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Logistics

e Midterm exam on Nov 4, 11am-12:20 in SH 128

* |f you're eligible to be remote — let us know by Oct 28

_  Assignment 3 due next Tuesday, Nov 2

* |f you're eligible for more time — let us know by Oct 28

* Review during lecture this Thursday




Today's lecture

VC dimension

Multilayer perceptrons




Multi-class linear models

 How to predict multiple classes?
« Idea: have a linear response per class 7. = 6'x

., Choose class with largest response: f(x) = arg max 6 x
C

» Linear boundary between classes ¢y, ¢5:

> OixsOx <= (0.,-0.)xs0

2
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Multi-class linear models

 More generally: add features — can even depend on V!

fo(x) = arg max 0'dP(x, y)
y

» Example:y = %= 1

> O(x,y) = xy

- ) +1 +0x> —-0x
—> fy(x) = arg myaxyé”x - {_1 +0'x < —0'x

— q1 gn(@ Tx) perceptron!




Multi-class linear models

 More generally: add features — can even depend on y!

fo(x) = arg max 0'd(x, y)
y

» Example:y € {1,2,...,C}
» O(x,y)=[00 - x - 0] = one-hot(y) @ x

- 0=10, - 0]

— fe(x) = arg max @J X < largest linear response
C




Multi-class perceptron algorithm

e While not done:

> For each data point (x,y) € 9:

_ Predict: = argmax 0 x
C

- Increase response for true class: 6’y «— Hy + ax
- Decrease response for predicted class: Qy «— Hy — ax

* More generally:

Predict: y = arg max 81d(x, y)
y

>

» Update: 8 < 0+ a(D(x,y) — D(x,y))
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Multilogit Regression

exp(d]x)
Define multi-class probabilities: py(y|x) = . = soft max 6x
. ZC exp(6x) ¢ ar
(QT ) “logit” for c
exp(6]x
Py =1]x) = ———— » o
| exp(0,x) + exp(6,x) Logistic Regression with 6 = 6, — 6,
For binary y: | /
’ — = o((0, — 0,)'x)

I + exp((6, — 6))Tx)
e Benefits:

> Probabillistic predictions: knows its confidence

Linear decision boundary: arg max exp(6/x) = arg max 6x
y y

>

» NLL Is convex
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Multilogit Regression: gradient

NLL loss: Zy(x,y) = —1ogpy(y|x) = — HyTx + log 2 exp(6)x)

e (Gradient:

Vo, 2 exp(]x)
2. exp(0)x)

B . exp(Oix)
— (5(y = ¢) —ZC, — ) X
= (0(y = ¢) = pylc|x))x

make true class more likely — —~— make all other classes less likely
» Compare to multi-class perceptron: (0(y = c¢) — o6(y = ¢))x

— Vecge(xa y) =0(y = C)x —




Today's lecture

Multi-class classifiers

Multilayer perceptrons




Complexity measures

 What are we looking for in a measure of model class complexity?

» Tell us something about generalization error Lagt — gtraining

T\

> Tell us how error depends on amount of datam  also called: risk — empirical risk

> Have a recipe for finding the complexity of a given model class

» |deally: a way to select model complexity (other than validation)

> Akaike Information Criterion (AIC) — roughly: loss + #parameters

> Bayesian Information Criterion (BIC) — roughly: loss + #parameters - log m

- But what's the #parameters, effectively? Should fy 4 = 8g—p(, ¢,y Change the complexity?
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Model expressiveness

 Model complexity also measures expressiveness / representational power
* Tradeoft:

> More expressive — can reduce error, but may also overfit to training data

> Less expressive = may not be able to represent true pattern / trend

o Example: Sign(eo + 91)61 + 92)(:2)
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Model expressiveness

 Model complexity also measures expressiveness / representational power

e Tradeoft:

» More expressive = can reduce error, but may also overfit to training data

> Less expressive = may not be able to represent true pattern / trend

« Example: sign()cl2 + x22 — 0)
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Shattering

o Separability / realizability: there's a model that classifies all points correctly

o Shattering: the points are separable regardless of their labels

> Our model class can shatter points x(l), . xM

if for any labeling y(l), Cees y(h)

there exists a model that classifies all of them correctly

- The model class must have at least as many models as labelings C"
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Shattering

o Separability / realizability: there's a model that classifies all points correctly

o Shattering: the points are separable regardless of their labels

> Our model class can shatter points x(l), . xM

if for any labeling y(l), Cees y(h)

there exists a model that classifies all of them correctly

» Example: can f,(x) = s1gn(6, + 0,x; + 6,x,) shatter these points?

O O O o O

0 0 \.V - T
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Shattering

o Separabllity / realizability: there's a model that classifies all points correctly

o Shattering: the points are separable regardless of their labels

> Our model class can shatter points x(l), - x!

if for any labeling y(1, ...,y

h)

h)

there exists a model that classifies all of them correctly

« Example: can fy(x) = sign()cl2 + x22 — 0) shatter these points?
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Vapnik—-Chervonenkis (VC) dimension

« \/C dimension: maximum number H of points that can be shattered by a class
A game:

» Fixamodelclassfy,:x—y 6€0

> Player 1: choose 4 points x, xW
> Player 2: choose labels y(l), e y(h)
> Player 1: choose model &

> Are all yV) = £,(x)? = Player 1 wins  3x1,..,x® : vy® y®: 39: vj: yO) = f(xD)

« h < H = Player 1 can win, otherwise cannot win
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VC dimension: example (1)

« \/C dimension: maximum number H of points that can be shattered by a class
» To find H, think like the winning player: 1 forh < H,2 forh > H
« Example: fy(x) = sign(xl2 + x22 — 0)

> We can place one point and "shatter” it

> We can prevent shattering any two points: make the distant one blue

» H=1
e O

° ank -

=

N
NI




VC dimension: example (2)

o Example:fé(X) — Sign(e() + (91)61 + 92)(:2)

> We can place 3 points and shatter them j.
> We can prevent shattering any 4 points:
- If they form a convex shape, alternate labels o | @
O
- Otherwise, label differently the point in the triangle O
- H=3

 Linear classifiers (perceptrons) of d features have VC-dim d + 1

> But VC-dim is generally not #parameters
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VC Generalization bound

 VC-dim of a model class can be used to bound generalization loss:

> With probability at least 1 — 77, we will get a "good” dataset, for which

N Hlog(2m/H) + H — log(n/4)
test loss — trainingloss <4/—m—MM8M8M ™ ———
k J m

generalization loss

 \We need larger training size m:
> The better generalization we need
> The more complex (higher VC-dim) our model class

> The more likely we want to get a good training sample




Model selection with VC-dim

» Using validation / cross-validation:

' model complexit training loss validation loss
» Estimate loss on held out set plexity g

[ ] [ ]
| | [ ] [ ]
» Use validation loss to select model ] ]
[ 1] [ ]
[] [ ]
v ] L ]
* USing VC dimension: model complexity training loss VC bound testloss bound
o s ) [
> Use generalization bound to select model ] N [
] [] 1
> Structural Risk Minimization (SRM) . — .
v 1 B [

> Bound not tight, much too conservative
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Today's lecture

Multi-class classifiers

VC dimension

Roy Fox | CS 273A | Fall 2021 | Lecture 10: VC Dimension



Linear classifiers

o Perceptron = use hyperplane to partition feature space — classes

» Soft classifiers (logistic) = sensitive to margin from decision boundary

T(r)
—— r ]
O
|
. 0, > class decision y = f,(x)
1
0,
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Adding features

e If data is non-separable in current feature space
> Perhaps it will be separable in higher dimension = add more features

> E.g., polynomial features: linear classifier — polynomial classifier

e Which features to add?

> Perhaps outputs of simpler perceptrons?

Linearly separable data Linearly non-separable data
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Combining step functions

 Combinations of step functions allow more complex decision boundaries

Fi(x) =T(x - a)) | O(x) = |Fi(x) Fp(x) F3)]
a IS pilecewise constant

Fr(x) = T(x — a,) ‘

F(x) = Tw®(x)) = T(w F{(x) + wyF5(x) + wiF5(x) + wy)
Fi(x) =T(x — a3)

e Need to learn:

» Thresholds al, Clz, Cl3

» Weights Wy, Wy, Ws, W,
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Multi-Layer Perceptron (MLP)

r 1
Wi 2 A
W
Xq 01
W F2
12 Ws
W02 2 > T Z > T
1 W F(x) = TwT®(x)) = T(w, F,(x) + woFo(x) + wiF3(x) + wy)
3
Wo3 > A




Multi-Layer Perceptron (MLP)

F 1
W11 )> A
”
Xq 01
w F2
12 W2
Woo Z - Z
1 W F(x) = TwT®(x)) = T(w F,(x) + woF,(x) + wyF5(x) + wy)
3
Wo3 > A
regression ‘

F(x) = wTd(x) |
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Multi-Layer Perceptron (MLP)

Fl
Wy > " O
W
Xq 01
F2
W12 W,
Wo2 2 O 2. s O
1 W F(x) = c(WTD(x)) = o(w,F,(x) + woF,(x) + wiF5(x) + wy)
3
regression

F(x) =wld(x) -~
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MLPs: properties

e Simple building blocks

> Each unit is a perceptron: linear response — non-linear activation

« MLPs are universal approximators:

> Can approximate any function arbitrarily well, with enough units

output
hidden | Wo T Wi
idden layer
Wo
h, |

input features
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“Neural” Networks

* Biologically inspired

e Neurons: | Basic Neuron Design
- Dendrites
> “Simple” cells ol "
Body e Hillock
: . | | Myelin
> Dendrites take input voltage . __— Sheath
14 . J) - .} ' .;5_
> Cell body “weights” inputs ;
Ranvier v %

> Axons “fire” voltage

» Synapses connect to other cells

Roy Fox | CS 273A | Fall 2021 | Lecture 10: VC Dimension




Deep Neural Networks (DNNs)

e |ayers of perceptrons can be stacked deeply

> Deep architectures are subject of much current research

AN
()

9{,“\ ,
5

N7 R
AVAN

input layer 1 layer 2
features

# linear response
# activation function

# activation function

*H ...

"N
V‘V‘V‘ r2 = w[lg-T)@ hli + b[1] # linear response
h2 = sig(r2
(—C

layer 3




Activation functions

|
. Logistic oD =TT oS - 5'(2) = o(2)(1 - 0(2))
l — -2
» Hyperbolic tangent 0(z) = = ZEE_ 23 J/ 6'(2) =1 — 6%(2)

. Gaussian 6(2) = exp(—7z?) 0'(2) = — z0(2)

» Rectified linear (ReLU) o(z) = max(0,z) * 6'(z) = o[z > 0]
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Feed-forward (FF) networks

* Information flow in feed-forward (FF) networks: hidden layer

> Inputs — shallow layers — deeper layers — outputs ‘
iInputs A outputs

> Alternative: recurrent NNs (information loops back) , ‘
 Multiple outputs = efficiency: ‘V’f'.“?y/'
| TS
S\ /"
» Shared parameters, less data, less computation \ W

e Multi-class classification: '

> One-hotlabelsy=10 0 1 0 -.-] I

information

exp(h,.)
2 - exp(h;z)

., Multilogistic regression (softmax): y,. =
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Logistics

e Midterm exam on Nov 4, 11am-12:20 in SH 128

* |f you're eligible to be remote — let us know by Oct 28

_  Assignment 3 due next Tuesday, Nov 2

* |f you're eligible for more time — let us know by Oct 28

* Review during lecture this Thursday




