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Logistics

assignments • Assignment 3 due next Tuesday, Nov 2

midterm

• Midterm exam on Nov 4, 11am–12:20 in SH 128


• If you're eligible to be remote — let us know by Oct 28


• If you're eligible for more time — let us know by Oct 28


• Review during lecture this Thursday
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Today's lecture

Multi-class classifiers

VC dimension

Multilayer perceptrons
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Multi-class linear models

• How to predict multiple classes?


• Idea: have a linear response per class 


‣ Choose class with largest response: 


• Linear boundary between classes , :


‣

rc = θ⊺
c x

fθ(x) = arg max
c

θ⊺
c x

c1 c2

θ⊺
c1

x ≶ θ⊺
c2

x ⟺ (θc1
− θc2

)⊺x ≶ 0
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Multi-class linear models

• More generally: add features — can even depend on !


 


• Example: 


‣ 


 

y

fθ(x) = arg max
y

θ⊺Φ(x, y)

y = ± 1

Φ(x, y) = xy

⟹ fθ(x) = arg max
y

yθ⊺x = {+1 +θ⊺x > − θ⊺x
−1 +θ⊺x < − θ⊺x

= sign(θ⊺x) perceptron!
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Multi-class linear models

• More generally: add features — can even depend on !


 


• Example: 


‣ 


‣ 


 

y

fθ(x) = arg max
y

θ⊺Φ(x, y)

y ∈ {1,2,…, C}

Φ(x, y) = [0 0 ⋯ x ⋯ 0] = one-hot(y) ⊗ x

θ = [θ1 ⋯ θC]

⟹ fθ(x) = arg max
c

θ⊺
c x largest linear response
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Multi-class perceptron algorithm
• While not done:


‣ For each data point :


- Predict: 


- Increase response for true class: 


- Decrease response for predicted class: 


• More generally:


‣ Predict: 


‣ Update: 

(x, y) ∈ 𝒟

̂y = arg max
c

θ⊺
c x

θy ← θy + αx

θ ̂y ← θ ̂y − αx

̂y = arg max
y

θ⊺Φ(x, y)

θ ← θ + α(Φ(x, y) − Φ(x, ̂y))
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Multilogit Regression

• Define multi-class probabilities: 


‣
For binary : 


• Benefits:


‣ Probabilistic predictions: knows its confidence


‣ Linear decision boundary: 


‣ NLL is convex

pθ(y |x) =
exp(θ⊺

y x)
∑c exp(θ⊺

c x)
= soft max

c
θ⊺

c x
y

y
pθ(y = 1 |x) =

exp(θ⊺
1x)

exp(θ⊺
1x) + exp(θ⊺

2x)

=
1

1 + exp((θ2 − θ1)⊺x)
= σ((θ1 − θ2)⊺x)

arg max
y

exp(θ⊺
y x) = arg max

y
θ⊺

y x

Logistic Regression with θ = θ1 − θ2

“logit“ for c
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Multilogit Regression: gradient

• NLL loss: 


• Gradient:


 


• Compare to multi-class perceptron: 

ℒθ(x, y) = − log pθ(y |x) = − θ⊺
y x + log∑

c

exp(θ⊺
c x)

−∇θc
ℒθ(x, y) = δ(y = c)x −

∇θc
∑c′￼

exp(θ⊺
c′￼

x)

∑c′￼

exp(θ⊺
c′￼

x)

= (δ(y = c) −
exp(θ⊺

c x)
∑c′￼

exp(θ⊺
c′￼

x) ) x

= (δ(y = c) − pθ(c |x))x

(δ(y = c) − δ( ̂y = c))x
make true class more likely make all other classes less likely
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Today's lecture

Multi-class classifiers

VC dimension

Multilayer perceptrons
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Complexity measures
• What are we looking for in a measure of model class complexity?


‣ Tell us something about generalization error 


‣ Tell us how error depends on amount of data 


‣ Have a recipe for finding the complexity of a given model class


• Ideally: a way to select model complexity (other than validation)


‣ Akaike Information Criterion (AIC) — roughly: loss + #parameters


‣ Bayesian Information Criterion (BIC) — roughly: loss + #parameters 


- But what's the #parameters, effectively? Should  change the complexity?

ℒtest − ℒtraining

m

⋅ log m

fθ1,θ2
= gθ=h(θ1,θ2)

also called: risk – empirical risk
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Model expressiveness
• Model complexity also measures expressiveness / representational power


• Tradeoff:


‣ More expressive  can reduce error, but may also overfit to training data


‣ Less expressive  may not be able to represent true pattern / trend


• Example: 


⟹

⟹

sign(θ0 + θ1x1 + θ2x2)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
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Model expressiveness
• Model complexity also measures expressiveness / representational power


• Tradeoff:


‣ More expressive  can reduce error, but may also overfit to training data


‣ Less expressive  may not be able to represent true pattern / trend


• Example: 


⟹

⟹

sign(x2
1 + x2

2 − θ)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


- The model class must have at least as many models as labelings 


x(1), …, x(h)

y(1), …, y(h)

Ch
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


• Example: can  shatter these points?


x(1), …, x(h)

y(1), …, y(h)

fθ(x) = sign(θ0 + θ1x1 + θ2x2)
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


• Example: can  shatter these points?


x(1), …, x(h)

y(1), …, y(h)

fθ(x) = sign(x2
1 + x2

2 − θ)
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Vapnik–Chervonenkis (VC) dimension
• VC dimension: maximum number  of points that can be shattered by a class


• A game:


‣ Fix a model class 


‣ Player 1: choose  points 


‣ Player 2: choose labels 


‣ Player 1: choose model 


‣ Are all ?  Player 1 wins


• Player 1 can win, otherwise cannot win

H

fθ : x → y θ ∈ Θ

h x(1), …, x(h)

y(1), …, y(h)

θ

y( j) = fθ(x( j)) ⟹

h ≤ H ⟹

∃x(1), …, x(h) : ∀y(1), …, y(h) : ∃θ : ∀j : y( j) = fθ(x( j))
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VC dimension: example (1)
• VC dimension: maximum number  of points that can be shattered by a class


• To find , think like the winning player: 1 for , 2 for 


• Example: 


‣ We can place one point and ”shatter” it


‣ We can prevent shattering any two points: make the distant one blue


‣ 


H

H h ≤ H h > H

fθ(x) = sign(x2
1 + x2

2 − θ)

H = 1
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VC dimension: example (2)
• Example: 


‣ We can place 3 points and shatter them


‣ We can prevent shattering any 4 points:


- If they form a convex shape, alternate labels


- Otherwise, label differently the point in the triangle


‣ 


• Linear classifiers (perceptrons) of  features have VC-dim 


‣ But VC-dim is generally not #parameters

fθ(x) = sign(θ0 + θ1x1 + θ2x2)

H = 3

d d + 1
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VC Generalization bound
• VC-dim of a model class can be used to bound generalization loss:


‣ With probability at least , we will get a ”good” dataset, for which


• 


• We need larger training size :


‣ The better generalization we need


‣ The more complex (higher VC-dim) our model class


‣ The more likely we want to get a good training sample

1 − η

test loss  −  training loss ≤
H log(2m/H) + H − log(η/4)

m

m
generalization loss
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Model selection with VC-dim
• Using validation / cross-validation:


‣ Estimate loss on held out set


‣ Use validation loss to select model


• Using VC dimension:


‣ Use generalization bound to select model


‣ Structural Risk Minimization (SRM)


‣ Bound not tight, much too conservative

training loss validation lossmodel complexity

training loss VC bound test loss boundmodel complexity
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Multi-class classifiers

VC dimension

Multilayer perceptrons
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Linear classifiers

• Perceptron = use hyperplane to partition feature space  classes


‣ Soft classifiers (logistic) = sensitive to margin from decision boundary


→

linear response


r = θ0 + θ1x1 + θ2x2

T(r)

weighted sum of features threshold 
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

T(r)

r
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Adding features
• If data is non-separable in current feature space


‣ Perhaps it will be separable in higher dimension  add more features


‣ E.g., polynomial features: linear classifier  polynomial classifier


• Which features to add?


‣ Perhaps outputs of simpler perceptrons?


⟹

→

x1 x1

x2 x2

Linearly separable data Linearly non-separable data
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Combining step functions
• Combinations of step functions allow more complex decision boundaries


• Need to learn:


‣ Thresholds 


‣ Weights 

a1, a2, a3

w1, w2, w3, w4

F1(x) = T(x − a1)

a1

a2

F2(x) = T(x − a2)

a3

F3(x) = T(x − a3)
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

 
is piecewise constant

Φ(x) = [F1(x) F2(x) F3(x)]
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Multi-Layer Perceptron (MLP)

x1

1

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

F1

T

F3

T

F2

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)
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Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression 
F(x) = w⊺Φ(x)
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Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

σ
w1

w2

w3

Σ
F(x) = σ(w⊺Φ(x)) = σ(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression 
F(x) = w⊺Φ(x)

σ

σ

σ
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MLPs: properties

• Simple building blocks


‣ Each unit is a perceptron: linear response  non-linear activation


• MLPs are universal approximators:


‣ Can approximate any function arbitrarily well, with enough units


→

w0
w0 + w1

h1
h2
⋮

x0 x1

h1 h2 h3 hℓ

y

⋯

⋯

output

hidden layer

input features
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“Neural” Networks

• Biologically inspired


• Neurons:


‣ “Simple” cells


‣ Dendrites take input voltage


‣ Cell body “weights” inputs


‣ Axons “fire” voltage


‣ Synapses connect to other cells
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Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply


‣ Deep architectures are subject of much current research


input 
features

layer 1 layer 2 layer 3

⋯

⋯

r1 = w[0].T @ x + b[0]   # linear response

h1 = sig(r1)             # activation function


r2 = w[1].T @ h1 + b[1]  # linear response

h2 = sig(r2)             # activation function


                         # ...
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Activation functions

• Logistic


• Hyperbolic tangent


• Gaussian


• Rectified linear (ReLU)

σ(z) =
1

1 + exp(−z)

σ(z) =
1 − exp(−2z)
1 + exp(−2z)

σ(z) = exp(− 1
2 z2)

σ(z) = max(0,z)

σ′￼(z) = σ(z)(1 − σ(z))

σ′￼(z) = 1 − σ2(z)

σ′￼(z) = − zσ(z)

σ′￼(z) = δ[z > 0]
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Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:


‣ Inputs  shallow layers  deeper layers  outputs


‣ Alternative: recurrent NNs (information loops back)


• Multiple outputs  efficiency:


‣ Shared parameters, less data, less computation


• Multi-class classification: 


‣ One-hot labels 


‣ Multilogistic regression (softmax): 

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs



Roy Fox | CS 273A | Fall 2021 | Lecture 10: VC Dimension

Logistics

assignments • Assignment 3 due next Tuesday, Nov 2

midterm

• Midterm exam on Nov 4, 11am–12:20 in SH 128


• If you're eligible to be remote — let us know by Oct 28


• If you're eligible for more time — let us know by Oct 28


• Review during lecture this Thursday


