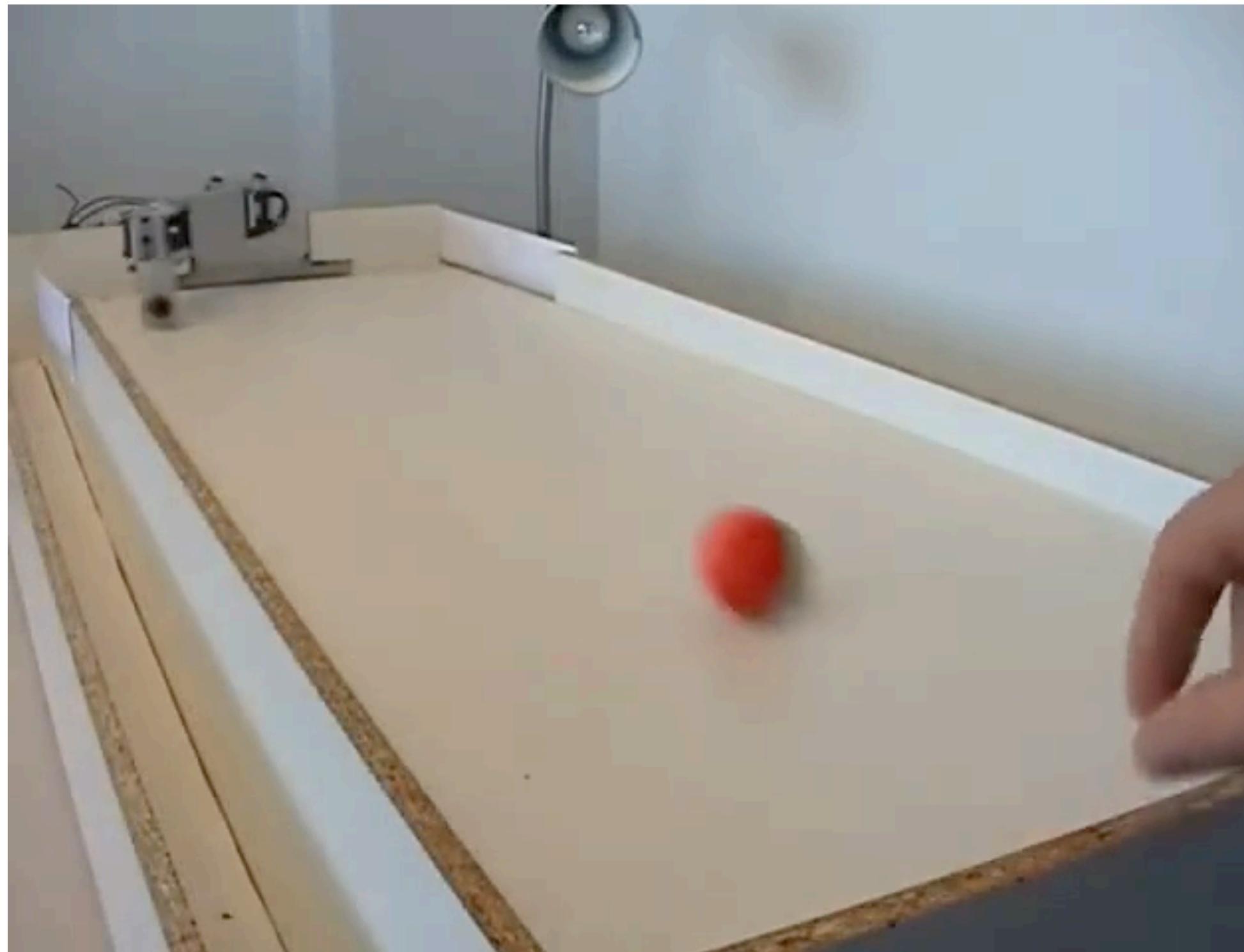
meetings

- Meet the instructor at least once by **next Friday**
- Welcome to schedule as much as you need

Basic RL concepts

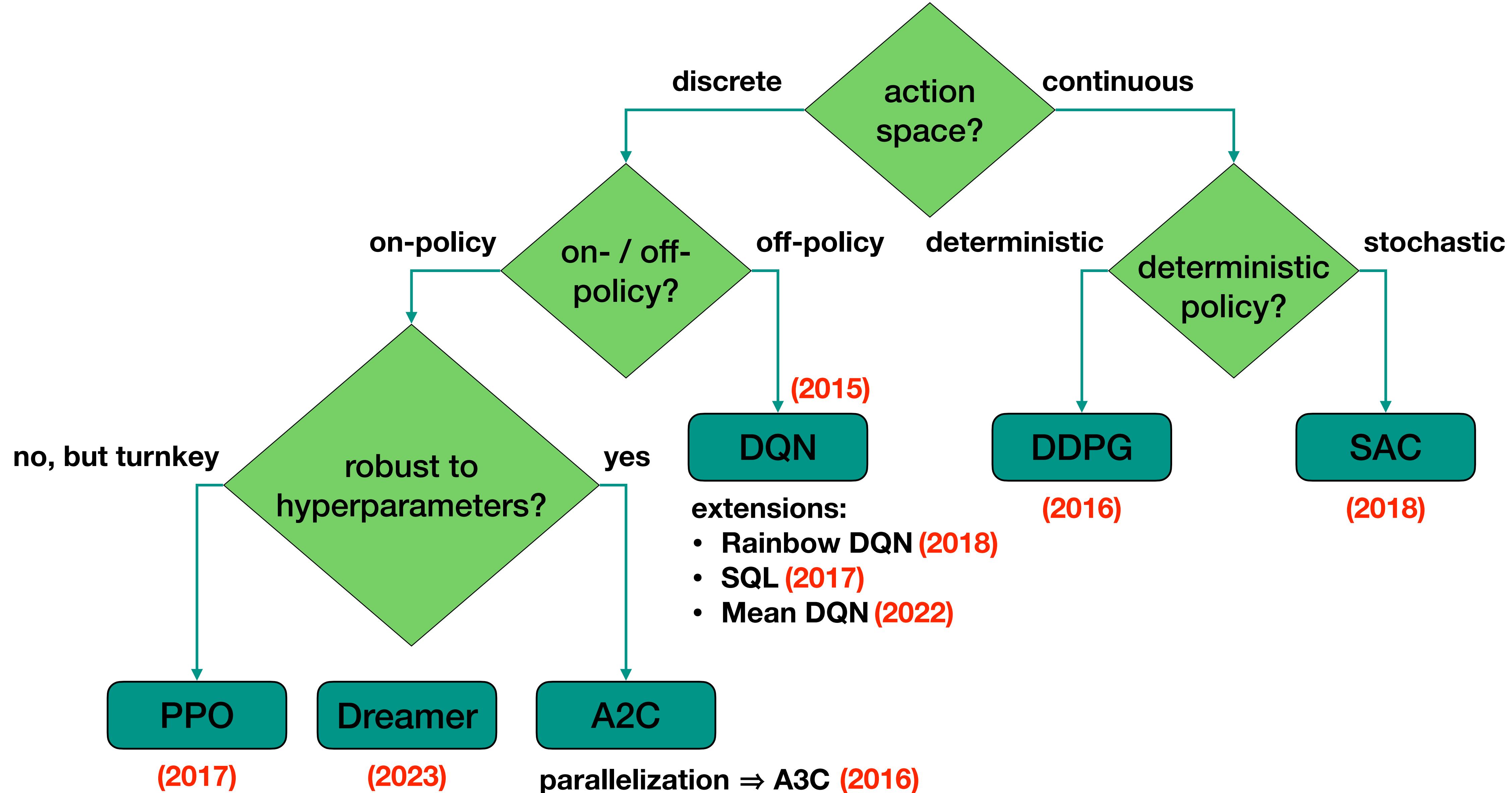
- **State:** $s \in \mathcal{S}$; **action:** $a \in \mathcal{A}$; **reward:** $r(s, a) \in \mathbb{R}$
- **Dynamics:** $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- **Policy:** $\pi(a_t | s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic
- **Trajectory:** $p_\pi(\xi = s_0, a_0, s_1, a_1, \dots) = p(s_0) \prod_t \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$
- **Return:** $R(\xi) = \sum_t \gamma^t r(s_t, a_t) \quad 0 \leq \gamma < 1$
- **Value:** $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R | s_0 = s]$
- $Q_\pi(s, a) = \mathbb{E}_{\xi \sim p_\pi}[R | s_0 = s, a_0 = a]$

Example: Table Soccer



<https://www.youtube.com/watch?v=CIF2SBVY-J0>

Flowchart: which algorithm to choose?



Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more...

Imitation Learning (IL)

- How can we **teach** an agent to perform a task?
- Often there is an **expert** that already knows how to perform the task
 - ▶ A **human** operator who controls a robot
 - ▶ A **black-box** artificial agent that we can observe but not copy
 - ▶ An agent with different **representation** or **embodiment**
- The expert can **demonstrate** the task to create a training dataset $\mathcal{D} = \{\xi^{(i)}\}_i$
 - ▶ Each demonstration is a trajectory $\xi = s_0, a_0, s_1, a_1, \dots$
 - ▶ Then the learner **imitates** these demonstrations

IL = Learning from Demonstrations (LfD)

- Teacher provides **demonstration** trajectories $\mathcal{D} = \{\xi^{(1)}, \dots, \xi^{(m)}\}$
- Learner trains a policy π_θ to **minimize a loss** $\mathcal{L}(\theta)$
- For example, **negative log-likelihood (NLL)**:

$$\arg \min_{\theta} \mathcal{L}_{\theta}(\xi) = \arg \min_{\theta} (-\log p_{\theta}(\xi))$$

$$= \arg \max_{\theta} \left(\log p(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) + \log p(s_{t+1} | s_t, a_t) \right)$$

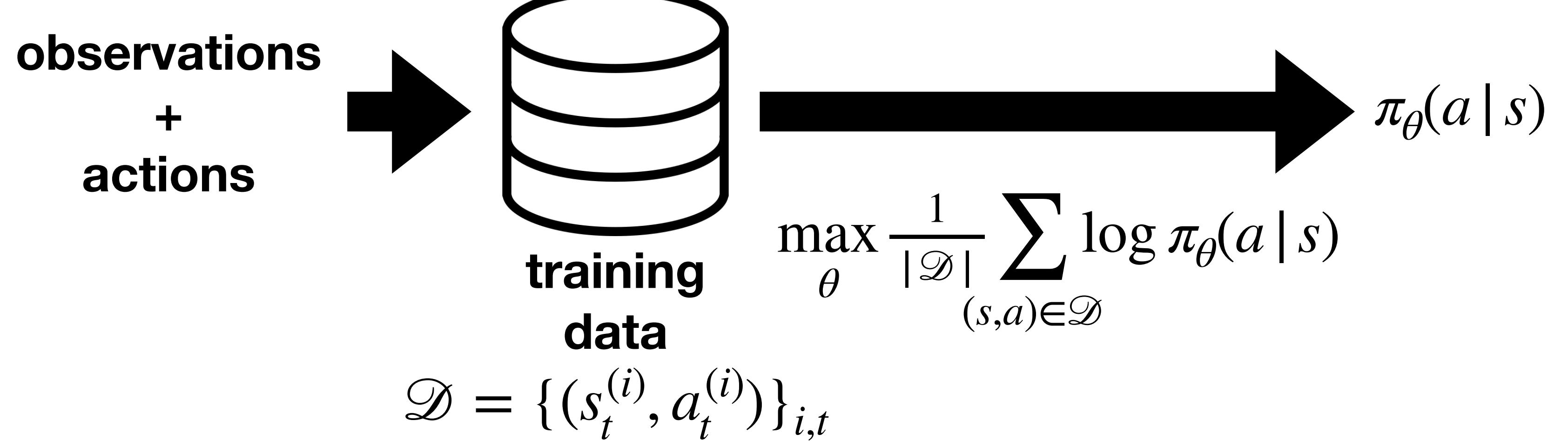
$$= \arg \max_{\theta} \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t)$$

model-free
= **no need to know the environment dynamics p**

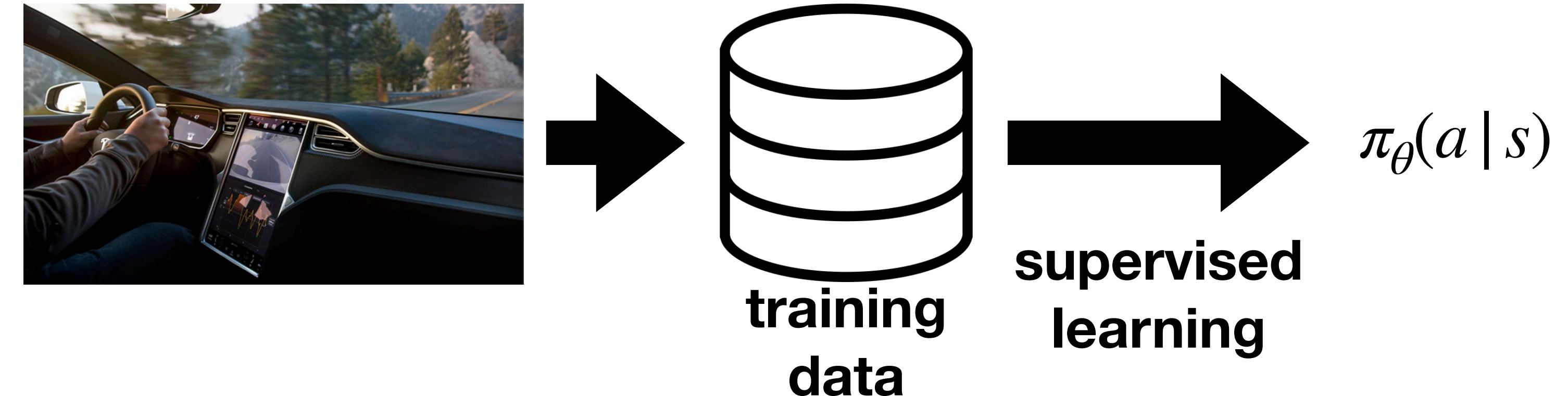
Behavior Cloning (BC)

- Behavior Cloning:

- ▶ Break down trajectories $\{\xi^{(1)}, \dots, \xi^{(m)}\}$ into steps $\{(s_0^{(1)}, a_0^{(1)}), \dots, (s_{T_m-1}^{(m)}, a_{T_m-1}^{(m)})\}$
- ▶ Train $\pi_\theta : s \mapsto a$ using supervised learning

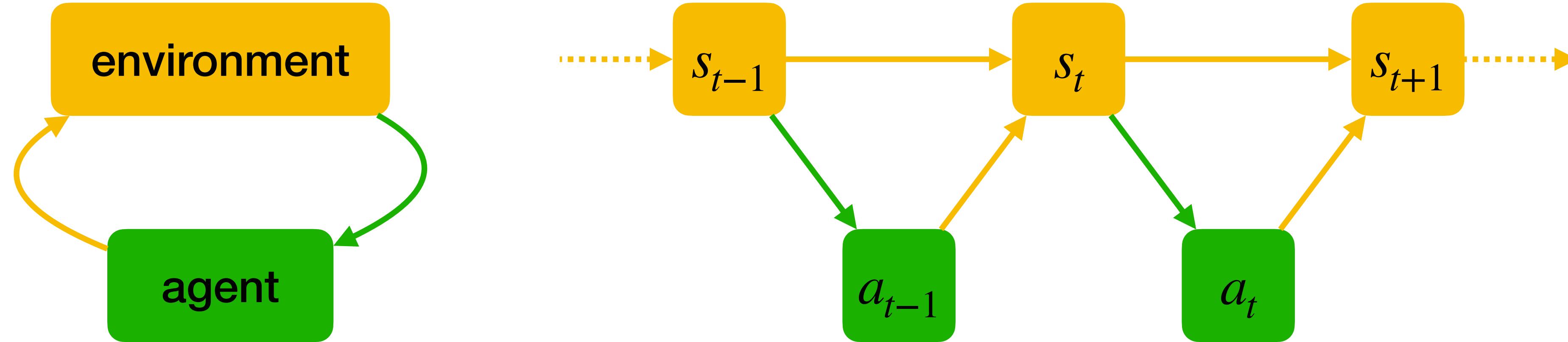
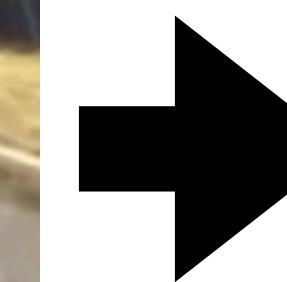
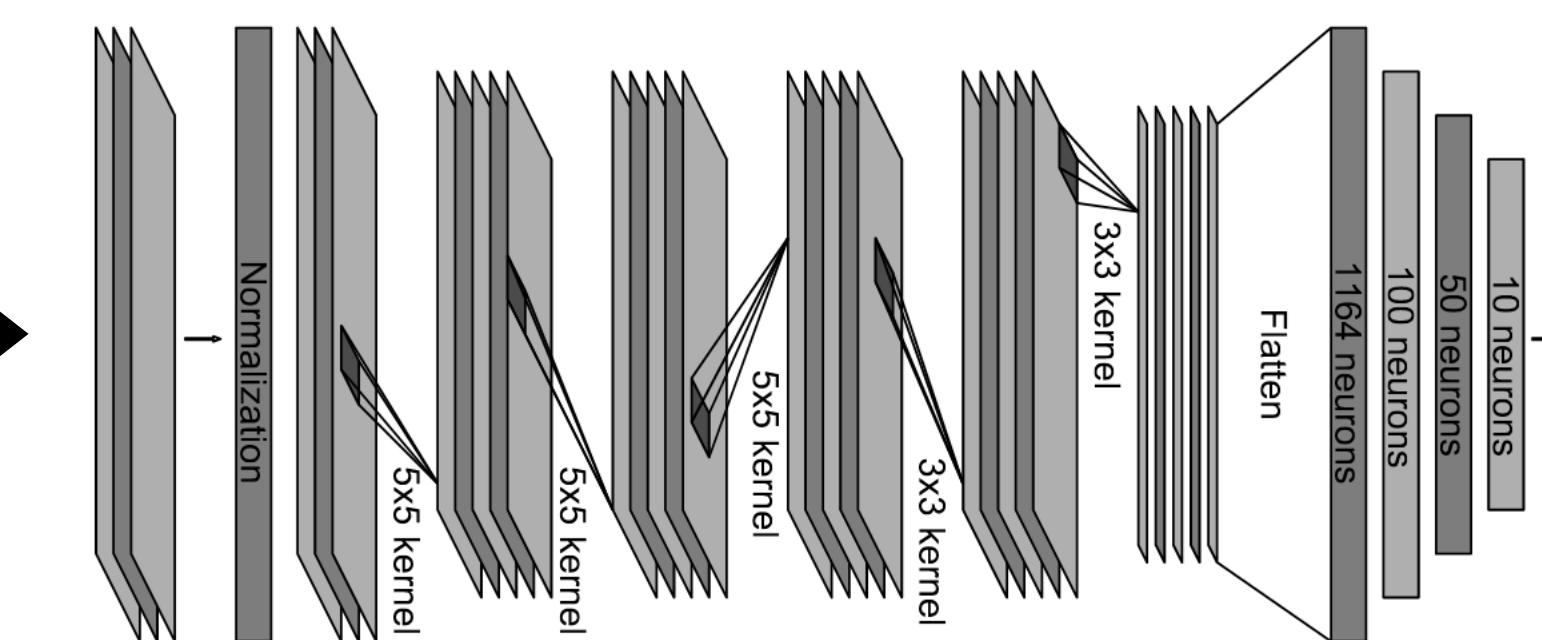


Behavior Cloning (BC)

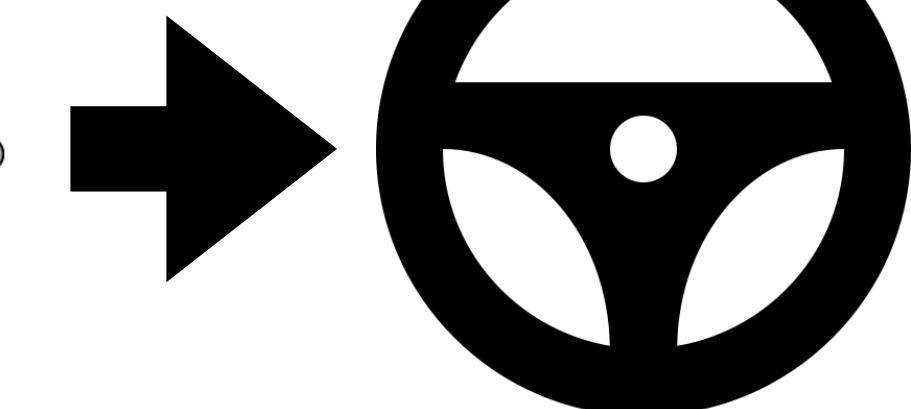


- **Benefits:**
 - ▶ Simple, flexible – can use any learning algorithm
 - ▶ Model-free – never need to know the environment
- **Drawbacks:**
 - ▶ Only as good as the demonstrator
 - ▶ Only good in demonstrated states – how do we evaluate?
 - Validation loss (on held out data)? Task success rate in rollouts?

A policy is a (stochastic) function



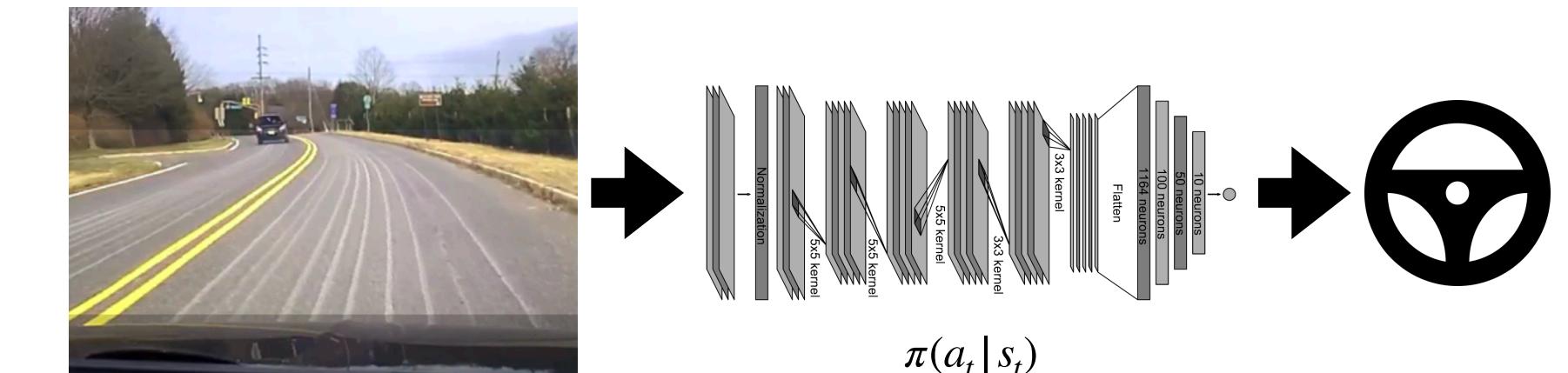
$$\pi(a_t | s_t)$$



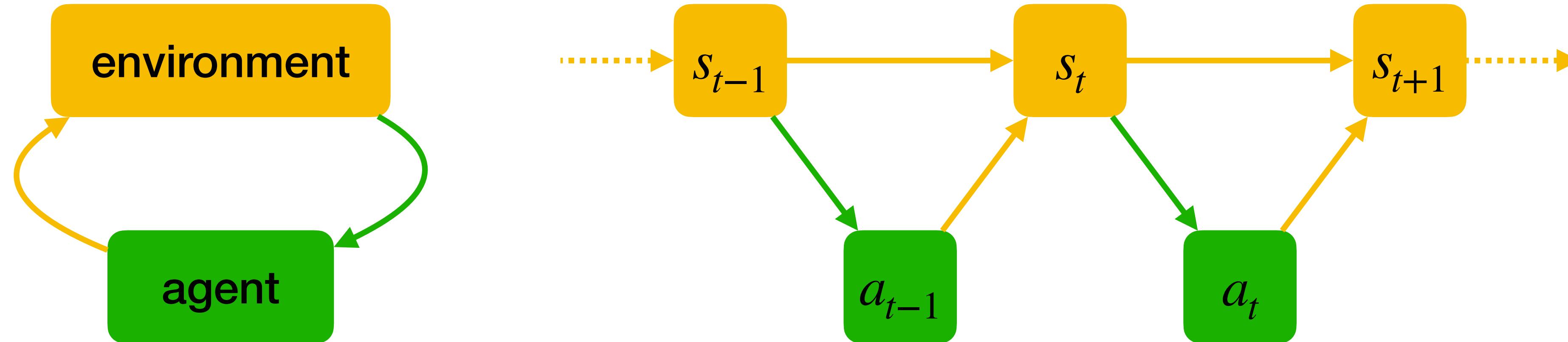
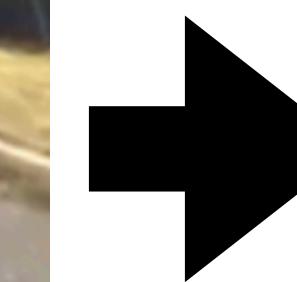
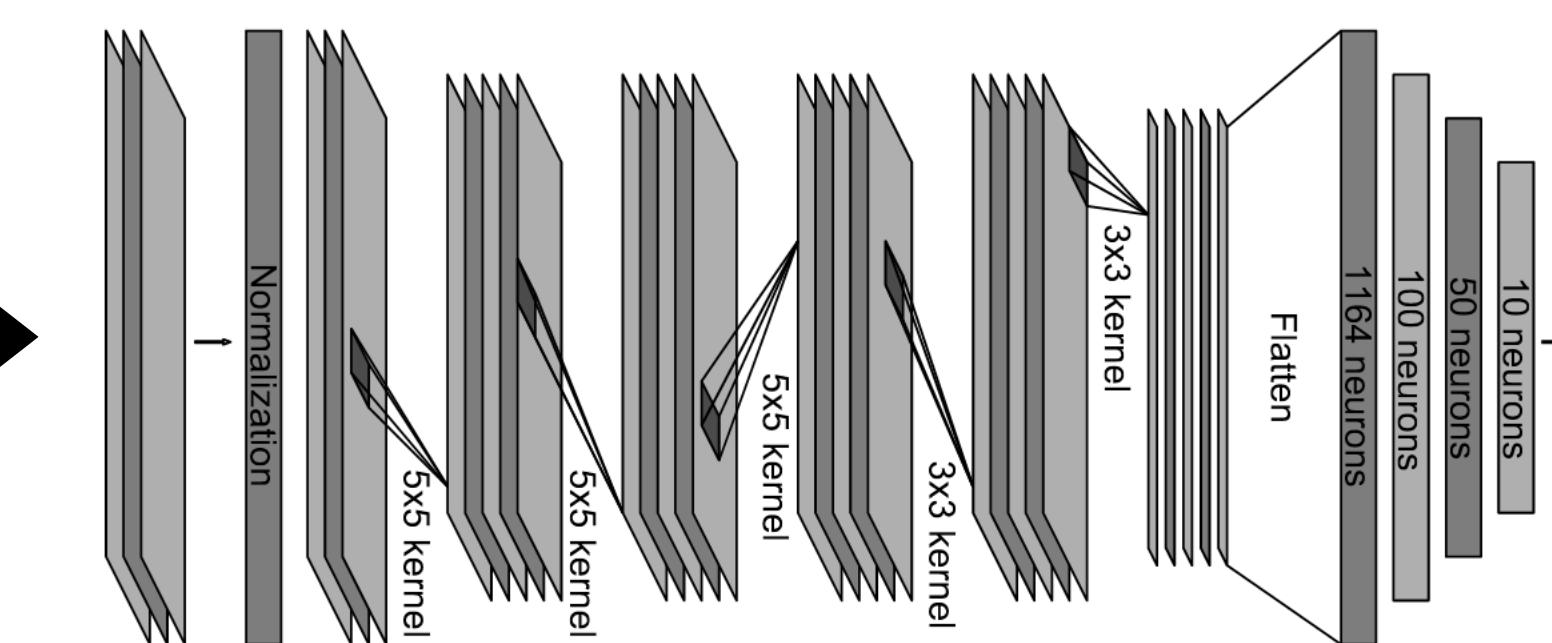
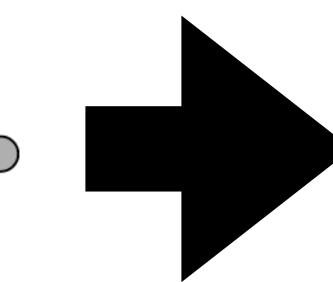
[Bojarski et al., 2016]

Stochastic policies

- Learned models are often **deterministic** functions $f_\theta : x \mapsto y$
- To implement a stochastic policy: output **distribution parameters**
- Examples:
 - ▶ Discrete action space: **categorical** distribution
 - $\pi_\theta : s \mapsto \{\lambda_a\}_a$; $\pi_\theta(a | s) = \text{softmax}_a \lambda_a \propto \exp \lambda_a$
 - ▶ Continuous action space: **Gaussian** distribution
 - $\pi_\theta : s \mapsto (\mu, \Sigma)$; $\pi_\theta(a | s) = \mathcal{N}(\mu, \Sigma)$

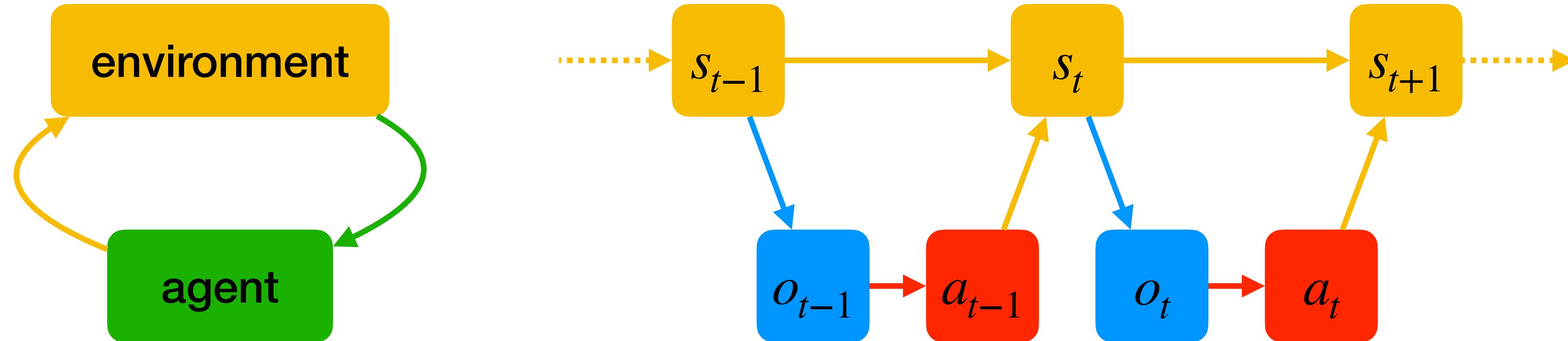
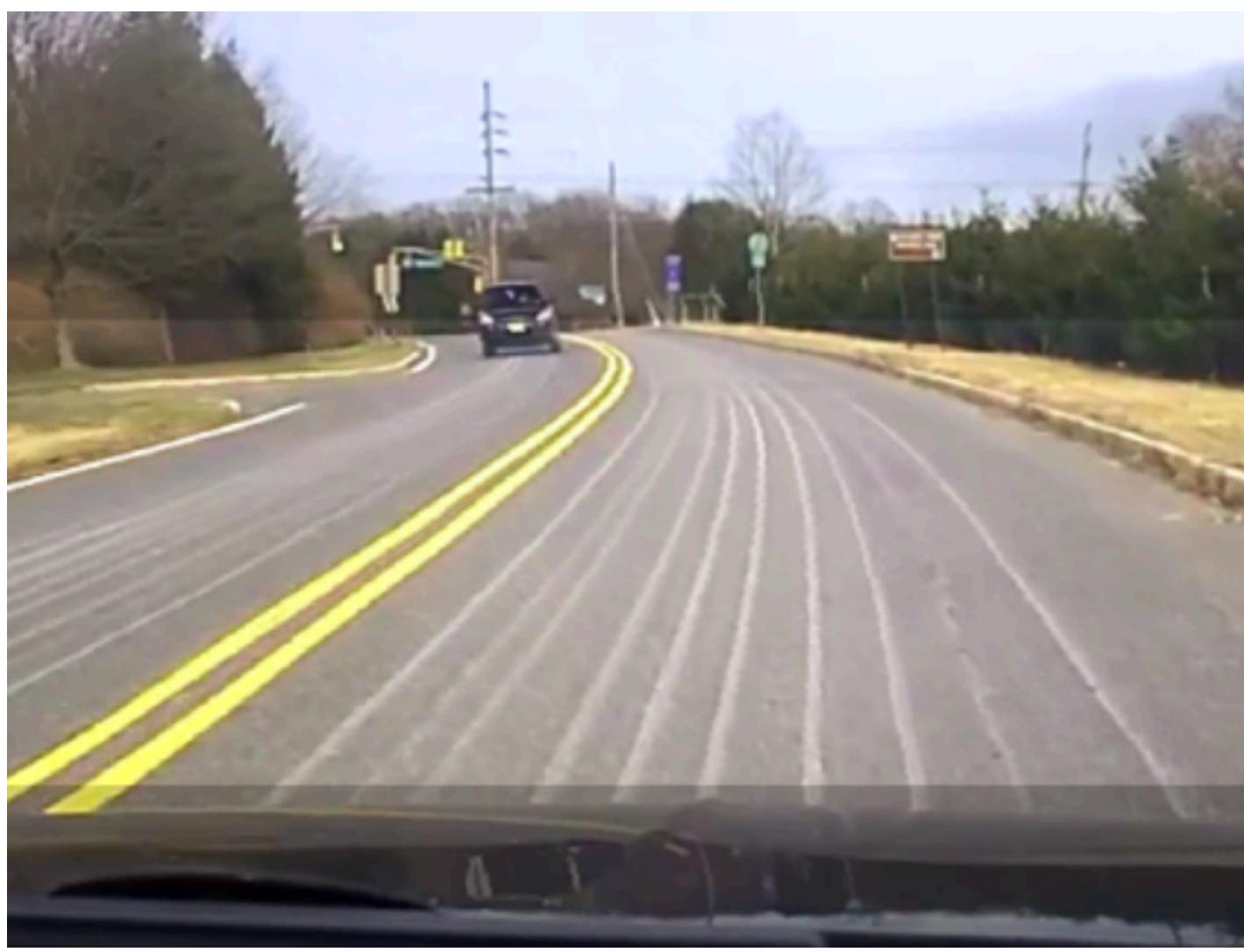
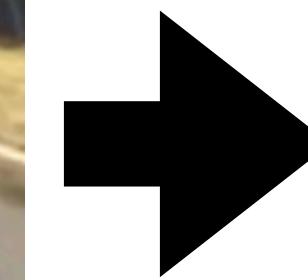
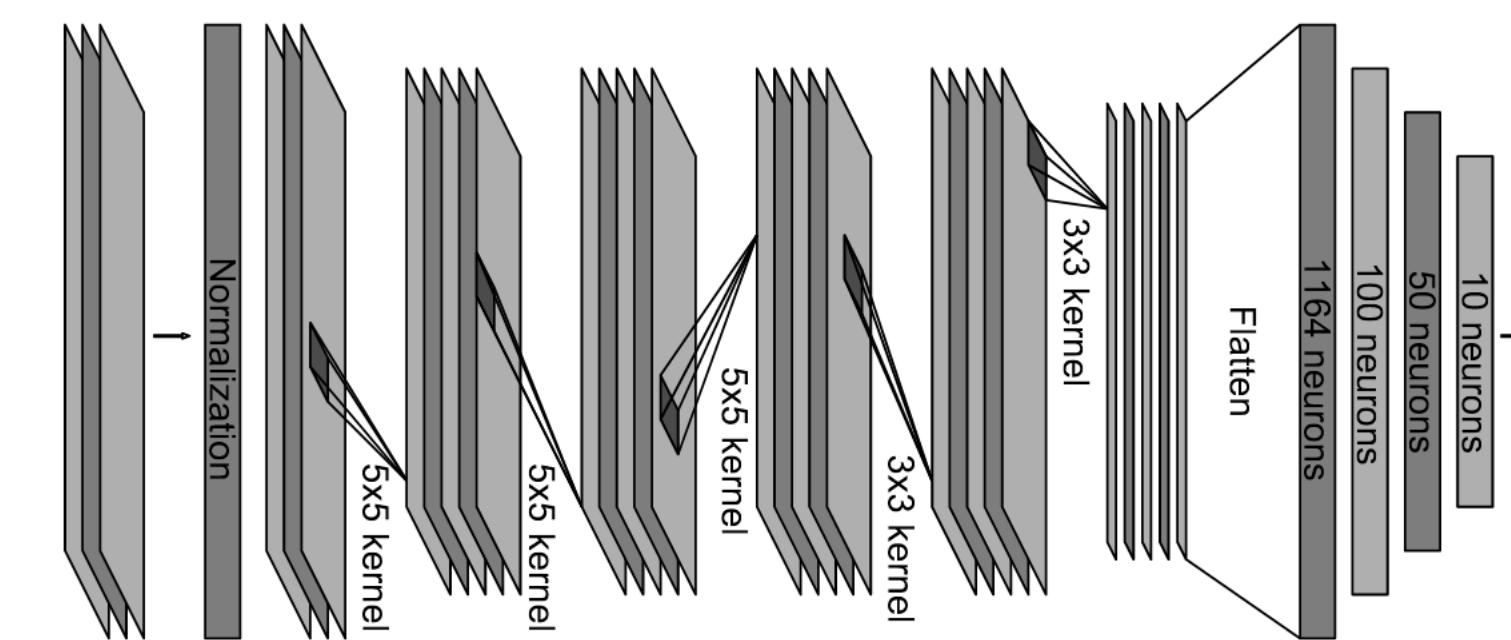


A policy is a (stochastic) function

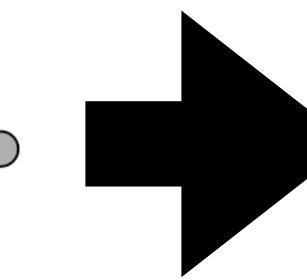
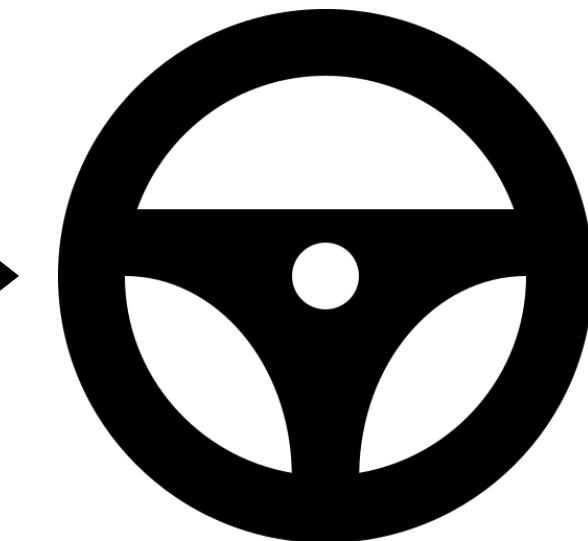


$$\pi(a_t | s_t)$$

A policy is a (stochastic) function



$$\pi(a_t | o_t)$$

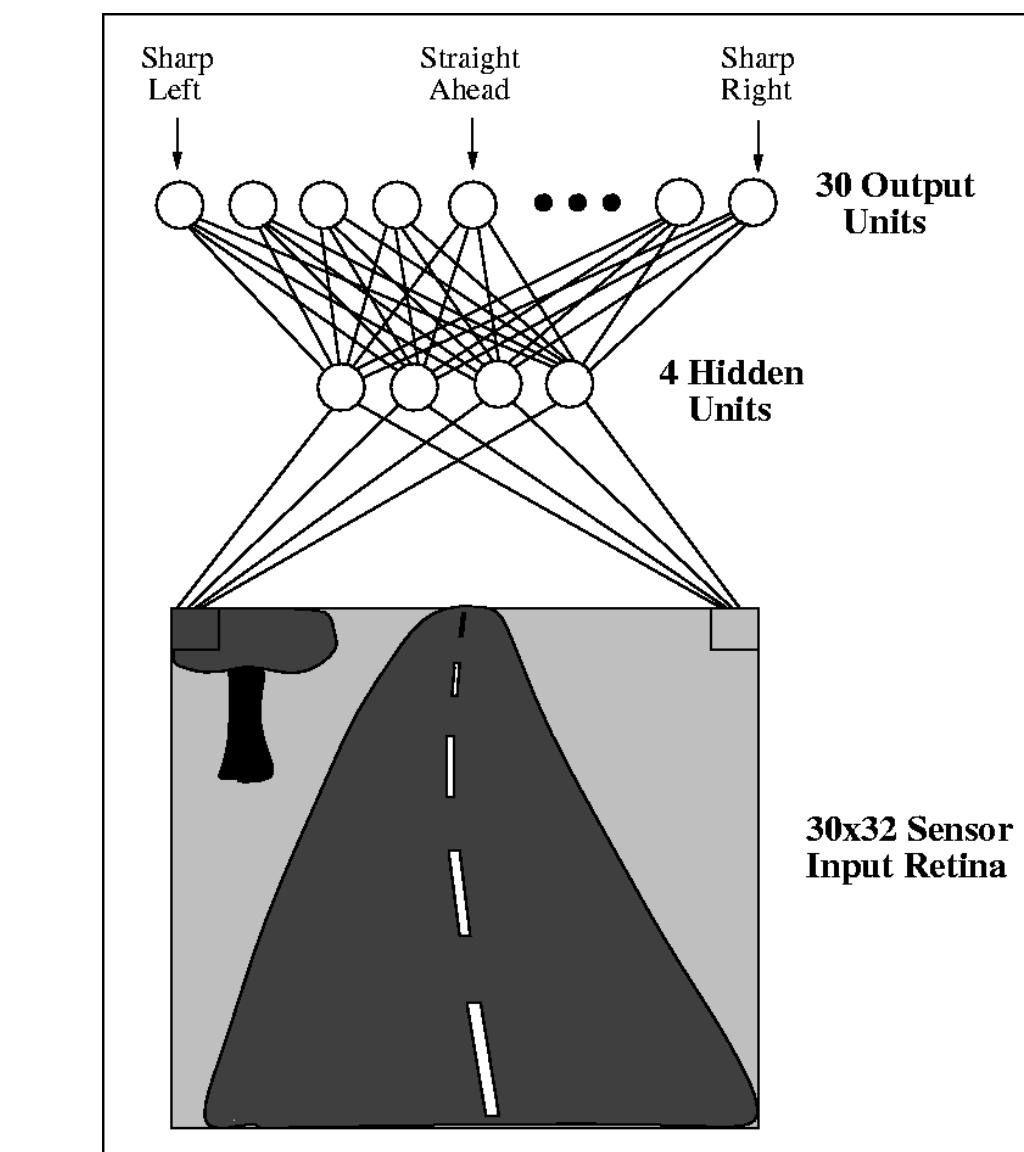


observation

action

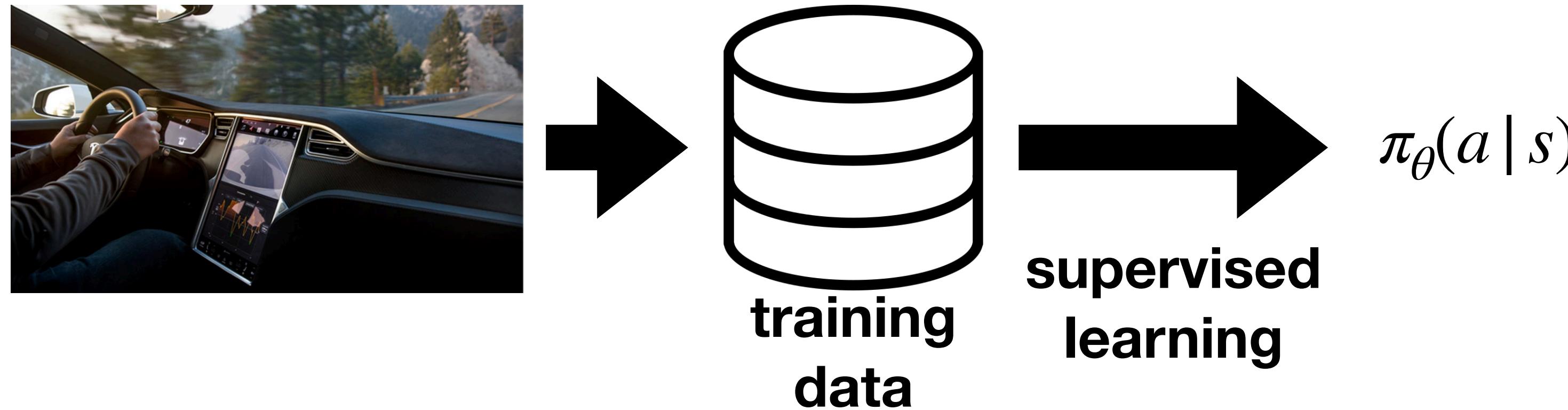
ALVINN

- Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)



[Pomerleau, 1989]

Inaccuracy in BC



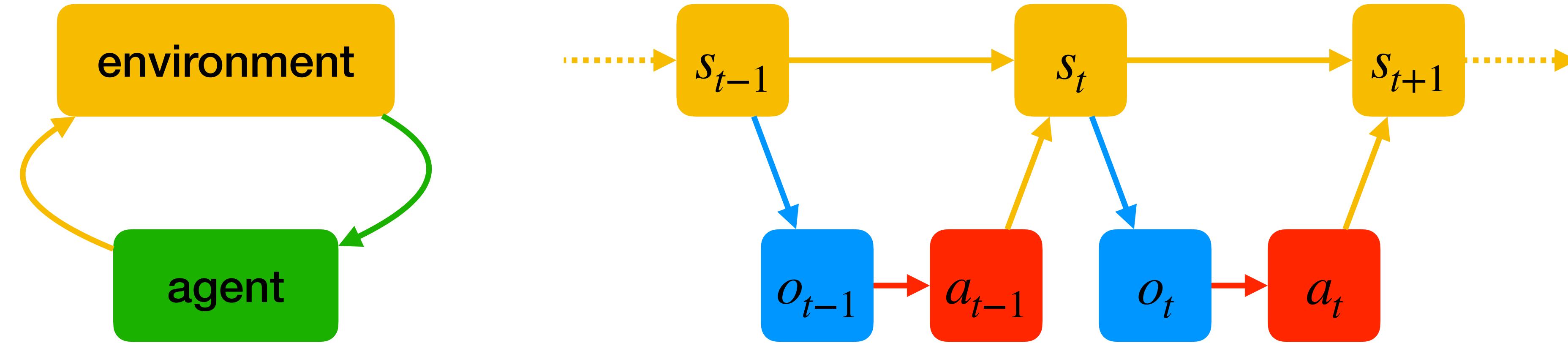
- We could evaluate on held out teacher data, but really interested in **using π_θ**
- If the policy approximates the teacher $\pi_\theta(a_t | s_t) \approx \pi^*(a_t | s_t)$
 - ▶ The trajectory distribution will also **approximate teacher behavior** $p_\theta(\xi) \approx p^*(\xi)$
- But **errors accumulate** over time
 - ▶ May reach states **not seen** in the training dataset

Image: Sergey Levine

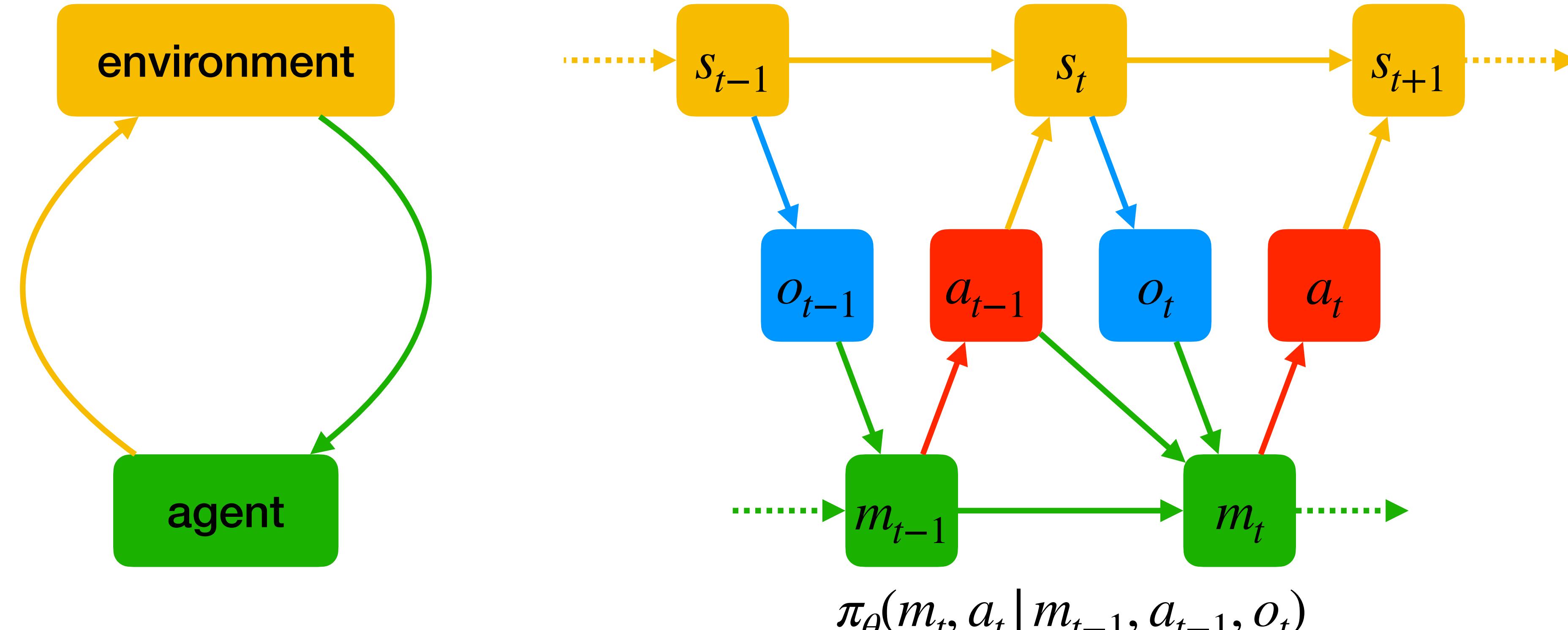
Modeling partially observable behavior

- Partial observations are **not** Markov
 - ▶ Generally, this means $p(o_{t+1} | o_t, a_t) \neq p(o_{t+1} | o_{\leq t}, a_{\leq t})$
 - ▶ **Reactive policy** $\pi_\theta(a_t | o_t)$ may not be optimal
 - May need $\pi_\theta(a_t | o_{\leq t})$, or even $\pi_\theta(a_t | o_{\leq t}, a_{<t})$; but how?
- Can use **RNNs** $f_\theta : (h_{t-1}, a_{t-1}, o_t) \mapsto h_t$, or other memory models
- But memory state is **latent** in demonstrations
 - ▶ Modeling memory is hard

Modeling memory



Modeling memory



- A common architecture:
 - A **recurrent** model $m_t = f_\theta(m_{t-1}, a_{t-1}, o_t)$; and an **action** model $\pi_\theta(a_t | m_t)$

Today's lecture

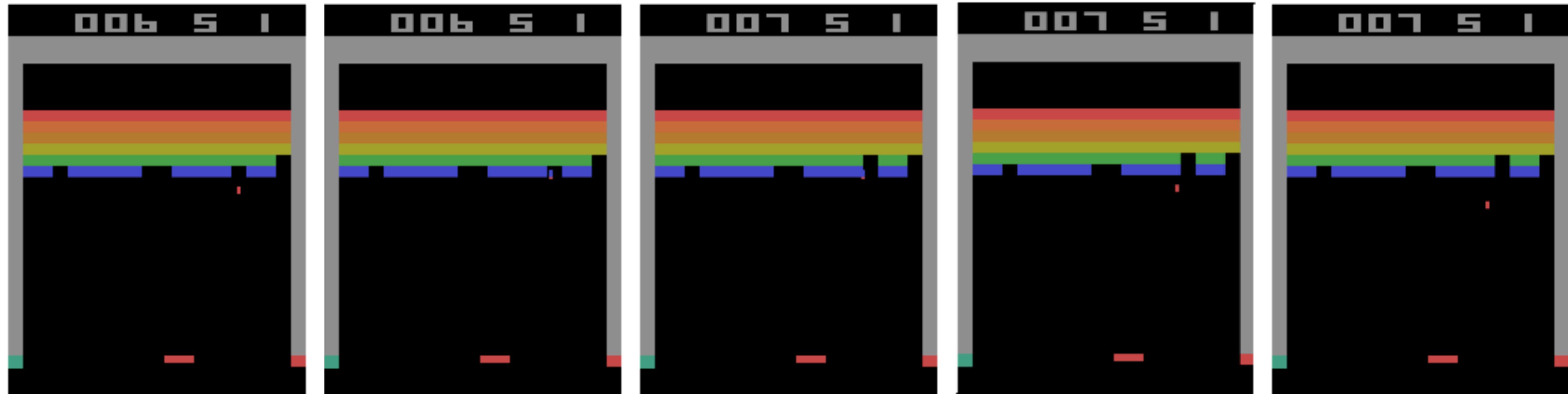
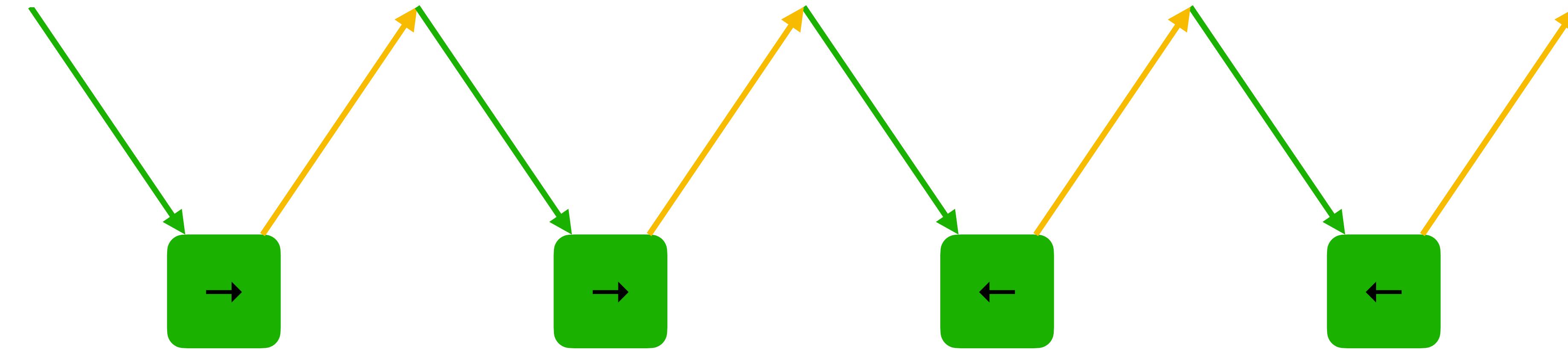
Behavior Cloning

Temporal Difference

Policy Gradient

and more...

Example: Breakout



reward:

+0

+1

+0

+0

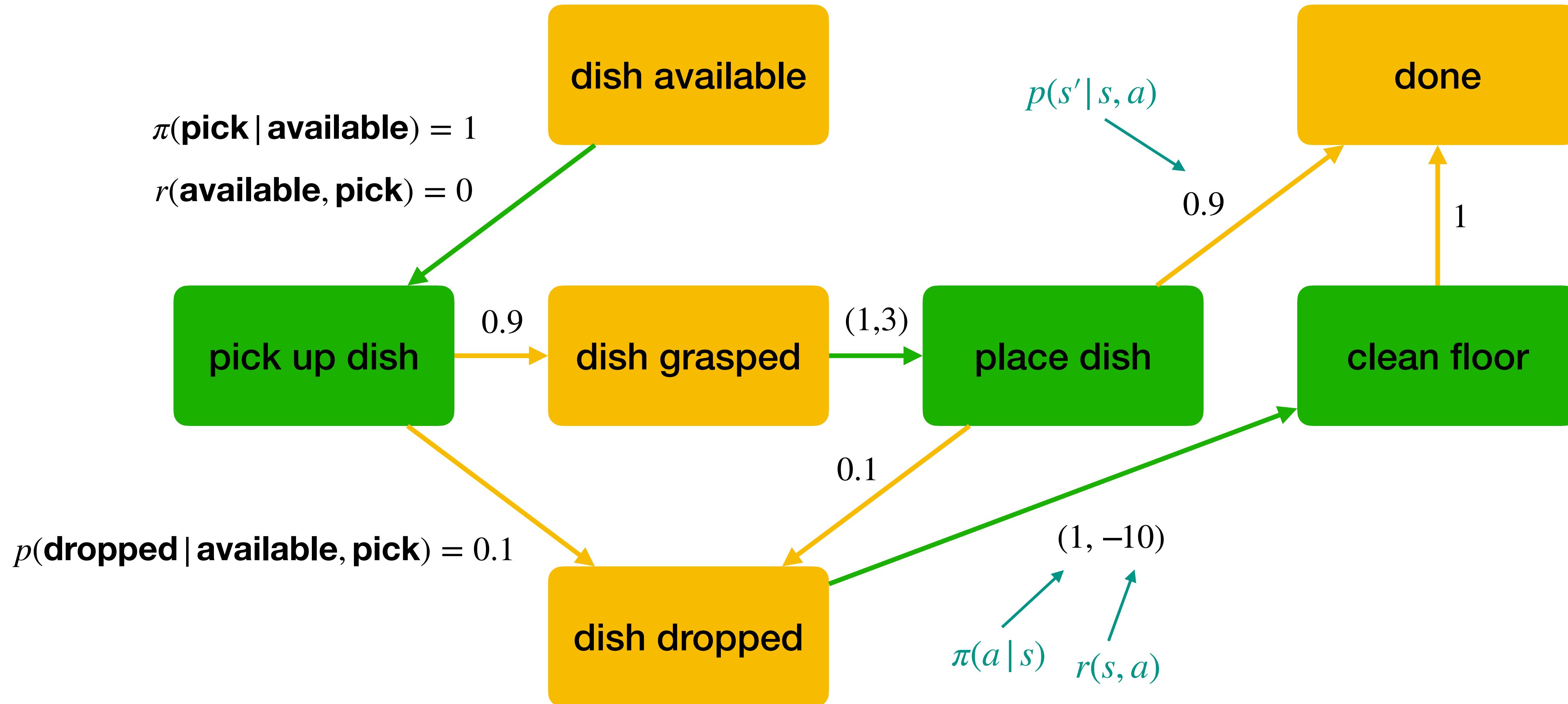
Formulating reward: considerations

- We define $r(s, a)$, is that general enough?
- What if the reward depends on the **next state** s' ?
 - ▶ If we only care about **expected** reward, define $r(s, a) = \mathbb{E}_{(s'|s,a) \sim p}[r(s, a, s')]$
- What if the reward is a **random** variable \tilde{r} ?
 - ▶ Define $r(s, a) = \mathbb{E}[\tilde{r} | s, a]$
 - ▶ In practice we see $\tilde{r} \Rightarrow$ don't just assume you know $r(s, a) = \tilde{r}$

RL objective: expected return

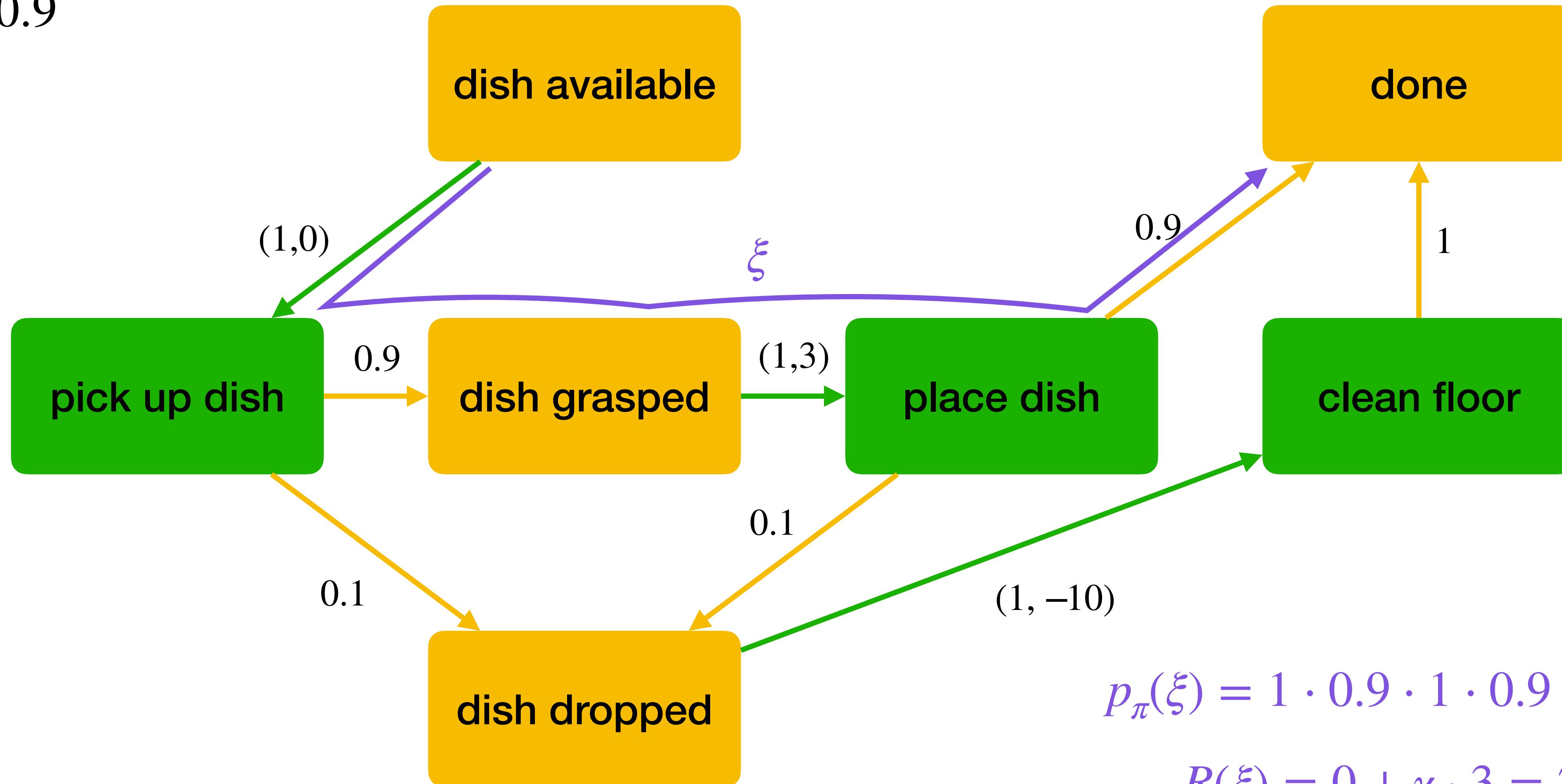
- We need a **scalar** to optimize
- **Step 1:** we have a whole sequence of rewards $\{r_t = r(s_t, a_t)\}_{t \geq 0}$
 - ▶ **Summarize** as return $R(\xi) = \sum_{t \geq 0} \gamma^t r(s_t, a_t)$
- **Step 2:** $R(\xi)$ is a random variable, induced by $p_\pi(\xi)$
 - ▶ Take **expectation** $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R(\xi)]$
- J_π can be calculated and optimized

Policy evaluation: example



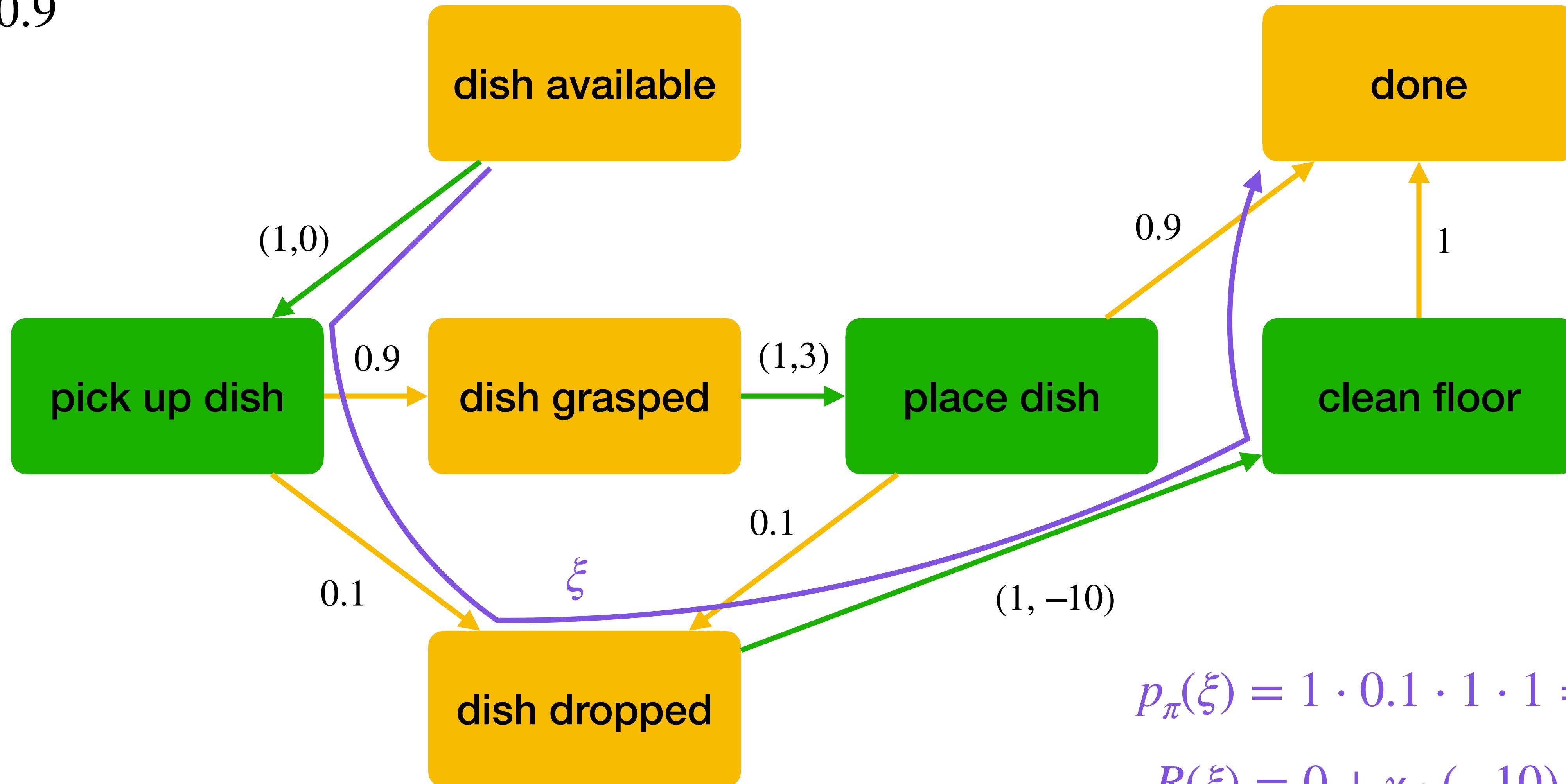
Policy evaluation: example

$$\gamma = 0.9$$



Policy evaluation: example

$$\gamma = 0.9$$



Monte Carlo (MC) policy evaluation

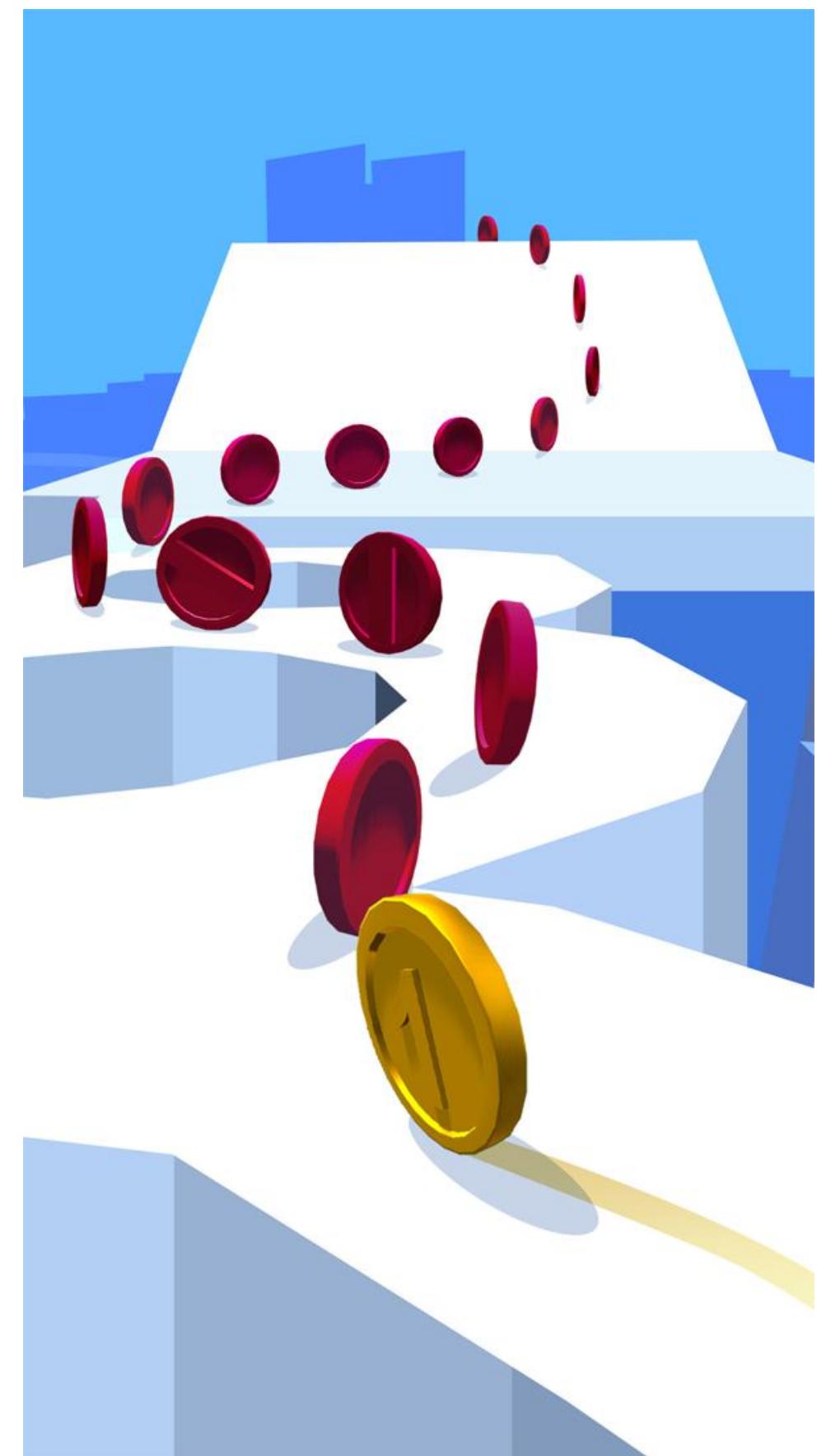
- Computing $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R(\xi)] = \sum_\xi p_\pi(\xi)R(\xi)$ can be hard
 - ▶ **Exponentially many** trajectories
 - ▶ **Model-based** = requires $p(s' | s, a)$, which may not be known
- **Monte Carlo**: estimate expectation using empirical mean

$$J_\pi \approx \frac{1}{m} \sum_i R(\xi^{(i)}) \quad \xi^{(i)} \sim p_\pi$$

- ▶ **Model-free** = can sample with rollouts, without knowing p

Value function

- RL objective: maximize expected return $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R]$
- We don't control s_0 , can break down: $J_\pi = \mathbb{E}_{s_0 \sim p}[V_\pi(s_0) \mid s_0]$
 - ▶ with the value function $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s]$
- $V_\pi(s)$ is the expected reward-to-go (= future return):
 - ▶ For any t , define $R_{\geq t} = \sum_{\Delta t \geq 0} \gamma^{\Delta t} r(s_{t+\Delta t}, a_{t+\Delta t})$
future reward after being in state s in time t
 - ▶ Then $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R_{\geq t} \mid s_t = s]$



MC for value-function estimation

Algorithm MC for value-function estimation

Initialize $V(s) \leftarrow 0$ for all $s \in S$

repeat

 Sample $\xi \sim p_\pi$

 Update $V(s_0) \rightarrow R(\xi)$

 “update LHS towards RHS”

 i.e. $V(s_0) += \alpha(R(\xi) - V(s_0))$

 with learning rate α

- Why not use the same samples for **non-initial** states?

Algorithm MC for value-function estimation (version 2)

Initialize $V(s) \leftarrow 0$ for all $s \in S$

repeat

 Sample $\xi \sim p_\pi$

 Update $V(s_t) \rightarrow R_{\geq t}(\xi)$ for all $t \geq 0$

MC with function approximation

- What if the state space is **large**?
 - ▶ Can't represent $V(s)$ as a **big table**
 - ▶ Won't have **enough data** to estimate each $V(s)$
- **Function approximation:** represent $V_\theta : S \rightarrow \mathbb{R}$
 - ▶ $\theta \in \Theta$, a parametric family of functions; for example, a **neural network**
 - **Generalization** over state space \Rightarrow data efficiency

Algorithm MC with function approximation

Initialize V_θ

repeat

 Sample $\xi \sim p_\pi$

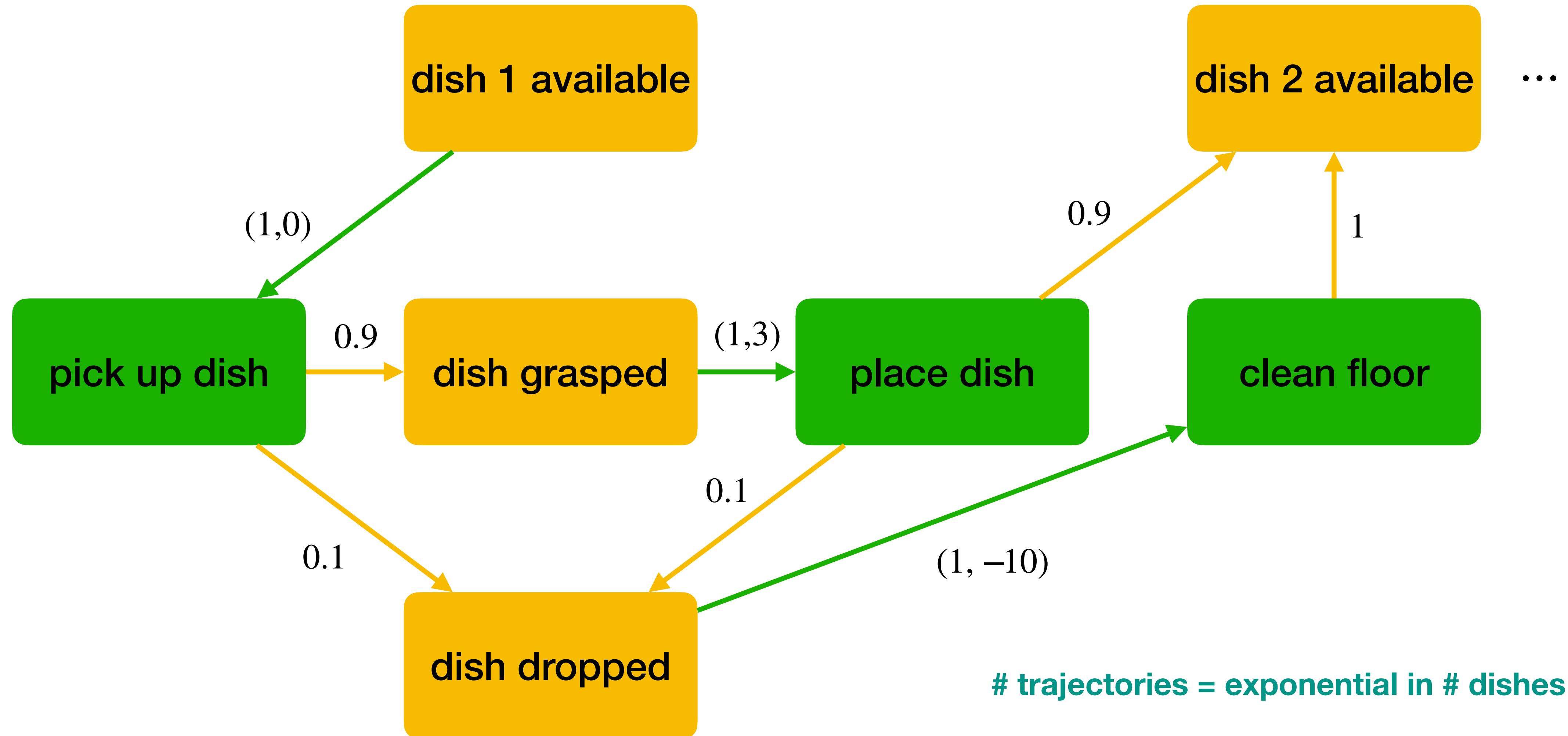
 Descend on $\mathcal{L}_\theta = \sum_{t \geq 0} (R_{\geq t}(\xi) - V_\theta(s_t))^2$

with tabular representation:

$$V(s_t) += -\alpha \nabla_{V(s_t)} \mathcal{L} = 2\alpha(R_{\geq t}(\xi) - V(s_t))$$

same as in previous slide

Policy evaluation: example



MC inefficiency

- The MC estimator is **unbiased** (correct expectation), but **high variance**
 - ▶ Requires many samples to give good estimate
- But MC misses out on the **sequential structure**
- **Credit assignment** problem:
 - ▶ Day 1: I take **route 1** to work – **40 minutes**; I take **route 2** home – **10 minutes**
 - ▶ Day 2: I take **route 3** to work – **30 minutes**; I take **route 4** home – **30 minutes**
- Which route should I take to work?
 - ▶ Route 1 → 50-minute daily commute, route 3 → 60-minute; is **route 1 better?**

Dynamic Programming (DP)

- Dynamic Programming = remember reusable partial results
- Value recursion:

$$V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s]$$

break down sum of rewards

$$= \mathbb{E}_{\xi \sim p_\pi}[r(s_0, a_0) + \gamma R_{\geq 1} \mid s_0 = s]$$

first reward only depends on a

$$= \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{\xi \sim p_\pi}[R_{\geq 1} \mid s_0 = s, a_0 = a]]$$

s' is a state, all that matters for $R_{\geq 1}$

$$= \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\mathbb{E}_{\xi \sim p_\pi}[R_{\geq 1} \mid s_1 = s']]]$$

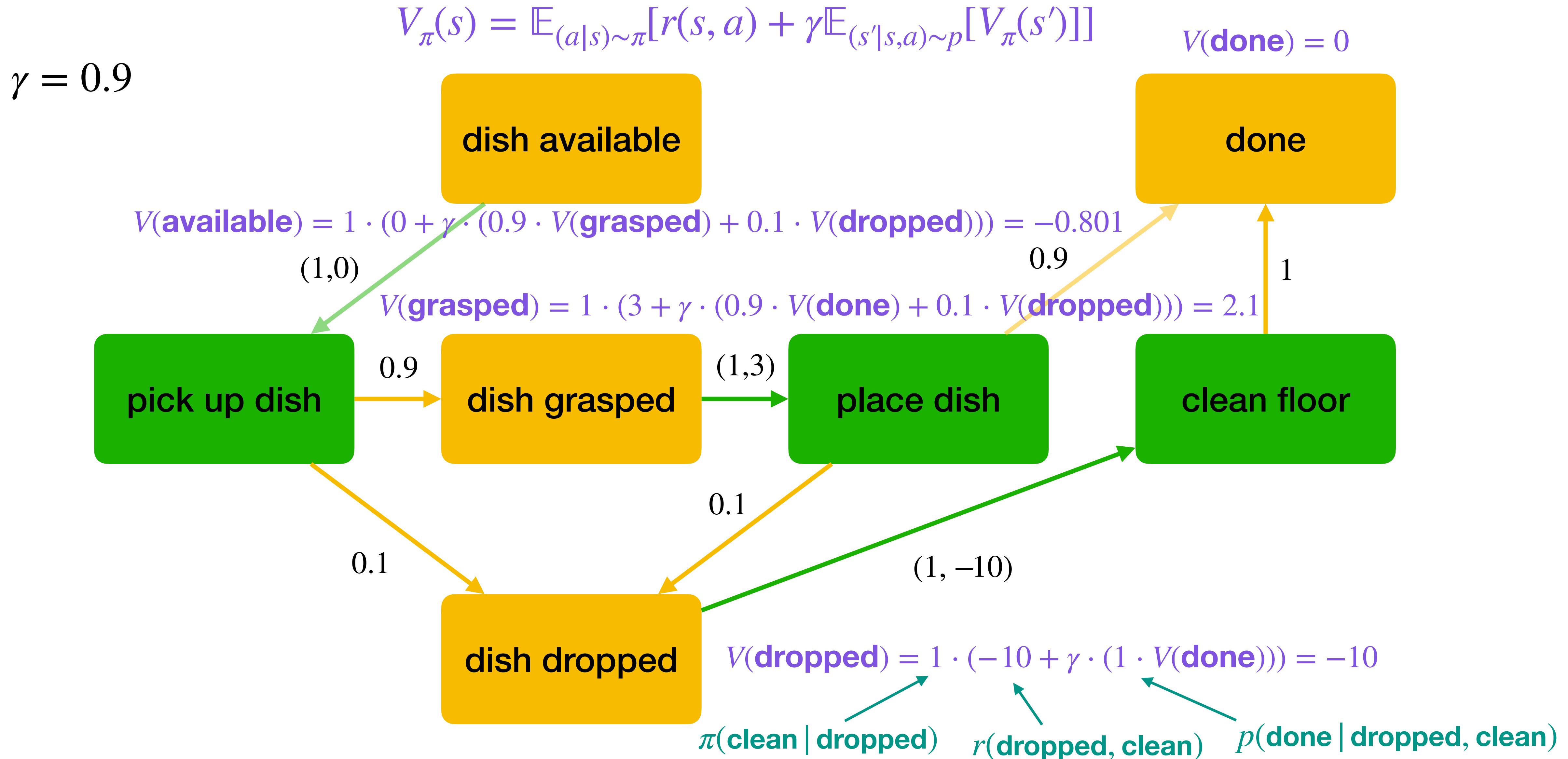
definition of $V_\pi(s')$

$$= \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]]$$

Richard Bellman

[Bellman, 1956]

Policy evaluation: example



DP + MC: Temporal Difference (TD)

- Policy evaluation with DP: $V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V_\pi(s')]]$
 - ▶ **Drawback:** model-based = need to know p
- MC: $V(s) \rightarrow R_{\geq t}(\xi)$, where $\xi \sim p_\pi$ and $s_t = s$
 - ▶ **Drawback:** high variance
- Put together: $V(s) \rightarrow r + \gamma V(s')$
 - ▶ where $s = s_t$, $r = r(s_t, a_t)$, and $s' = s_{t+1}$ in some trajectory
 - ▶ In other words: $V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$

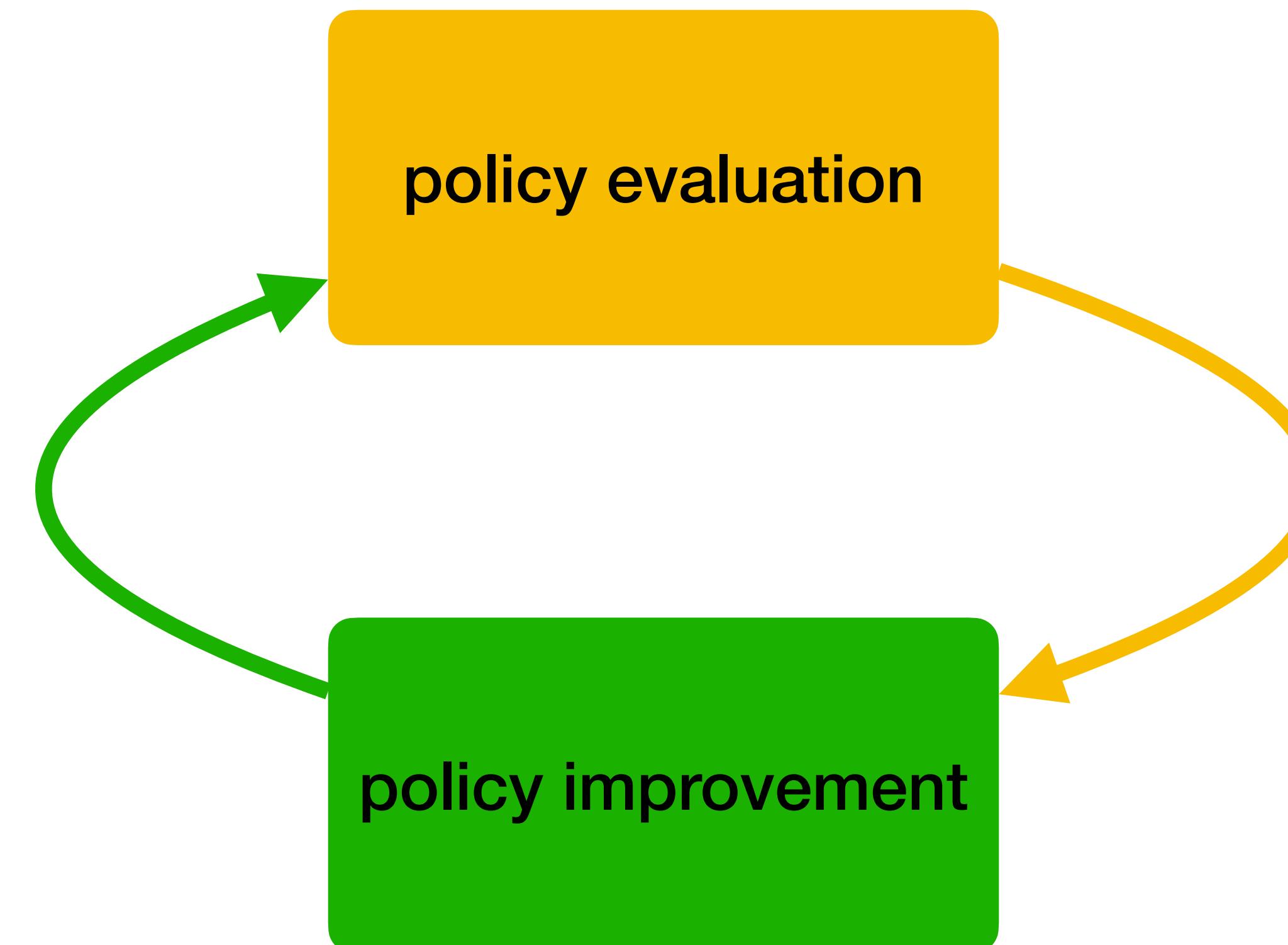
recursion from s' to s
= backward in time!

temporal difference
between $V(s')$ and $V(s)$

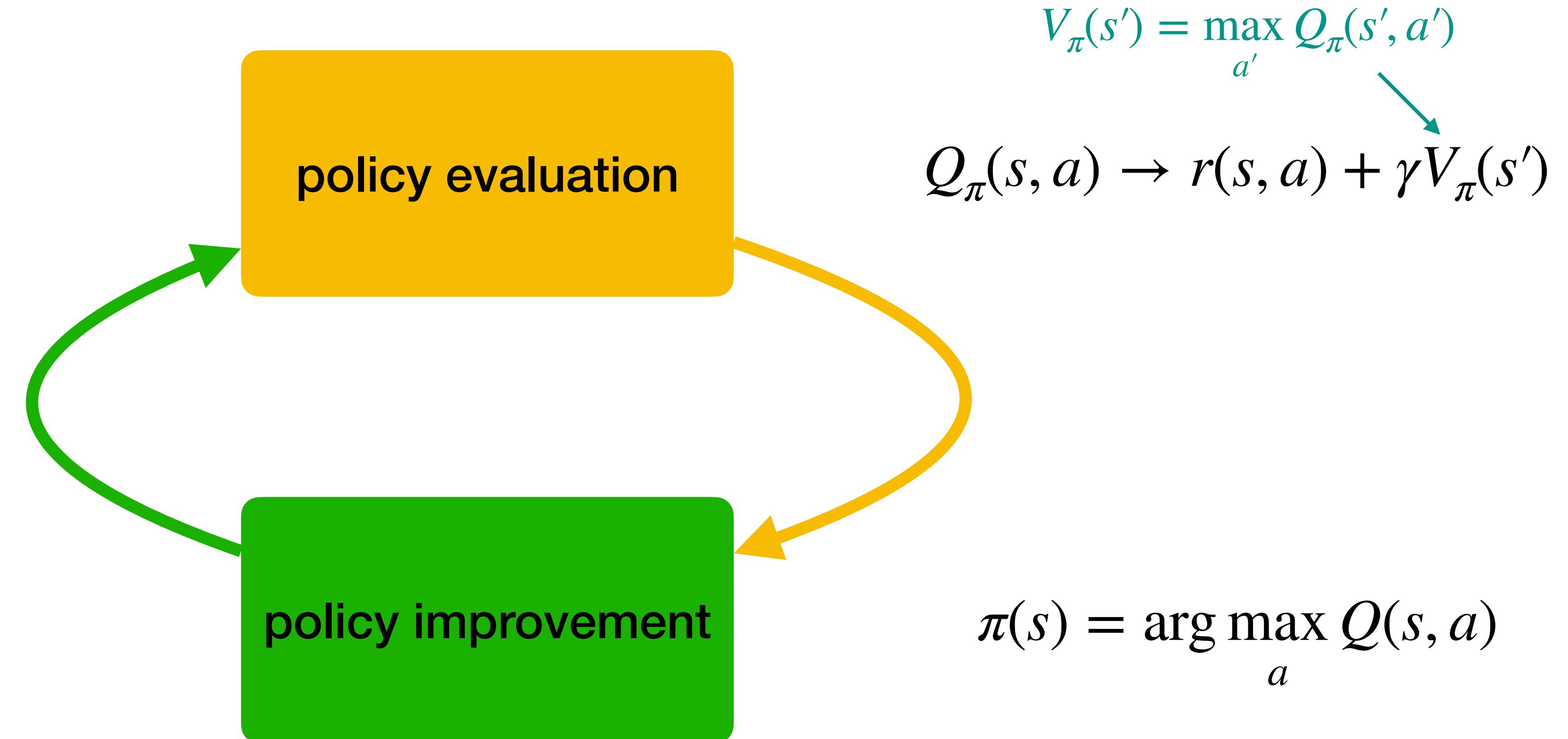
Q function

- To approach V_π when we update $V(s) \rightarrow r + \gamma V(s')$, we need **on-policy data**
 - ▶ Roll out π to see transition $(s, a) \rightarrow s'$ with reward r
- On-policy data is **expensive**: need more every time π changes
- **Action-value function**: $Q_\pi(s, a) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s, a_0 = a]$
 - ▶ Compare: $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s] = \mathbb{E}_{(a|s) \sim \pi}[Q_\pi(s, a)]$
- Action-value **backward recursion**: $Q_\pi(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]$
- **Advantage**: $A_\pi(s, a) = Q_\pi(s, a) - V_\pi(s) = \text{benefit of counterfactual } a$

The RL scheme



Q-learning



Q-Learning

Algorithm Q-Learning

Initialize Q

$s \leftarrow$ reset state

repeat

 Take some action a

 Receive reward r

 Observe next state s'

 Update $Q(s, a) \rightarrow \begin{cases} r & s' \text{ terminal} \\ r + \gamma \max_{a'} Q(s', a') & \text{otherwise} \end{cases}$

$s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

After the break: Deep RL

Experience policy

- Which distribution should the **training data** have?
 - ▶ The policy may not be good on other distributions / unsupported states
 - ▶ \Rightarrow ideally, the **test** distribution p_π for the **final** π
- **On-policy methods** (e.g. MC): must use on-policy data (from the **current** π)
- **Off-policy methods** (e.g. Q) can use different policy (or even non-trajectories)
 - ▶ But both should eventually use p_π or suffer train–test distribution mismatch

Exploration policies

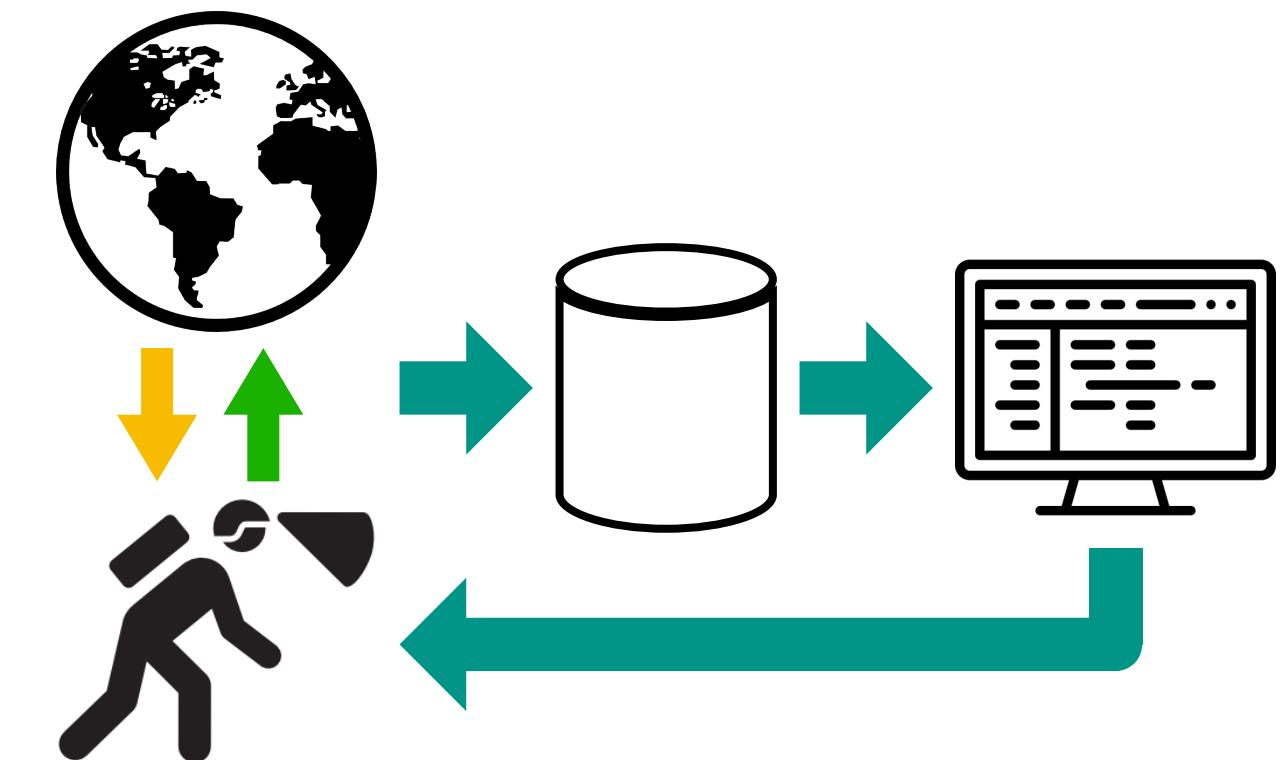
- Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}
 - ▶ Suppose route 1 really has expected time 30min, should you commit to it forever?
- To avoid overfitting, we must try all actions infinitely often
- ϵ -greedy exploration: select uniform action with prob. ϵ , otherwise greedy
- Boltzmann exploration:

$$\pi(a | s) = \underset{a}{\text{soft max}}(Q(s, a); \beta) = \frac{\exp(\beta Q(s, a))}{\sum_{\bar{a}} \exp(\beta Q(s, \bar{a}))}$$

- ▶ Becomes uniform as the inverse temperature $\beta \rightarrow 0$, greedy as $\beta \rightarrow \infty$

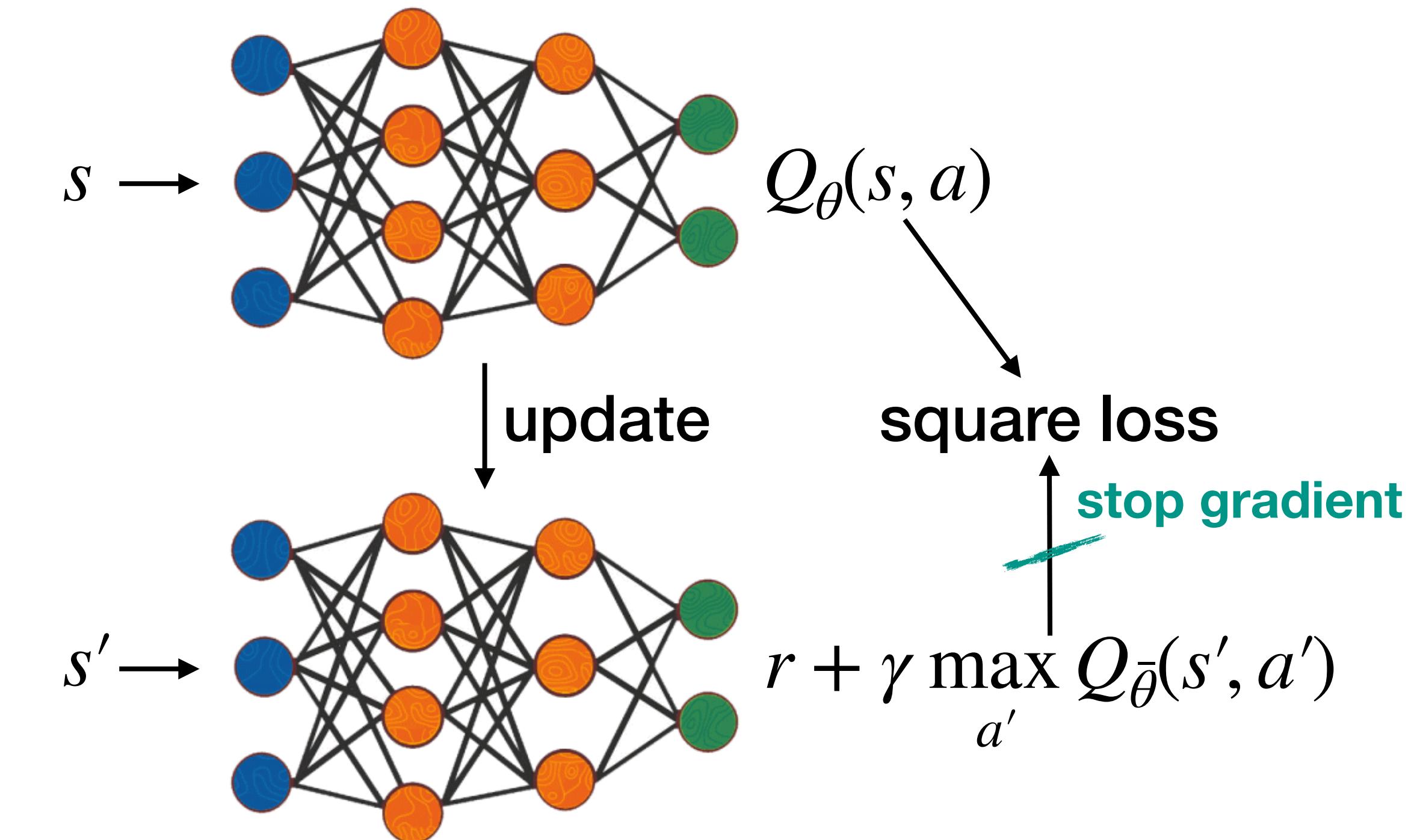
Experience replay

- On-policy methods are **inefficient**: throw out all data with each policy update
- Off-policy methods can keep the data = **experience replay**
 - ▶ **Replay buffer**: dataset of past experience
 - ▶ **Diversifies** the experience (beyond current trajectory)
- Variants differ on
 - ▶ **How often** to add data vs. sample data
 - ▶ How to **sample** from the buffer
 - ▶ When to **evict** data from the buffer, and which

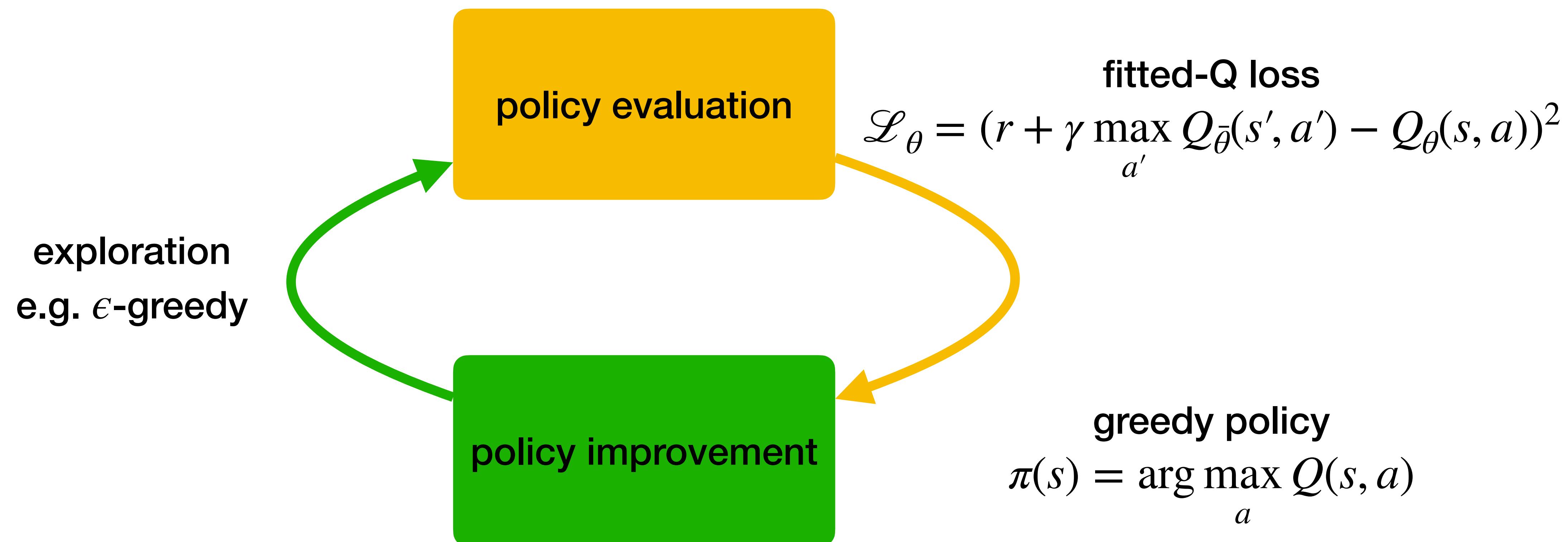


Why use target network?

- Fitted-Q loss: $\mathcal{L}_\theta = (r + \gamma \max_{a'} Q_{\bar{\theta}}(s', a') - Q_\theta(s, a))^2$
 no gradient from the target term
- Target network = lagging copy of $Q_\theta(s, a)$
 - ▶ Periodic update: $\bar{\theta} \leftarrow \theta$ every T_{target} steps
 - ▶ Exponential update: $\bar{\theta} \leftarrow (1 - \eta)\bar{\theta} + \eta\theta$
- $Q_{\bar{\theta}}$ is more stable
 - ▶ Less of a moving target
 - ▶ Less sensitive to data \Rightarrow less variance
- But $\bar{\theta} \neq \theta$ introduces bias



Putting it all together: DQN



Deep Q-Learning (DQN)

Algorithm DQN

Initialize θ , set $\bar{\theta} \leftarrow \theta$

$s \leftarrow$ reset state

for each interaction step

 Sample $a \sim \epsilon$ -greedy for $Q_\theta(s, \cdot)$

 Get reward r and observe next state s'

 Add (s, a, r, s') to replay buffer \mathcal{D}

 Sample batch $(\vec{s}, \vec{a}, \vec{r}, \vec{s}') \sim \mathcal{D}$

$$y_i \leftarrow \begin{cases} r_i & s'_i \text{ terminal} \\ r_i + \gamma \max_{a'} Q_{\bar{\theta}}(s'_i, a') & \text{otherwise} \end{cases}$$

 Descend $\mathcal{L}_\theta = (\vec{y} - Q_\theta(\vec{s}, \vec{a}))^2$

 every T_{target} steps, set $\bar{\theta} \leftarrow \theta$

$s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more...

Value-based vs. policy-based methods

value-based

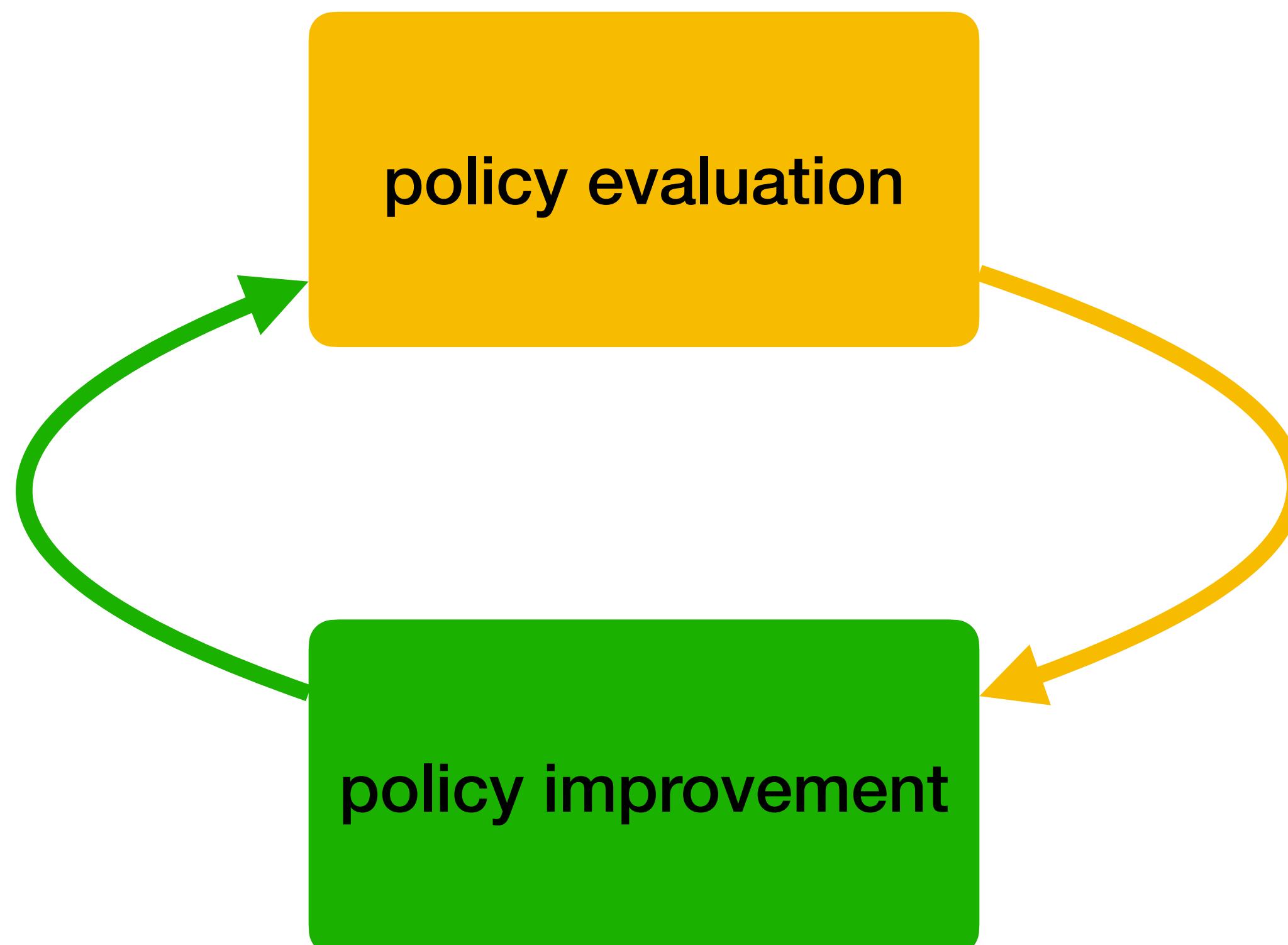
$$Q_\theta(s, a)$$

$$\arg \max_a Q_\theta(s, a)$$

policy-based

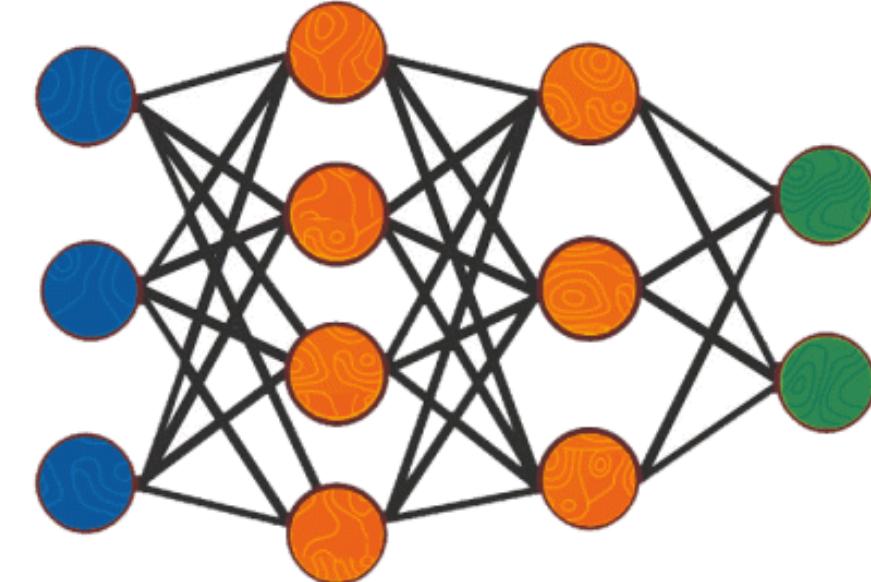
$$\mathbb{E}_{\xi \sim p_\theta}[R(\xi)]$$

$$\pi_\theta(a | s)$$



Policy Gradient (PG)

- **Gradient-based** learning: $\theta \rightarrow \theta - \nabla_{\theta} \mathbb{E}_{x \sim D} [\mathcal{L}_{\theta}(x)]$
 - ▶ Expectation gradient = expected gradient, estimate with **samples**
- **Policy-Gradient** RL: $\theta \rightarrow \theta + \nabla_{\theta} J_{\theta}$, with $J_{\theta} = \mathbb{E}_{\xi \sim p_{\theta}} [R]$
 - ▶ Can we also use samples $\xi \sim p_{\theta}$ to estimate $\nabla_{\theta} J_{\theta}$?
 - The sampling distribution itself **depends on θ**
 - ▶ Problem 1: data must be **on-policy**
 - ▶ Problem 2: cannot backprop gradient through samples



Score-function gradient estimation

- Log-derivative + chain rule: $\nabla_{\theta} \log p_{\theta}(\xi) = \frac{1}{p_{\theta}(\xi)} \nabla_{\theta} p_{\theta}(\xi)$
- Log-derivative / score-function / REINFORCE trick:

$$\begin{aligned}\nabla_{\theta} J_{\theta} &= \sum_{\xi} R(\xi) \nabla_{\theta} p_{\theta}(\xi) \\ &= \sum_{\xi} R(\xi) p_{\theta}(\xi) \nabla_{\theta} \log p_{\theta}(\xi) \\ &= \mathbb{E}_{\xi \sim p_{\theta}} [R(\xi) \nabla_{\theta} \log p_{\theta}(\xi)]\end{aligned}$$

- Allows estimating $\nabla_{\theta} J_{\theta}$ using samples $\xi \sim p_{\theta}$

REINFORCE

- To find $\nabla_{\theta} J_{\theta} = \mathbb{E}_{\xi \sim p_{\theta}}[R(\xi) \nabla_{\theta} \log p_{\theta}(\xi)]$, sample $\xi \sim p_{\theta}$, then:

$$\begin{aligned}\nabla_{\theta} \log p_{\theta}(\xi) &= \nabla_{\theta} \left(\log p(s_0) + \sum_t \log \pi_{\theta}(a_t | s_t) + \log p(s_{t+1} | s_t, a_t) \right) \\ &= \nabla_{\theta} \sum_t \log \pi_{\theta}(a_t | s_t)\end{aligned}$$

- Model-free, but on-policy and high variance (like MC)

Algorithm REINFORCE

Initialize π_{θ}

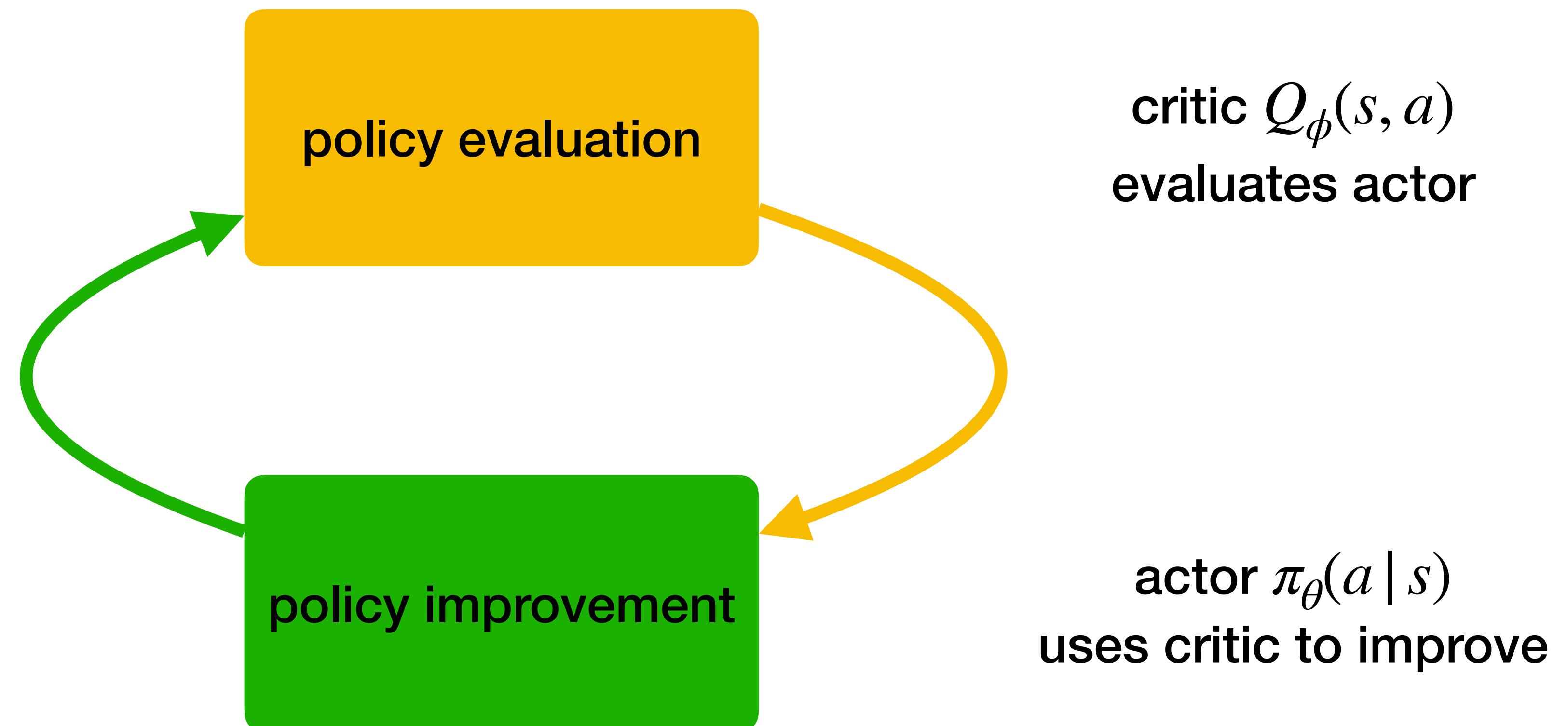
repeat

 Roll out $\xi \sim p_{\theta}$

 Update with gradient $g \leftarrow R(\xi) \sum_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

[Williams, 1992]

Actor–Critic (AC) methods



Advantage Actor–Critic (A2C)

Algorithm Advantage Actor–Critic

Initialize π_θ and V_ϕ

repeat

 Roll out $\xi \sim p_\theta$

 Update $\Delta\theta \leftarrow \sum_t (R_{\geq t}(\xi) - V_\phi(s_t)) \nabla_\theta \log \pi_\theta(a_t | s_t)$

 Descend $L_\phi = \sum_t (R_{\geq t}(\xi) - V_\phi(s_t))^2$

Importance Sampling

- Suppose you want to estimate $\mathbb{E}_{x \sim p}[f(x)]$

- but only have samples $x \sim p'$

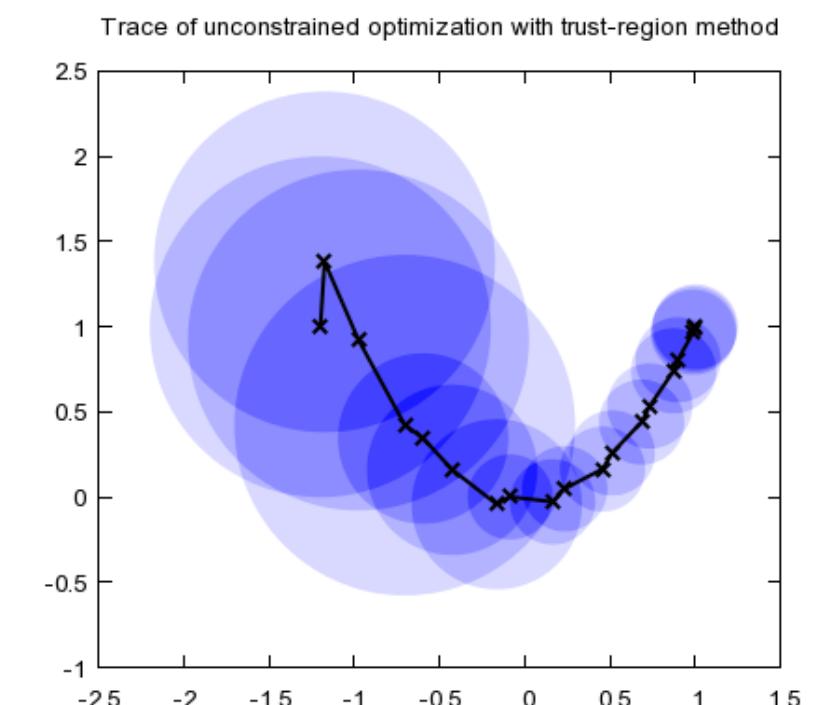
- Importance sampling:

$$\mathbb{E}_{x \sim p}[f(x)] = \mathbb{E}_{x \sim p'} \left[\frac{p(x)}{p'(x)} f(x) \right]$$

- Importance (IS) weights: $\rho(x) = \frac{p(x)}{p'(x)}$
- Estimate: $\rho(x)f(x)$ with $x \sim p'$

Finding best next policy

- **Performance Difference Lemma:** $J_\pi - J_{\bar{\pi}} = \sum_t \gamma^t \mathbb{E}_{(s_t, a_t) \sim p_\pi} [A_{\bar{\pi}}(s_t, a_t)]$
 - ▶ Idea: with **current policy** $\bar{\pi}$, find $\max_{\pi} J_\pi - J_{\bar{\pi}}$ by maximizing the RHS
- Step 1: use $\bar{\pi}$ to **evaluate** $A_{\bar{\pi}}$; step 2: **estimate** $\mathbb{E}_{(s_t, a_t) \sim p_\pi} [A_{\bar{\pi}}(s_t, a_t)]$
 - ▶ But we don't have data $(s_t, a_t) \sim p_\pi$; **idea**: sample from $\bar{\pi}$


$$\max_{\pi} \sum_t \gamma^t \mathbb{E}_{\xi_{\leq t} \sim p_{\bar{\pi}}} [\rho_{\bar{\pi}}^{\pi}(\xi_{\leq t}) A_{\bar{\pi}}(s_t, a_t)]$$

high variance!

- When is it reasonable to use $\rho_{\bar{\pi}}^{\pi}(a_t | s_t) = \frac{\pi(a_t | s_t)}{\bar{\pi}(a_t | s_t)}$ instead? i.e. drop $\rho_{\bar{\pi}}^{\pi}(\xi_{\leq t}) = \prod_{t' < t} \frac{\pi(a_{t'} | s_{t'})}{\bar{\pi}(a_{t'} | s_{t'})}$
 - ▶ Intuitively, when $\mathbb{D}[\bar{\pi}_\theta(a | s) \| \pi(a | s)]$ is small

Proximal Policy Optimization (PPO)

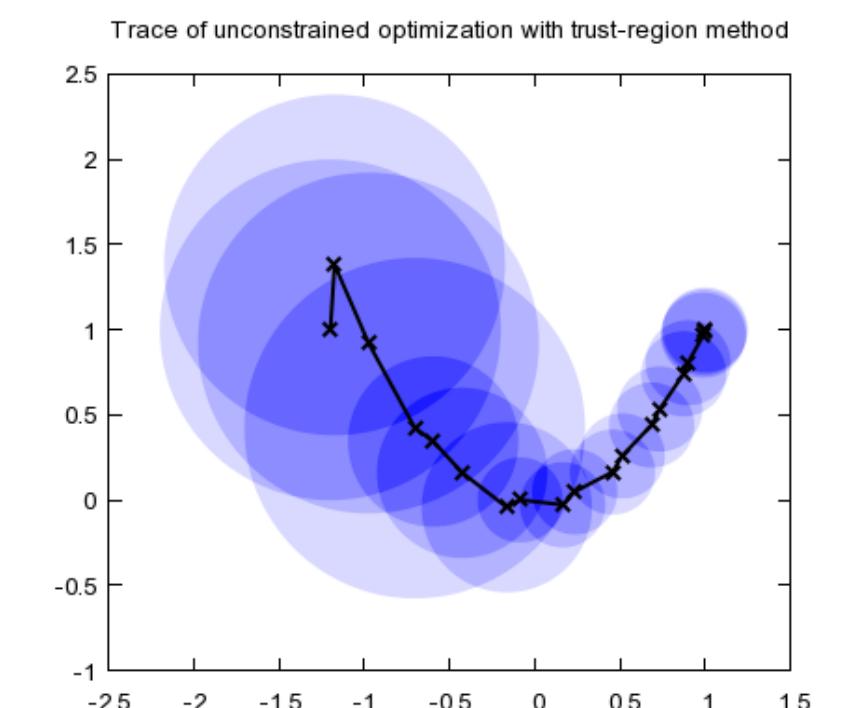
- Idea: ascend $\mathbb{E}_{(s,a) \sim p_{\bar{\theta}}}[\rho_{\bar{\theta}}^{\theta}(a | s)A_{\bar{\theta}}(s, a)]$ with π_{θ} staying near $\pi_{\bar{\theta}}$
 - ▶ PPO-Penalty: add a penalty term for $\mathbb{E}_{s \sim p_{\bar{\theta}}}[\mathbb{D}[\pi_{\bar{\theta}}(a | s) \| \pi_{\theta}(a | s)]]$
 - ▶ PPO-Clip: ascend $\mathbb{E}_{(s,a) \sim p_{\bar{\theta}}}[L_{\bar{\theta}}^{\theta}(s, a)]$ with

$$L_{\bar{\theta}}^{\theta}(s, a) = \min(\rho_{\bar{\theta}}^{\theta}(a | s)A_{\bar{\theta}}(s, a), A_{\bar{\theta}}(s, a) + |\epsilon A_{\bar{\theta}}(s, a)|)$$

- Positive / negative advantage \Rightarrow increase / decrease $\rho_{\bar{\theta}}^{\theta}(a | s) = \frac{\pi_{\theta}(a | s)}{\pi_{\bar{\theta}}(a | s)}$

- ▶ But no incentive beyond $\rho_{\bar{\theta}}^{\theta}(a | s) = 1 \pm \epsilon$

- no incentive \neq doesn't happen
- PPO has lots more tricks to limit divergence



[Schulman et al., 2017]

Today's lecture

Behavior Cloning

Temporal Difference

Policy Gradient

and more...

Bounded optimality

- Bounded optimizer = trades off **value** and **divergence** from prior $\pi_0(a | s)$

$$\max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}} [r(s,a)] - \tau \mathbb{D}[\pi || \pi_0] = \max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}} \left[r(s,a) - \tau \log \frac{\pi(a | s)}{\pi_0(a | s)} \right]$$

- $\tau = \frac{1}{\beta}$ is the tradeoff **coefficient** between value and relative entropy

- As $\tau \rightarrow \infty$, the agent will fall back to the **prior** $\pi \rightarrow \pi_0$
- As $\tau \rightarrow 0$, the agent will be a perfect value **optimizer** $\pi \rightarrow \pi^*$

- Early in training, **τ should be finite** to avoid overfitting

$$\bullet \text{ Bellman recursion: } V(s) = \max_{\pi} \mathbb{E}_{(a|s) \sim \pi} \left[r(s,a) - \tau \log \frac{\pi(a | s)}{\pi_0(a | s)} + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')] \right]$$

optimal $\pi \propto \pi_0 \exp(\beta Q(s, a))$

Soft Actor–Critic (SAC)

- Optimally: $\pi(a | s) = \frac{\pi_0(a | s) \exp \beta Q(s, a)}{\exp \beta V(s)}$ $V(s) = Q(s, a) - \frac{1}{\beta} \log \frac{\pi(a | s)}{\pi_0(a | s)}$
- In continuous action spaces, we can't explicitly softmax $Q(s, a)$ over a
- We can train a **critic** off-policy

$$L_\phi(s, a, r, s', a') = \left(r + \gamma \left(Q_{\bar{\phi}}(s', a') - \frac{1}{\beta} \log \frac{\pi_\theta(a' | s')}{\pi_0(a' | s')} \right) - Q_\phi(s, a) \right)^2$$

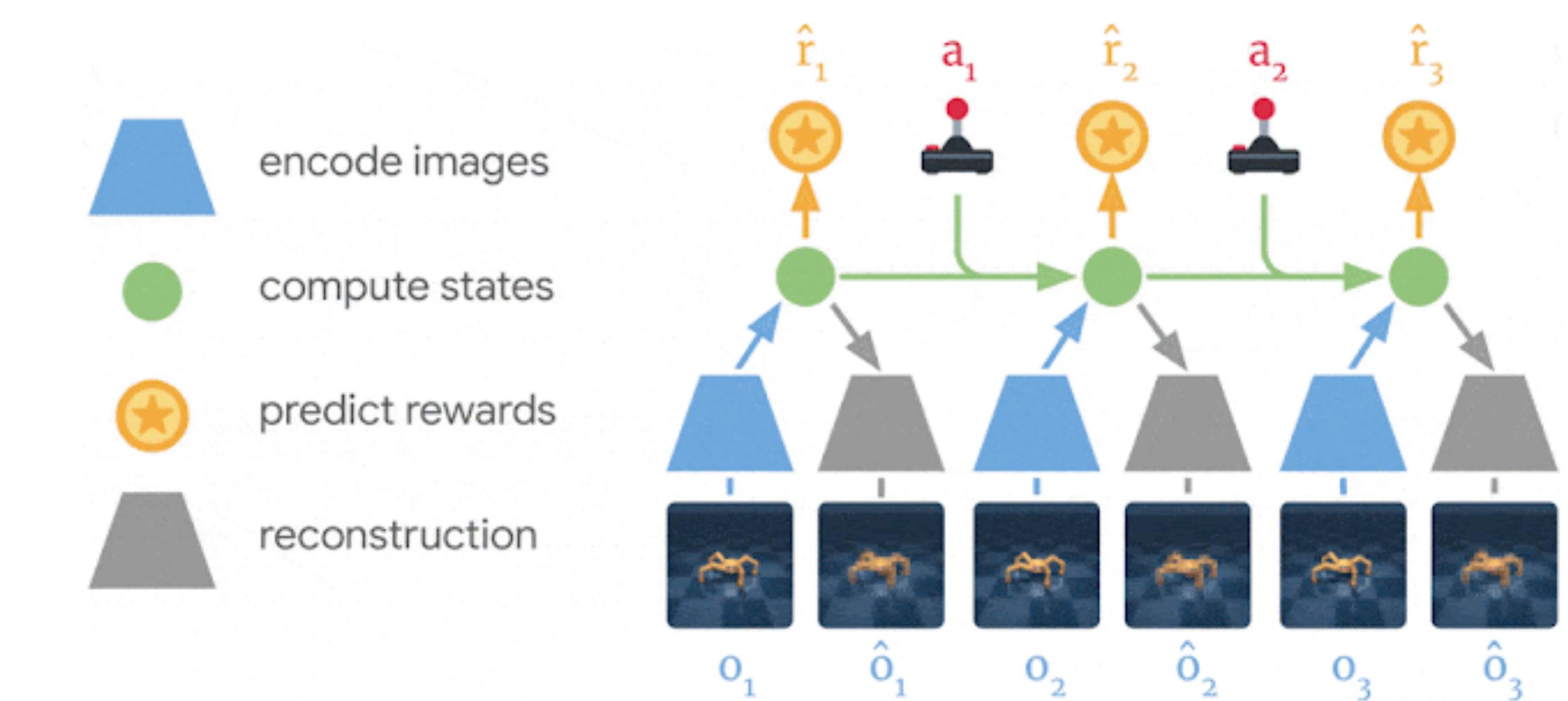
- And a soft-greedy **actor** = **imitate** the critic

$$L_\theta(s) = \mathbb{E}_{(a|s) \sim \pi_\theta} [\log \pi_\theta(a | s) - \log \pi_0(a | s) - \beta Q_\phi(s, a)]$$

- Can optimize τ to match a **target entropy** $L_\tau(s, a) = -\tau \log \pi_\theta(a | s) - \tau H$

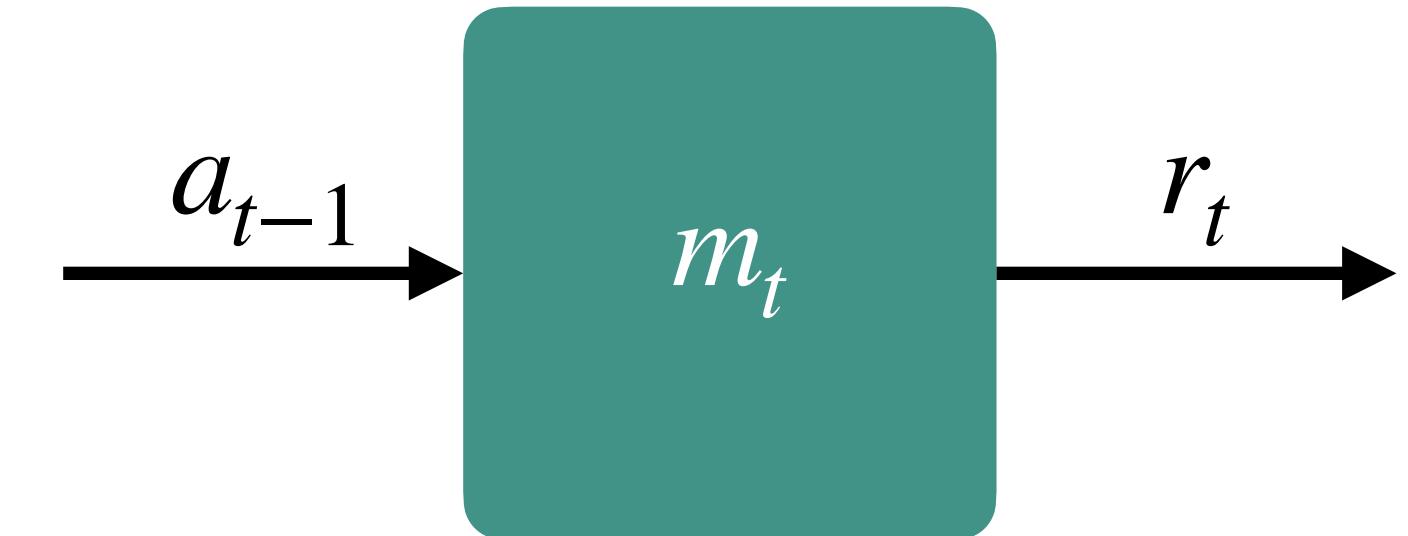
Dreamer

- Dreamer learns a **latent state** process to
 - ▶ Reconstruct **observation**
 - ▶ Predict **reward**
 - ▶ Predict **next latent state** distribution
- Then performs **RL** in this model
 - ▶ We really only need the rewards and transitions
 - ▶ Reconstruction is an **auxiliary task**



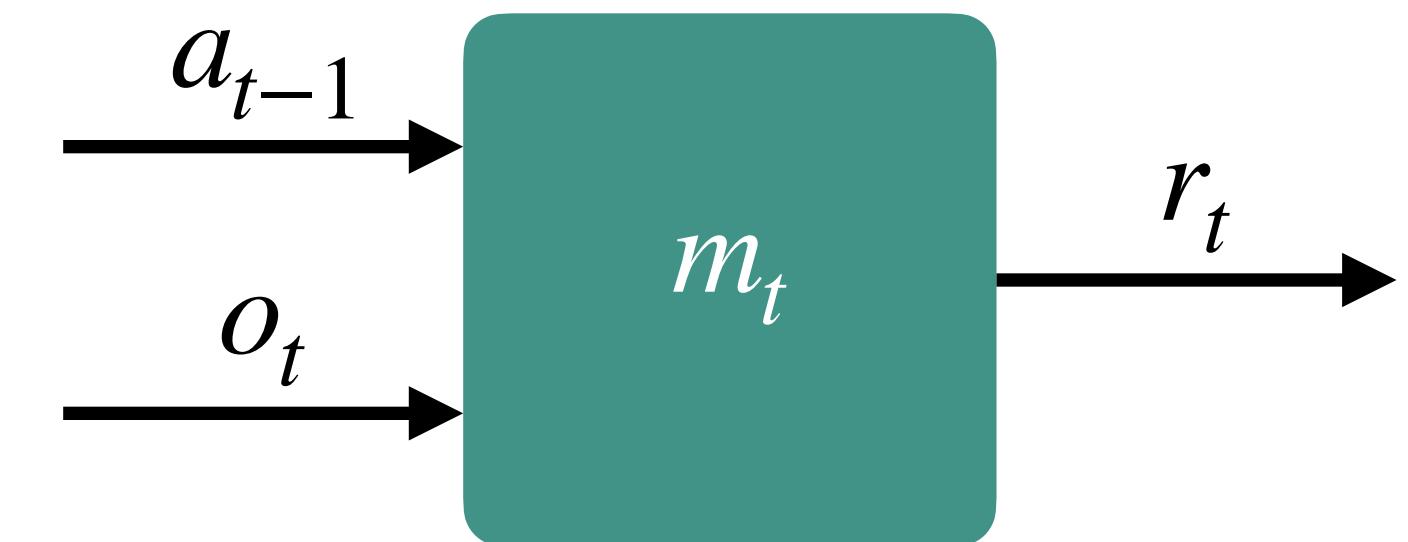
The interface of a world model

- We would like a model where we can **run RL** algorithms



- ▶ That gives the same $\mathbb{E}_{\xi \sim p_\pi}[R(\xi)]$ as the world for all π

- But that's not possible without seeing the **observations**

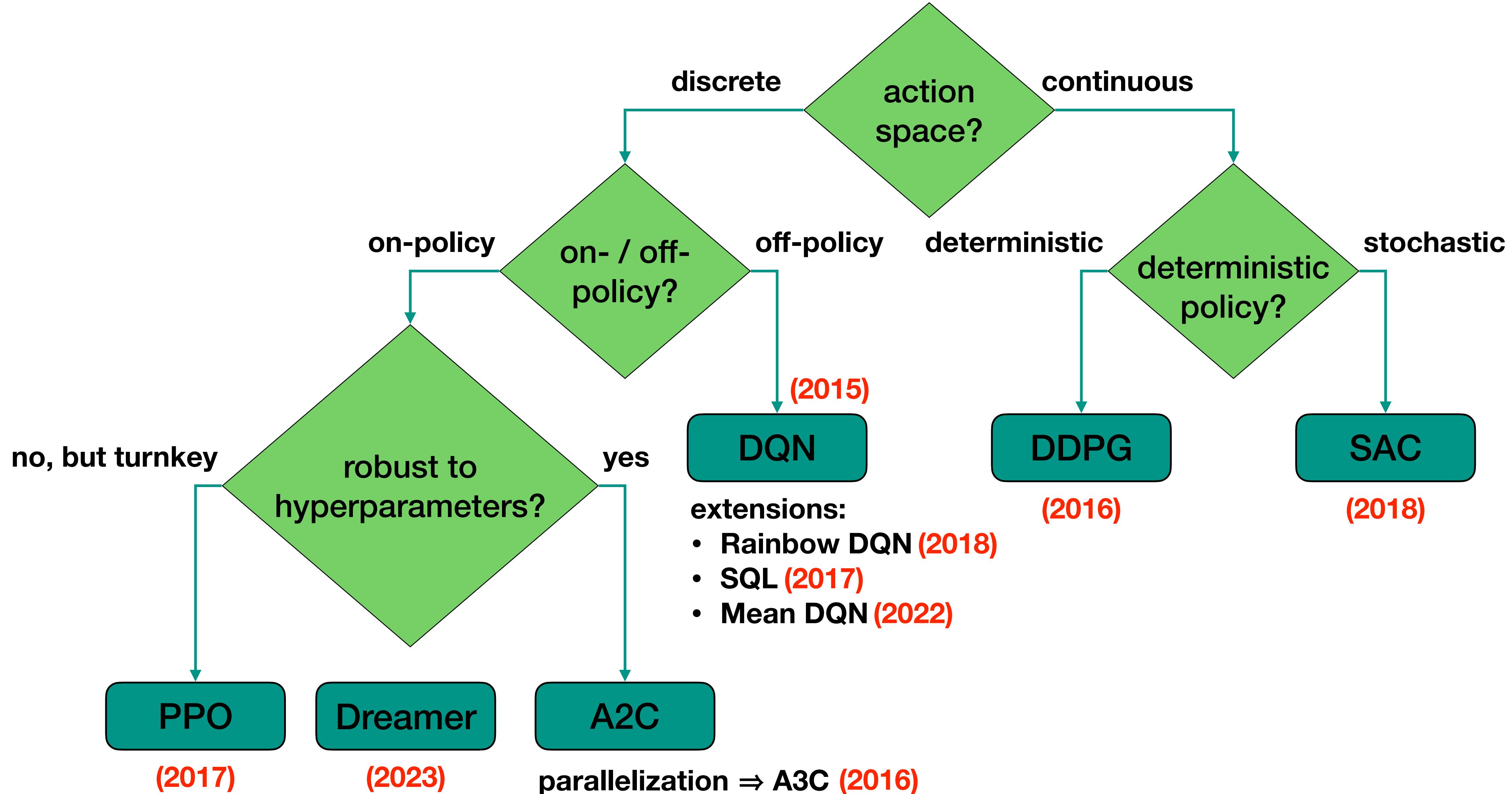


- How to keep the **imagination** and **interaction** modes **matched**?

- ▶ **Method 1:** in imagination, predict o_{t+1} (or its embedding) and feed it back

- ▶ **Method 2:** keep $\hat{p}(m_t | a_{<t})$ and $\mathbb{E}_{o_{\leq t} | a_{<t} \sim p}[\hat{p}(m_t | o_{\leq t}, a_{<t})]$ close

Flowchart: which algorithm to choose?



Why so many algorithms?

- We may have different **modeling assumptions**
 - Is the environment **stochastic** or **deterministic**?
 - Is the state / action space **continuous** or **discrete**?
 - Is the horizon **episodic** or **infinite**?
- We may care about different **tradeoffs**
 - Sample efficiency? Computational efficiency while learning / executing? Succinct representation?
 - Algorithmic **stability**, **reproducibility**, ease of **use** (existing code), ease of **adaptation**
- Different difficulty to **represent** or **learn** in different domains
 - Represent / learn a **policy** or a **model**?
 - Discover **structure**? **Memory**? Transfer / share with **other tasks**? Non-stationarity / **multi-agent**?

On- or off-policy data?

- The faster our **simulator** \Rightarrow the faster we can **refresh** our data
 - ▶ And still keep sufficient **diversity** for training
- Fast enough \Rightarrow can use **on-policy** data
 - ▶ No need for **replay buffer**
 - ▶ No train \rightarrow test distributional mismatch (= **covariate shift**)
 - ▶ Can still use off-policy **algorithms** with on-policy data
- Extremely slow simulator \Rightarrow not even off-policy, just **offline RL**

Reward shaping

- Ideal reward: $r(s, a) = -\infty$ for any suboptimal action \Rightarrow as hard to provide as π^*
 - We need supervision signal that's sufficiently easy to program \Rightarrow generate more data
- Sparse reward functions may be easier than dense ones
 - E.g., may be easy to identify good goal states, safety violations, etc.
- Reward shaping: art of adjusting the reward function for easier RL; some tips:
 - Reward “bottleneck states”: subgoals that are likely to lead to bigger goals
 - Break down long sequences of coordinated actions \Rightarrow better exploration
 - E.g. reward beacons on long narrow paths, for exploration to stumble upon

Logistics

assignments

- Exercise 1 is due **next Wednesday** (individual)
- Project proposals are due **next Friday** (team)

meetings

- Meet the instructor at least once by **next Friday**
- Welcome to schedule as much as you need