
CS 273A Homework 3

The submission for this homework, as for others so far, should be one stand-alone PDF file containing
all of the relevant code, figures, and any text explaining your results. Although you will be primarily
filling missing sections in a Python file, include all the relevant sections you have written as answers to the
appropriate question.

Points: This homework adds up to a total of 100 points with 10 points of extra credit, as follows:

Problem 1: Logistic Regression 75 (+10) points
Problem 2: Shattering 20 points
Statement of Collaboration 5 points

Be sure to re-download the data and replace the Python code; even though it is mostly the same, we
may make changes to the data or fix bugs for each homework.

Problem 1: Logistic Regression (75+10 points)

In this problem, we’ll build a logistic regression classifier and train it on separable and non-separable data.
Since it will be specialized to binary classification, we’ve named the class logisticClassify2.

We’ll start by building two binary classification problems, one separable and the other not:

1 iris = np.genfromtxt("data/iris.txt",delimiter=None)

2 X, Y = iris[:,0:2], iris[:,-1] # get first two features & target

3 X,Y = ml.shuffleData(X,Y) # reorder randomly (important later)

4 X,_ = ml.transforms.rescale(X) # works much better on rescaled data

5

6 XA, YA = X[Y<2,:], Y[Y<2] # get class 0 vs 1

7 XB, YB = X[Y>0,:], Y[Y>0] # get class 1 vs 2

For this problem, we are focused on the learning algorithm, rather than performance — so, we will not
bother creating training and validation splits; just use all your data for training.

Note: The code uses numpy’s permute to iterate over data randomly; should avoid issues due to
the default order of the data (by class). Similarly, rescaling and centering the data may help speed up
convergence as well.

1

Machine Learning, CS 273A, Fall 2021

Due Date: 11:59pm Thursday October 26, 2021 (Pacific Time)

2

1. Show the two classes in a scatter plot (one for each data set) and verify that one data set is linearly
separable while the other is not. (5 points)

2. Write (fill in) the function plotBoundary in logisticClassify2.py to compute the points
on the decision boundary. In particular, you only need to make sure x2b is set correctly using
self.theta. This will plot the data & boundary quickly, which is useful for visualizing the model
during training. To demo your function plot the decision boundary corresponding to the classifier

sign(.5− .25x1 + 1x2)

along with the A data, and again with the B data; these fixed parameters will look like an OK classifier
on one data set, but a poor classifier on the other.

You can create a “blank” learner and set the weights by:

1 import mltools as ml

2 from logisticClassify2 import *
3

4 learner = logisticClassify2(); # create "blank" learner

5 learner.classes = np.unique(YA) # define class labels using YA or YB

6 wts = np.array([theta0,theta1,theta2]); # TODO: fill in values

7 learner.theta = wts; # set the learner’s parameters

Include the lines of code you added to the function, and the two generated plots. (10 points)

3. Complete the logisticClassify2.predict function to make predictions for your classifier.
Verify that your function works by computing & reporting the error rate of the classifier in the previous
part on both data sets A and B. (The error rate on one should be ≈ 0.0505, and higher on the other.)
Note that, in the code, the two classes are stored in the variable self.classes, with the first entry
being the “negative” class (or class 0), and the second entry being the “positive” class, so you want to
have different learner objects for each dataset, and you use learner.err directly.

Include the function definition and the two computed errors. (10 points)

4. Verify that your predict code matches your boundary plot by using plotClassify2D with your
manually constructed learner on the two data sets. This will call predict on a dense grid of points,
and you should find that the resulting decision boundary matches the one you computed analytically.
(5 points)

5. In the provided code, we first transform the classes in the data Y into Y Y , with canonical labels for
the two classes: “class 0” (negative) and “class 1” (positive). In our notation, let r(j) = x(j) · θT be
the linear response of the classifier, and σ is the standard logistic function

σ(r) =
(
1 + exp(−r)

)−1
.

The logistic negative log likelihood loss for a single data point j is then

Jj(θ) = −y(j) log σ(x(j)θT) − (1− y(j)) log(1− σ(x(j)θT))

Homework 3: CS 273A, Machine Learning: Fall 2021

3

where y(j) is either 0 or 1. Derive the gradient of the negative log likelihood Jj for logistic regression,
and give it in your report. (You will need this in your gradient descent code for the next part.)

Provide the gradient equations for ∂
∂θ0

Jj , ∂
∂θ1

Jj , and ∂
∂θ2

Jj . (10 points)

6. Complete train function to perform stochastic gradient descent on the logistic loss function. This
will require that you fill in:
(1) computing the surrogate loss function at each epoch (J = 1

m

∑
Jj , from the previous part);

(2) computing the response (r(j) and gradient associated with each data point x(j), y(j);
(3) a stopping criterion consisting of two conditions (stop when either you have reached stopEpochs
epochs or J has not changed by more than stopTol since the last epoch).

Include the complete implementation of train in your solutions. (25 points)

7. Run train for your logistic regression classifier on both data sets (A and B). Describe your parameter
choices for each dataset (stepsize, etc.) and include plots showing the convergence of the surrogate
loss and error rate (e.g., the loss values as a function of epoch during gradient descent), and the final
converged classifier with the data (the included train function does that for you already). (10 points)

Note: Debugging machine learning algorithms can be quite challenging, since the results of the al-
gorithm are highly data-dependent, and often somewhat randomized (initialization, etc.). I suggest
starting with an extremely small step size and verifying both that the learner’s prediction evolves
slowly in the correct direction, and that the objective function J decreases monotonically. If that
works, go to larger step sizes to observe the behavior. Some researchers manually step through the
code — for example by pausing after each parameter update using raw input() (Python 2.7) or
input() (Python 3) – so that they can examine its behavior. You can also (of course) use a more
sophisticated debugger.

Note on plotting: The code generates plots as the algorithm runs, so you can see its behavior over
time; this is done with pyplot.draw(). Run your code either interactively or as a script to see
these display over time.

8. Extra Credit (10 points): Add an L2 regularization term (+α
∑

i θ
2
i) to your surrogate loss function,

and update the gradient and your code to reflect this addition. Try re-running your learner with some
regularization (e.g. α = 2) and see how different the resulting parameters are. Find a value of α that
gives noticeably different results & explain them.

Problem 2: Shattering and VC Dimension (20 points)

Consider the data points in Figure 1 which have two real-valued features x1, x2. We are also giving a few
learners below. For the learners below, T [z] is the sign threshold function, T [z] = +1 for z ≥ 0 and
T [z] = −1 for z < 0. The learner parameters a, b, c, . . . are real-valued scalars, and each data point has two
real-valued features x1, x2.

Homework 3: CS 273A, Machine Learning: Fall 2021

4

(a) (b) (c) (d)

Figure 1: Four datasets to test whether they can be shattered by a given classifier, i.e. can the classifier
exactly separate their all possible binary colorings. No three data points are on a line.

Which of the four datasets can be shattered by each learner? Give a brief explanation/justification and
use your results to guess the VC dimension of the classifier (you do not have to give a formal proof, just
your reasoning).

1. T (a+ bx1)

2. T ((a ∗ b)x1 + (c/a)x2)

3. T ((x1 − a)2 + (x2 − b)2 + c)

4. T (a+ bx1 + cx2)× T (d+ bx1 + cx2) (5 points)
Hint: The two equations are two parallel lines.

Statement of Collaboration (5 points)

It is mandatory to include a Statement of Collaboration in each submission, with respect to the guidelines
below. Include the names of everyone involved in the discussions (especially in-person ones), and what was
discussed.

 All students are required to follow the academic honesty guidelines posted on the course website. For
programming assignments, in particular, I encourage the students to organize (perhaps using ed) to
discuss the task descriptions, requirements, bugs in my code, and the relevant technical content before they
start working on it. However, you should not discuss the specific solutions, and, as a guiding principle,
you are not allowed to take anything written or drawn away from these discussions (i.e. no photographs of
the blackboard, written notes, referring to ed, etc.). Especially after you have started working on the
assignment, try to restrict the discussion to ed as much as possible, so that there is no doubt as to the
extent of your collaboration.

Homework 3: CS 273A, Machine Learning: Fall 2021

5

Acknowledgements

This homework is adapted (with minor changes) from one made available by Alex Ihler’s machine learning
course. Thanks, Alex!

Homework 3: CS 273A, Machine Learning: Fall 2021

