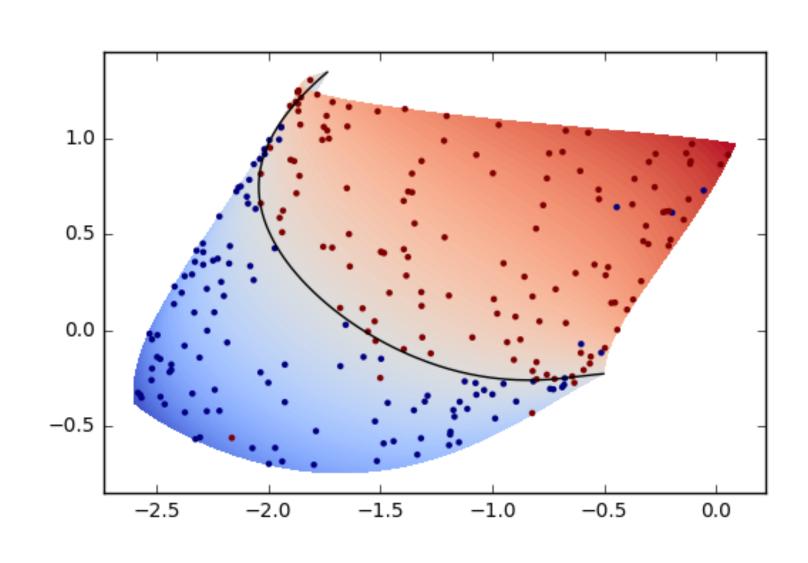


CS 273A: Machine Learning Fall 2021 Lecture 11: Midterm Review

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



Midterm Logistics

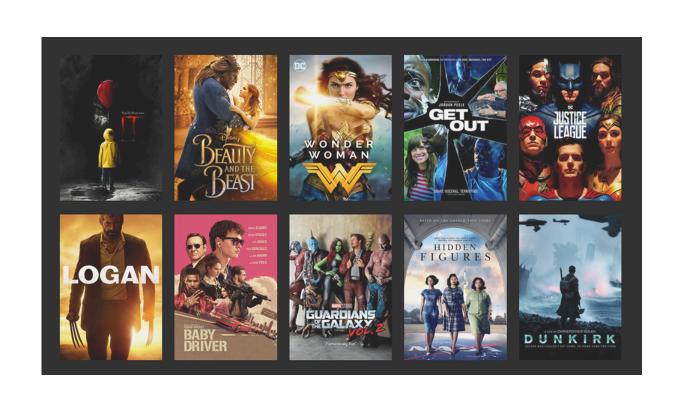
- Format:
 - ► Time: Thursday, November 4, 11am-12:20
 - Location: SH 128 (in person)
 - Should be doable in 1 hour
- You can use:
 - Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
 - A basic arithmetic calculator; no phones, no computers
 - Blank paper sheets for your calculations
 - Brainpower and good vibes

Exam suggestions

- Look at past exams
 - Train yourself by reading some solutions, evaluate yourself on held-out exams
- Organize / join study groups (e.g. on Ed)
- During the exam:
 - Start with questions you find easy
 - Don't get bogged down by exact calculations
 - Leave expressions unsolved and come back to them later
 - Turn in your calculation sheet(s)
 - They won't be graded, but can be used for regrading

Learning settings (1): supervised learning

- How can we learn $f: x \mapsto y$ that achieves good performance v(x, y)?
- Supervised learning
 - Data: examples of instances x and good decisions y (labels / targets)
 - Given a training dataset \mathscr{D} , find f that agrees with \mathscr{D} 's labels on its instances
 - Classification: y is a class in a small set
 - Regression: y is continuous



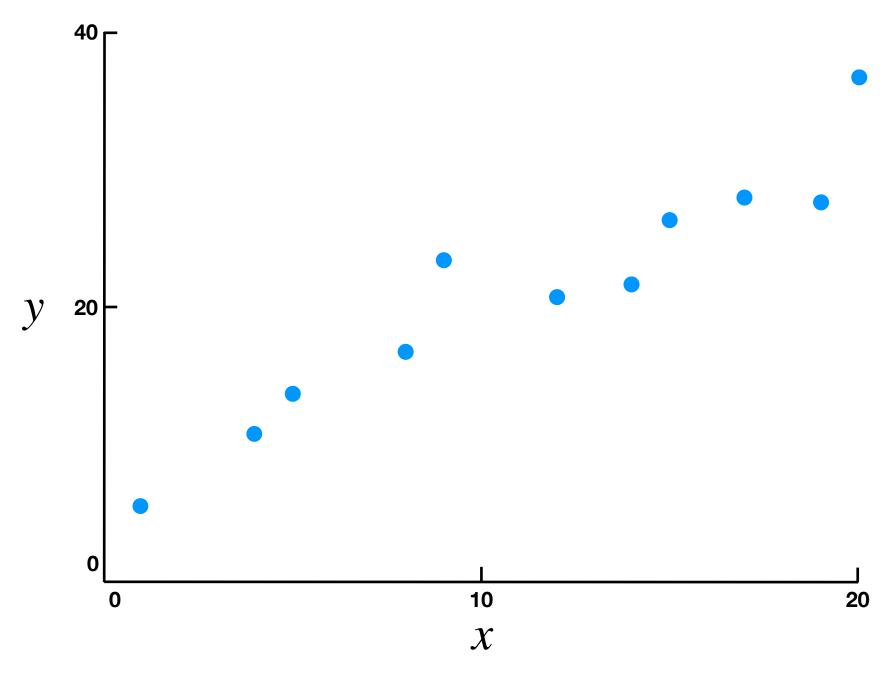
Know thy data

- ML is a data science
 - Look at your data, know what it is, get a "feel" for it
- How many data points?
- What are the features of every data point? What are their data types?
 - Booleans (spam, inbound/outbound, control group)
 - Discrete categories (country/state, protocol, user ID)
 - ► Integers (1–5 stars, # of bedrooms, year of birth)
 - Reals up to digital representation (pixel intensity, price, timestamp)
- Is there missing data? Unreasonable values? Surprisingly missing / repeated values?

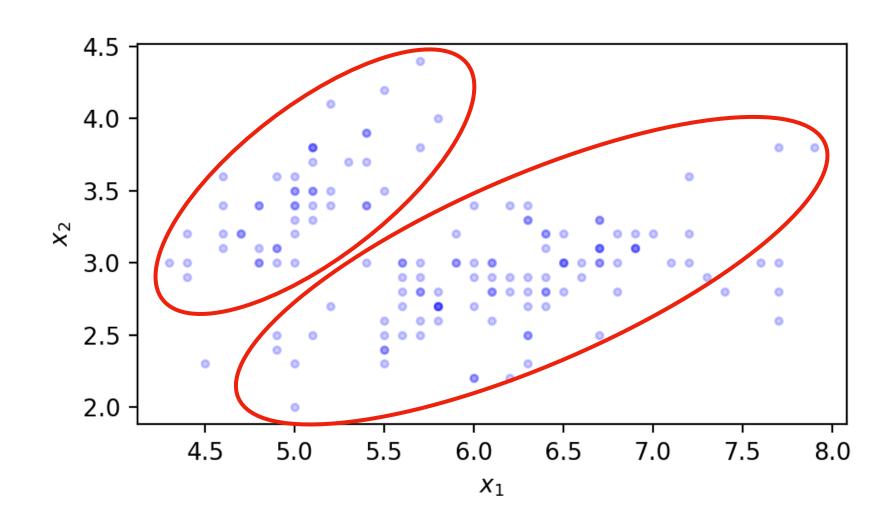
Supervised learning

- Data shows trend
- But also noise

regression

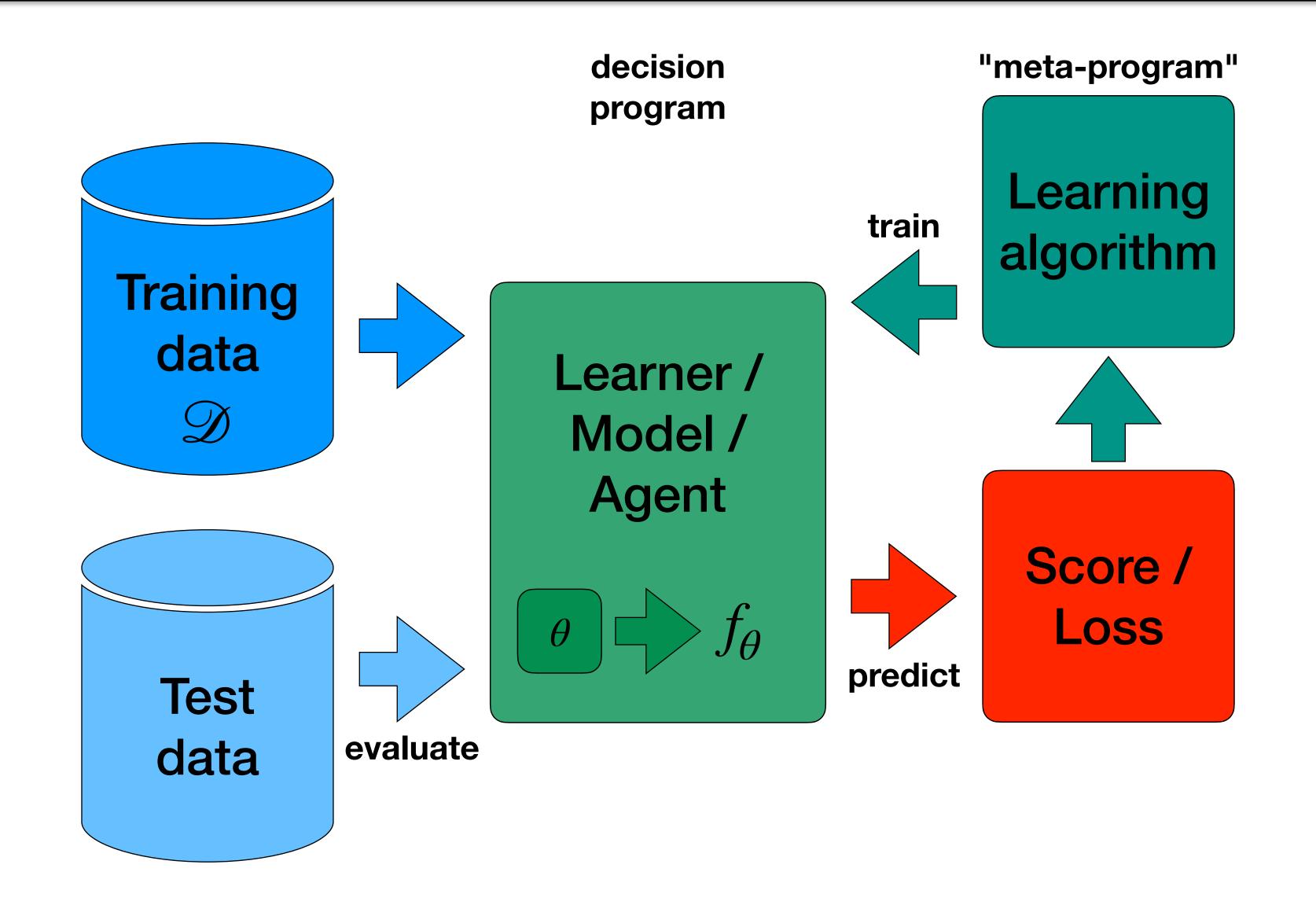


classification

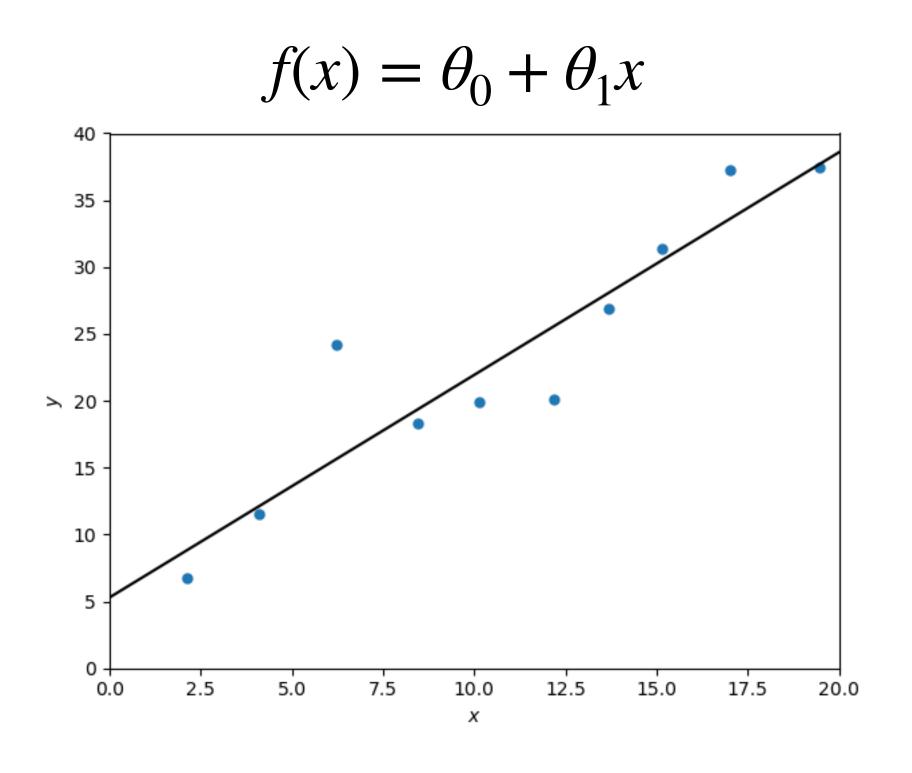


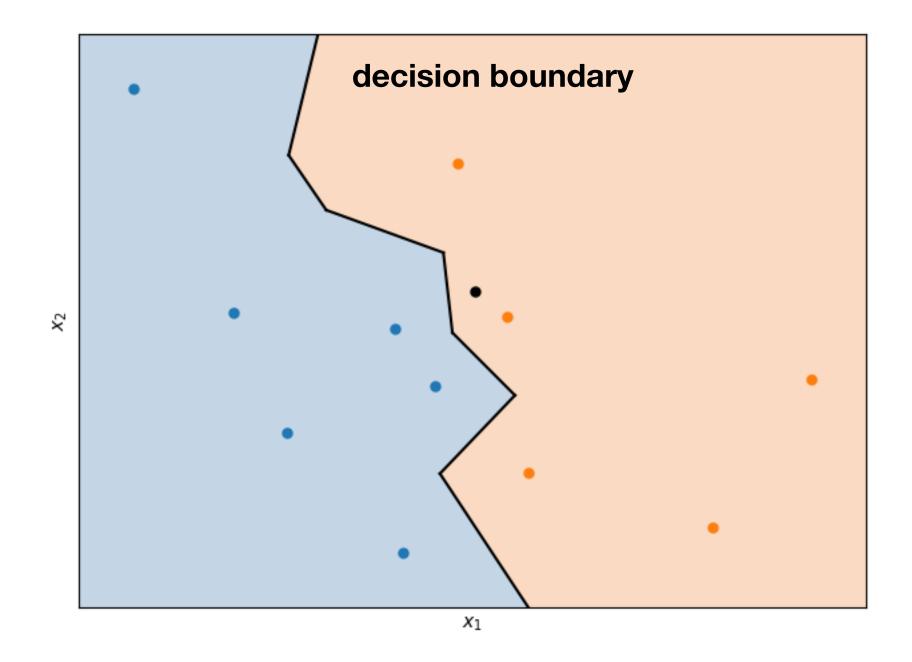
Given some instance x, what is a good y?

What is machine learning?



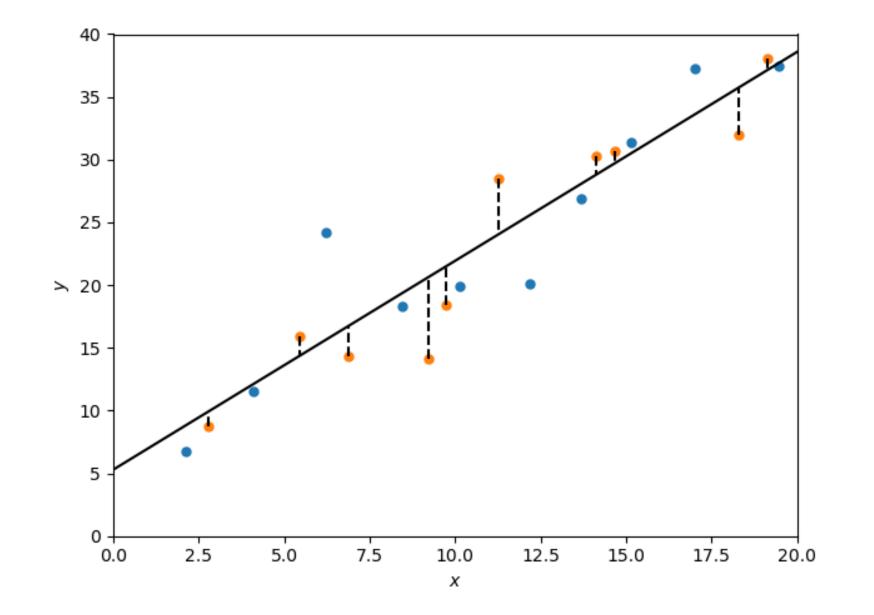
Visualizing learned decision function

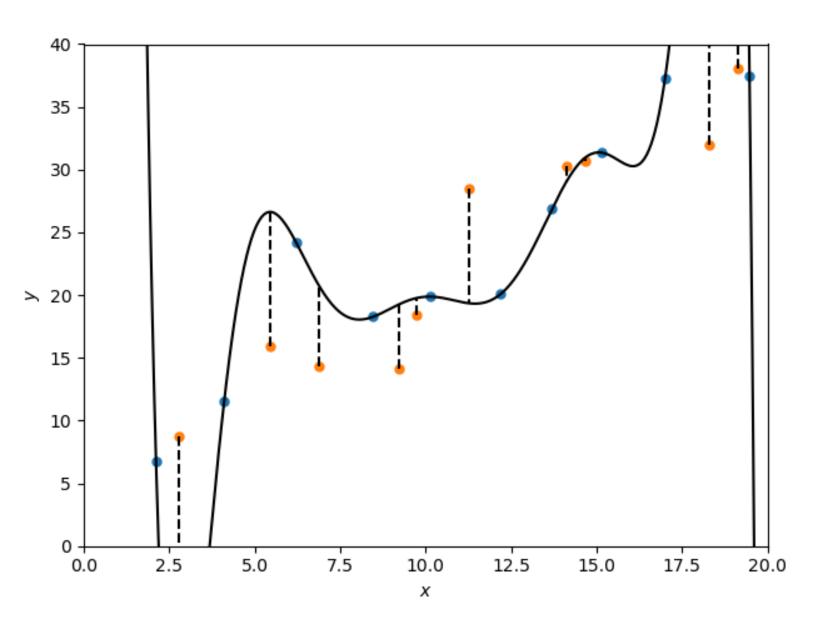




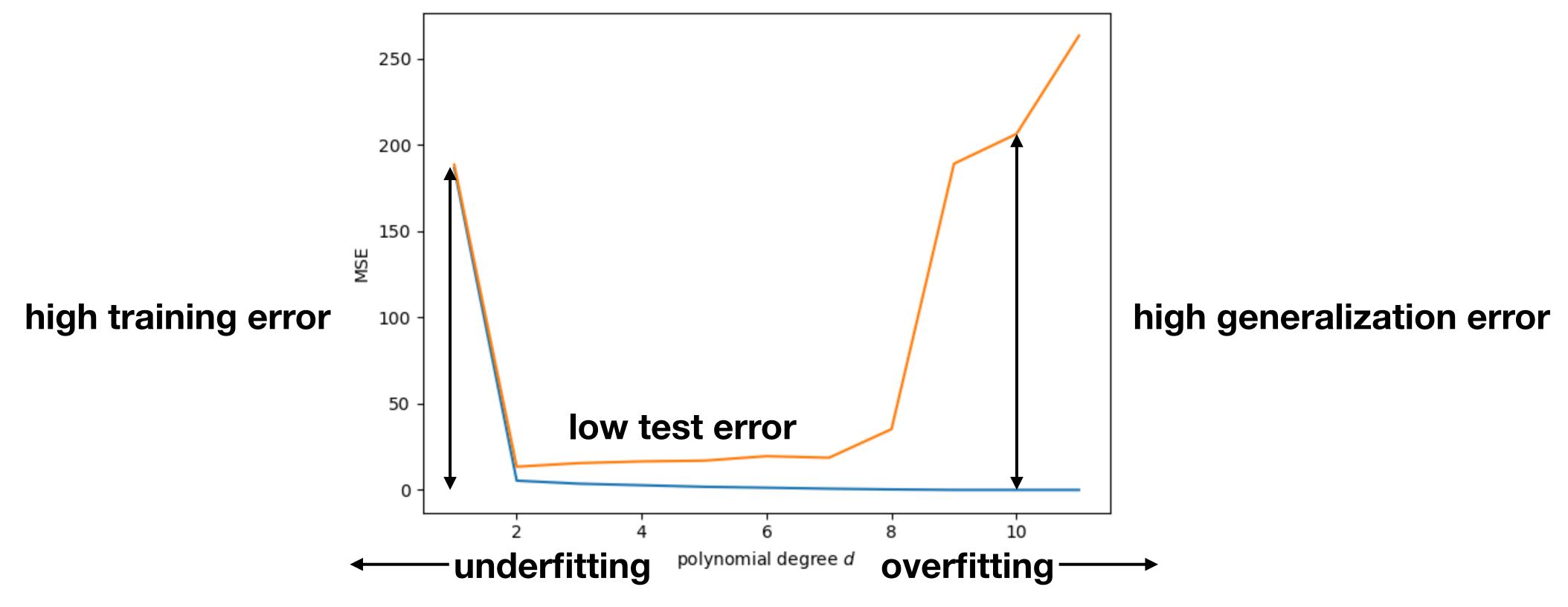
Inductive bias

- Inductive bias = assumptions we make to generalize to data we haven't seen
- Without any assumptions, there is no generalization
 - "Anything is possible" in the test data
- Occam's razor: prefer simpler explanations of the data



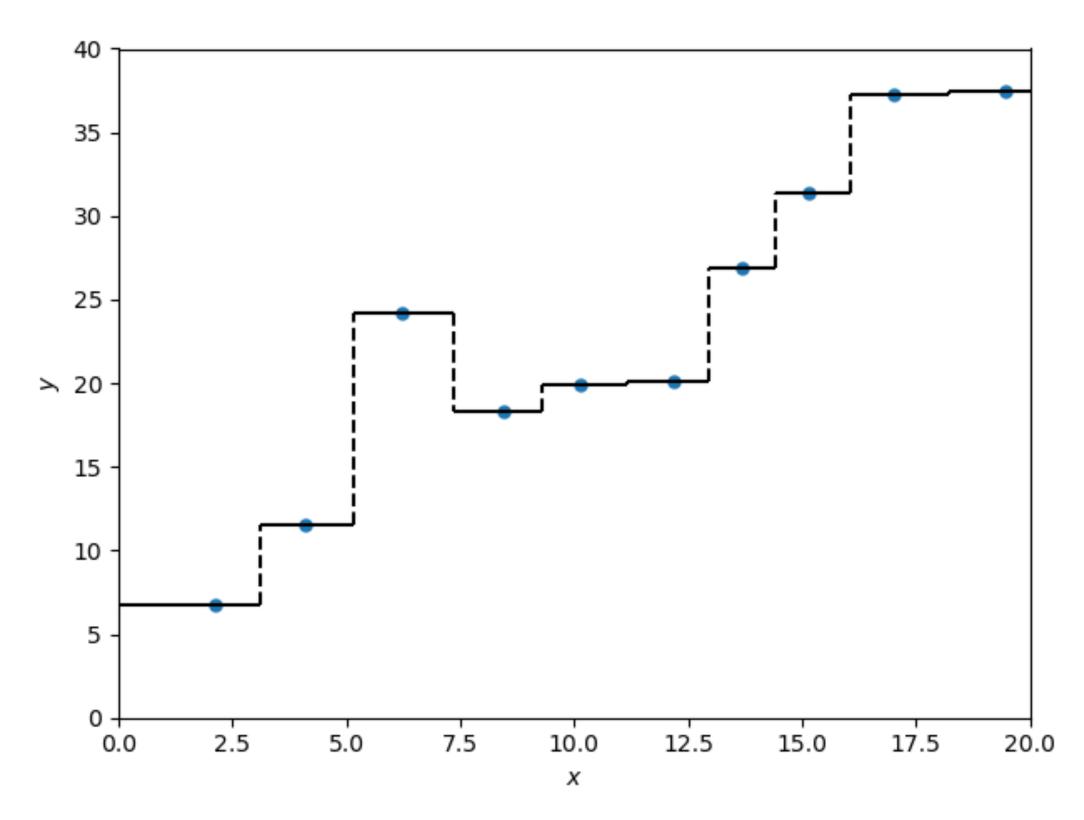


How overfitting affects prediction error



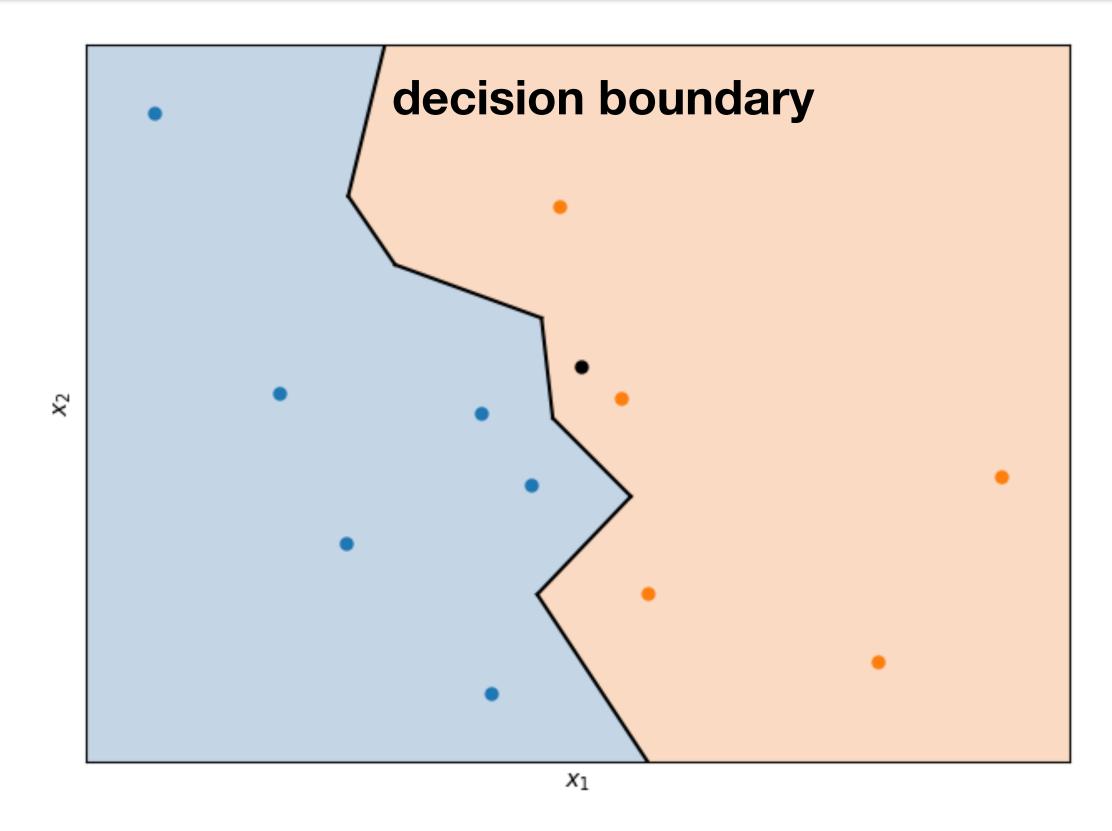
- Low model complexity → underfitting
 - High test error = high training error + low generalization error
- High model complexity → overfitting
 - High test error = low training error + high generalization error

Nearest-Neighbor regression



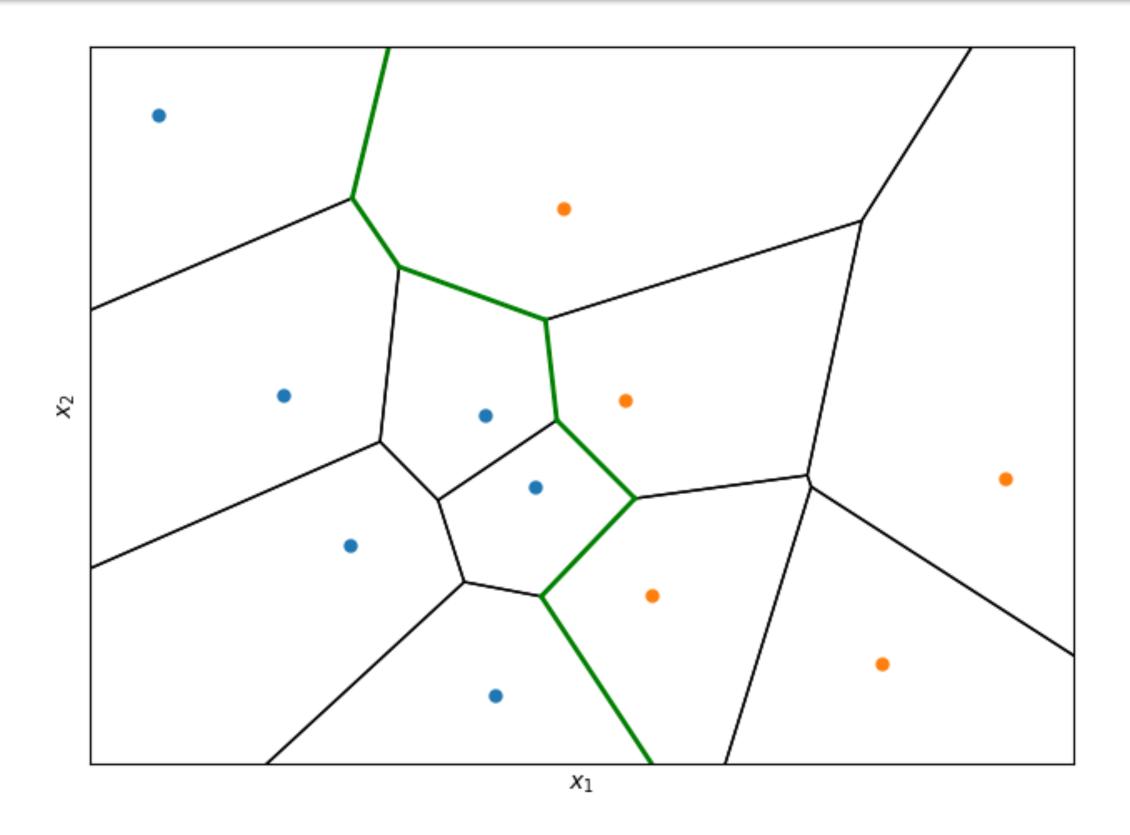
- Decision function $f: x \mapsto y$ is piecewise constant (for 1D x)
- Data induces f implicitly; f is never stored explicitly, but can be computed

Classification



- Using colors as our "third dimension", we can visualize in 2D
- Particularly clear for classification, where y is discrete

Voronoi tessellation



- Each data point has a region in which it is the nearest neighbor
 - This region is a polygon
- The decision boundary consists of the edges that cross classes

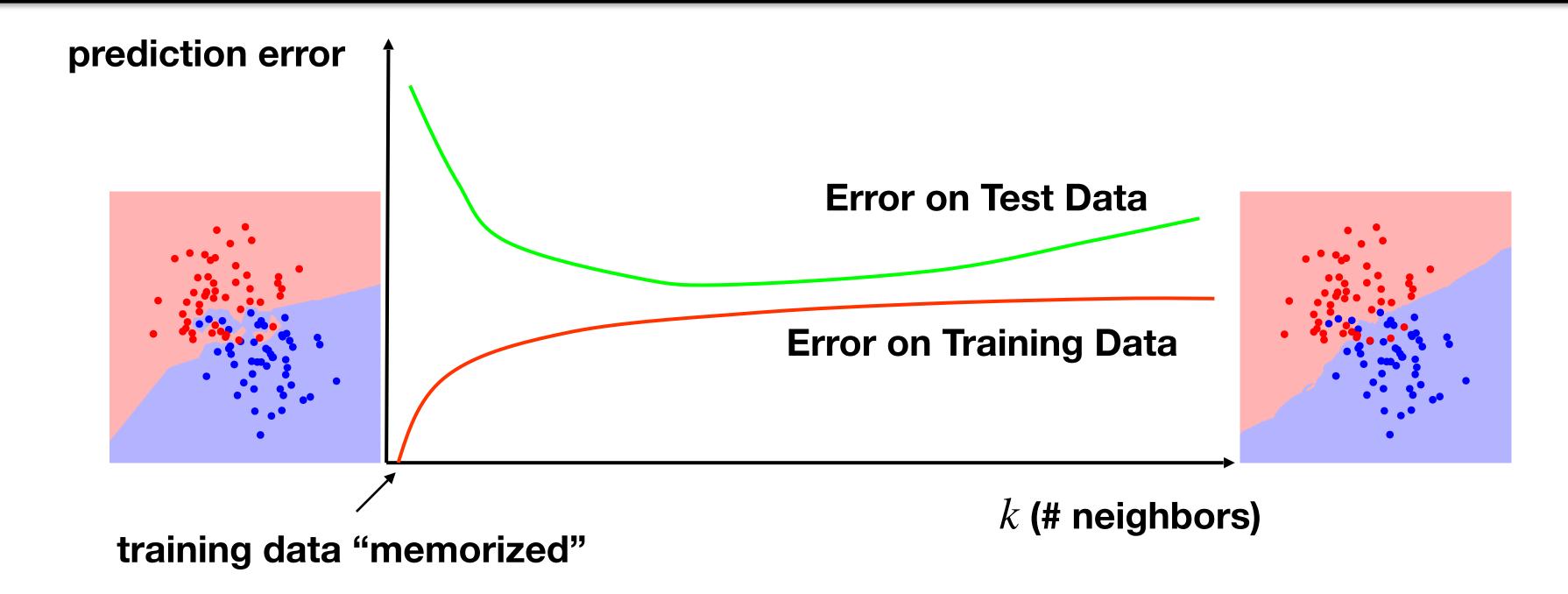
k-Nearest Neighbor (kNN)

- Find the k nearest neighbors to x in the dataset
 - Given x, rank the data points by their distance from x, $d(x, x^{(j)})$

Usually, Euclidean distance
$$d(x,x^{(j)}) = \sqrt{\sum_i (x_i - x_i^{(j)})^2}$$

- lacktriangle Select the k data points which are have smallest distance to x
- What is the prediction?
 - lacktriangleright Regression: average $y^{(j)}$ for the k closest training examples
 - Classification: take a majority vote among $y^{(j)}$ for the k closest training examples
 - No ties in 2-class problems when k is odd

Error rates and k



- A complex model fits training data but generalizes poorly
- k = 1: perfect memorization of examples = complex
- k = m: predict majority class over entire dataset = simple
- We can select k with validation

Probabilistic modeling of data

- Assume data with features x and discrete labels y
- Prior probability of each class: p(y)
 - Prior = before seeing the features
 - E.g., fraction of applicants that have good credit
- Distribution of features given the class: p(x | y = c)
 - How likely are we to see x in applicants with good credit?
- Joint distribution: p(x, y) = p(x)p(y | x) = p(y)p(x | y)

models:

$$x \longrightarrow y$$

$$y \longrightarrow x$$

does not imply causality!

Bayes' rule: posterior
$$p(y|x) = \frac{p(y)p(x|y)}{p(x)} = \frac{p(y)p(x|y)}{\sum_{c} p(y=c)p(x|y=c)}$$

Bayes classifiers

- Learn a "class-conditional" model for the data
 - Estimate the probability for each class p(y = c)
 - Split training data by class $\mathcal{D}_c = \{x^{(j)} : y^{(j)} = c\}$
 - Estimate from \mathcal{D}_c the conditional distribution p(x | y = c)
- For discrete x, can represent as a contingency table

Features	# bad	# good		p(x y=0)	p(x y=1)		p(y=0 x)	p(y=
X=0	42	15		42/383	15/307		.7368	.2632
X=1	338	287		338/383	287/307		.5408	.4592
X=2	3	5		3/383	5/307		.3750	.6250
p(y)	383/690	307/690						

Bayes-optimal decision

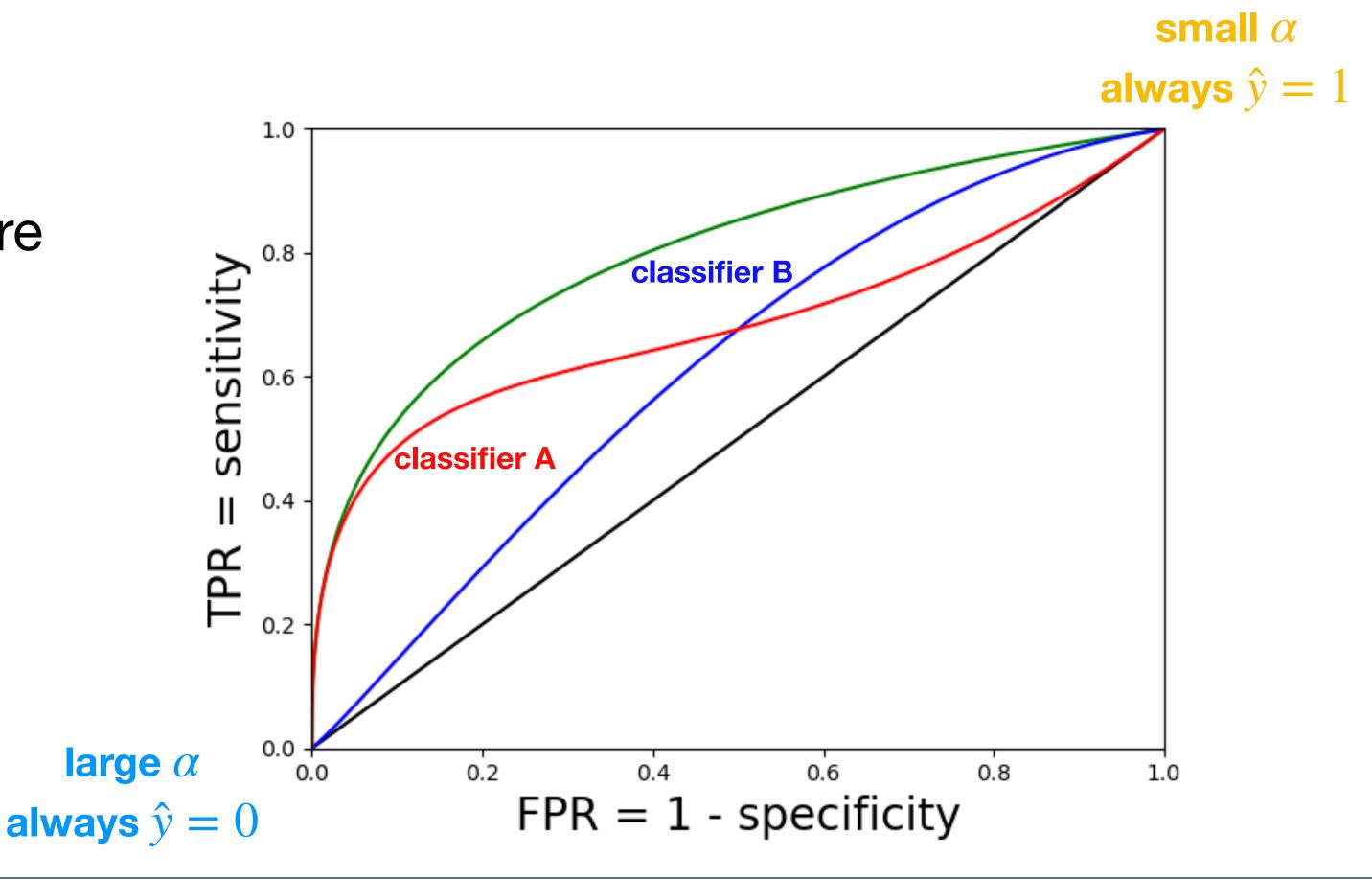
- Maximum posterior decision: $\hat{p}(y = 0 \mid x) \le \hat{p}(y = 1 \mid x)$
 - ► Optimal for the error-rate (0–1) loss: $\mathbb{E}_{x,y\sim p}[\hat{y}(x) \neq y]$
- What if we have different cost for different errors? α_{FP} , α_{FN}

•
$$\mathcal{L} = \mathbb{E}_{x,y\sim p}[\alpha_{\mathsf{FP}} \cdot \#(y=0,\hat{y}(x)=1) + \alpha_{\mathsf{FN}} \cdot \#(y=1,\hat{y}(x)=0)]$$

- Bayes-optimal decision: $\alpha_{\text{FP}} \cdot \hat{p}(y = 0 \mid x) \leq \alpha_{\text{FN}} \cdot \hat{p}(y = 1 \mid x)$
 - Log probability ratio: $\log \frac{\hat{p}(y=1\,|\,x)}{\hat{p}(y=0\,|\,x)} \le \log \frac{\alpha_{\mathsf{FP}}}{\alpha_{\mathsf{FN}}} = \alpha_{\mathsf{FN}}$

Comparing classifiers

- Which classifier (A or B) performs "better"?
 - A is better for high specificity
 - B is better for high sensitivity
 - Need single performance measure
- Area Under Curve (AUC)
 - ► 0.5 ≤ AUC ≤ 1
 - ► AUC = 0.5: random guess
 - ► AUC = 1: no errors



Estimating joint distributions

- Can we estimate p(x | y) from data?
- Count how many data points for each x?
 - If $m \ll 2^n$, most instances never occur
 - Do we predict that missing instances are impossible?
 - What if they occur in test data?
- Difficulty to represent and estimate go hand in hand
 - ► Model complexity → overfitting!

A	В	С	p(A,B,C y=1)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

Regularization

- Reduce effective size of model class
 - Hope to avoid overfitting
- One way: make the model more "regular", less sensitive to data quirks
- Example: add small "pseudo-count" to the counts (before normalizing)

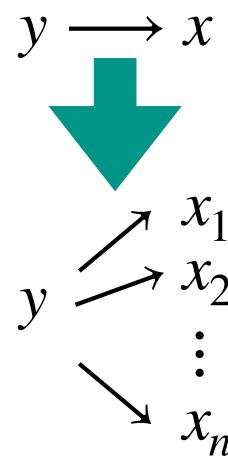
$$\hat{p}(x | y = c) = \frac{\#_c(x) + \alpha}{m_c + \alpha \cdot 2^n}$$

Not a huge help here, most cells will be uninformative $\frac{\alpha}{m_c + \alpha \cdot 2^n}$

Naïve Bayes models

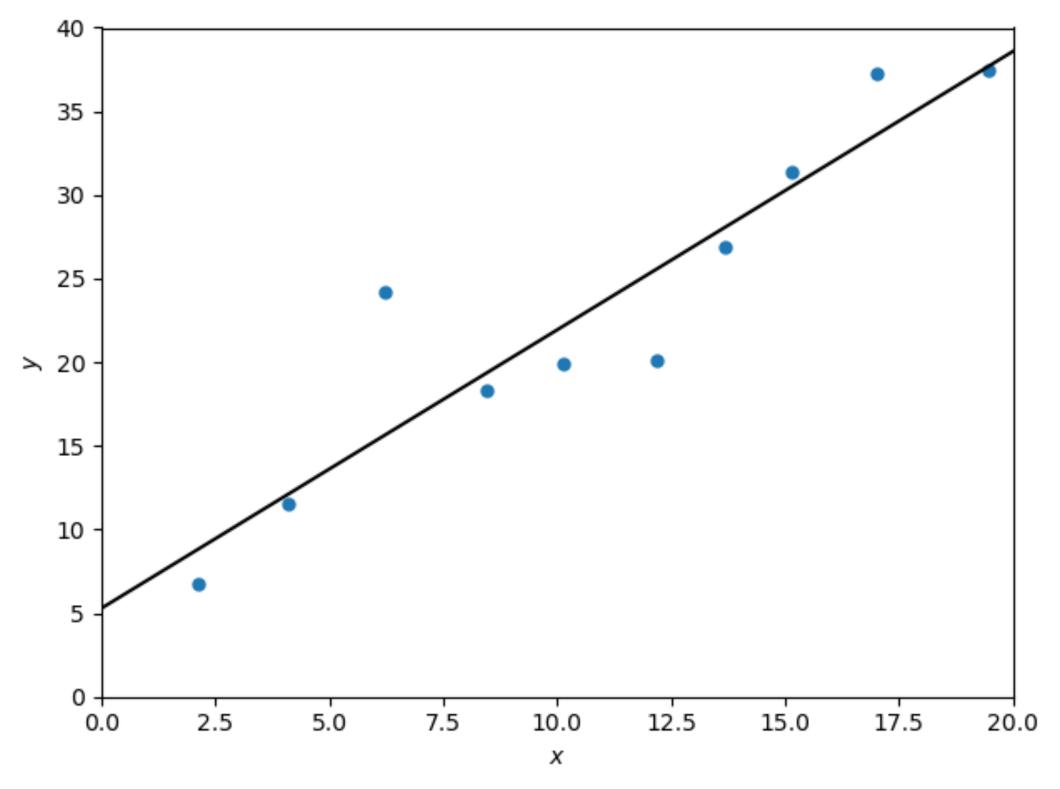
- We want to predict some value y, e.g. auto accident next year
- We have many known indicators for y (covariates) $x = x_1, \dots, x_n$
 - ► E.g., age, income, education, zip code, ...
 - Learn $p(y | x_1, ..., x_n)$ but cannot represent / estimate $O(2^n)$ values
- Naïve Bayes
 - Estimate prior distribution $\hat{p}(y)$
 - Assume $p(x_1, ..., x_n | y) = \prod_i p(x_i | y)$, estimate covariates independently $\hat{p}(x_i | y)$

Model:
$$\hat{p}(y|x) \propto \hat{p}(y) \prod_{i} \hat{p}(x_i|y)$$



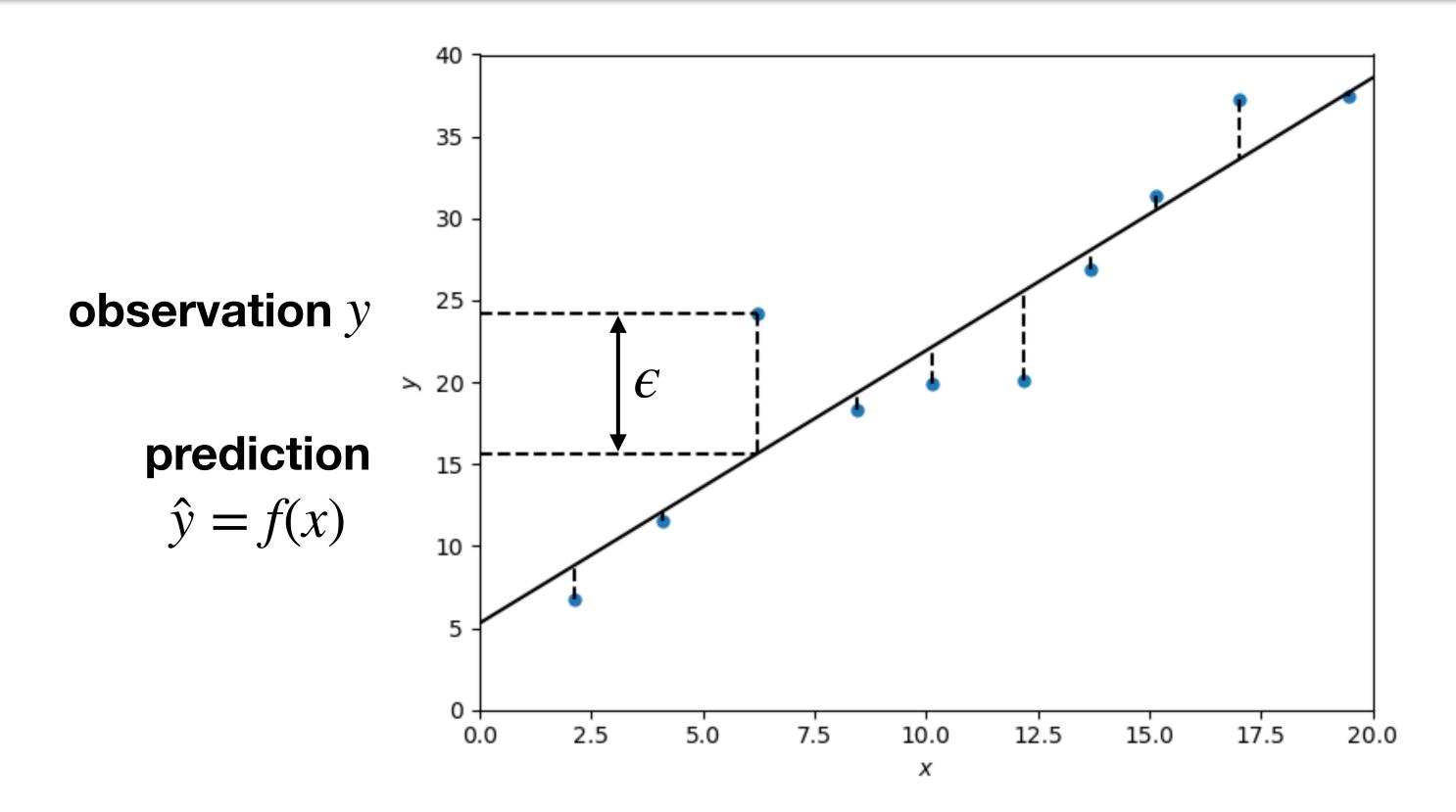
causal structure wrong! (but useful...)

Linear regression



- Decision function $f: x \mapsto y$ is linear, $f(x) = \theta_0 + \theta_1 x$
- f is stored by its parameters $\theta = \begin{bmatrix} \theta_0 & \theta_1 \end{bmatrix}$

Measuring error



• Error / residual: $\epsilon = y - \hat{y}$

• Mean square error (MSE):
$$\frac{1}{m} \sum_{j} (\epsilon^{(j)})^2 = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}^{(j)})^2$$

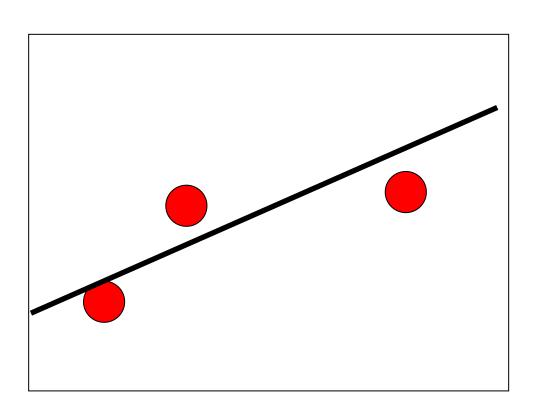
Least Squares

The minimum is achieved when the gradient is 0

$$\nabla_{\theta} \mathcal{L}_{\theta} = -\frac{2}{m} (y - \theta^{\dagger} X) X^{\dagger} = 0$$

$$\theta^{\dagger} X X^{\dagger} = y X^{\dagger}$$

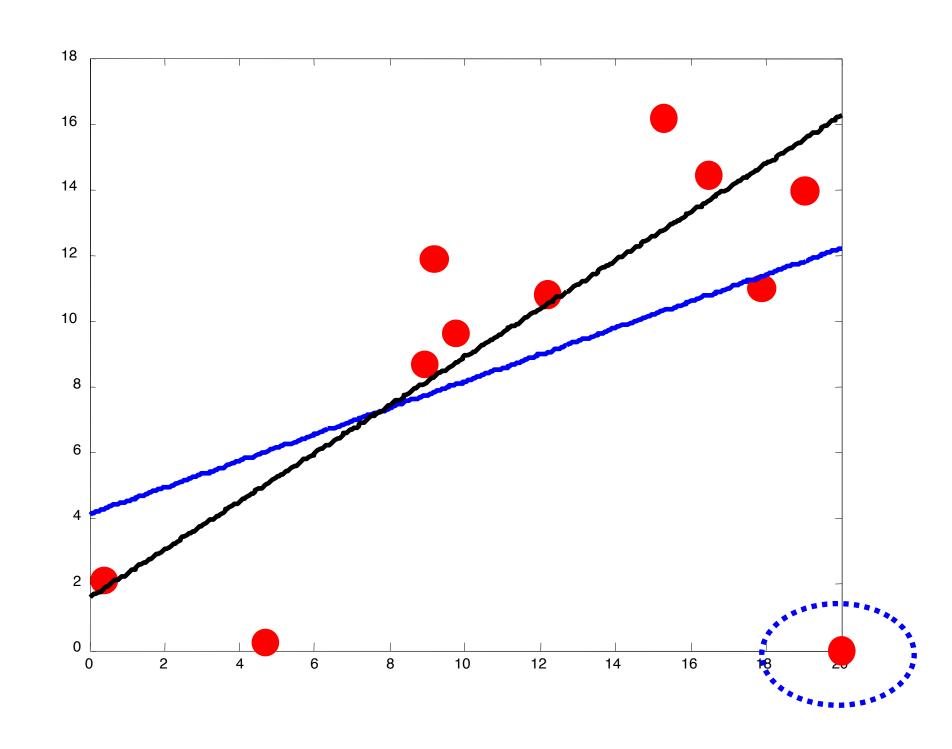
$$\theta^{\dagger} = y X^{\dagger} (X X^{\dagger})^{-1}$$

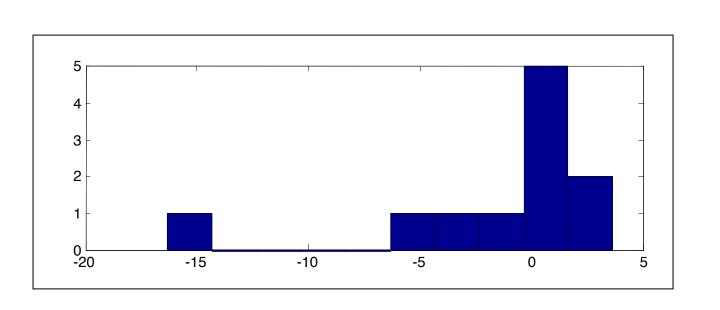


- XX^{T} is invertible when X has linearly independent rows = features
- $X^{\dagger} = X^{\intercal}(XX^{\intercal})^{-1}$ is the Moore-Penrose pseudo-inverse of X
 - $X^{\dagger} = X^{-1}$ when the inverse exists
 - Can define X^\dagger via Singular Value Decomposition (SVD) when XX^\intercal isn't invertible
- $\theta^{\dagger} = yX^{\dagger}$ is the Least Squares fit of the data (X,y)

MSE and outliers

MSE is sensitive to outliers





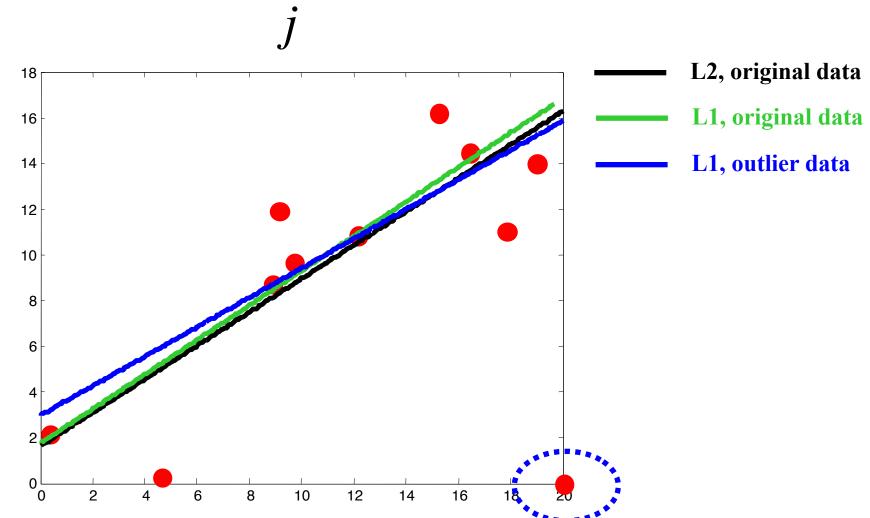
• Square error $\approx 16^2$ throws off entire optimization

Mean Absolute Error (MAE)

MSE uses the L_2 norm of the error $\|y - \theta^\intercal X\|_2^2 = \sum_j (y - \theta^\intercal X)^2$

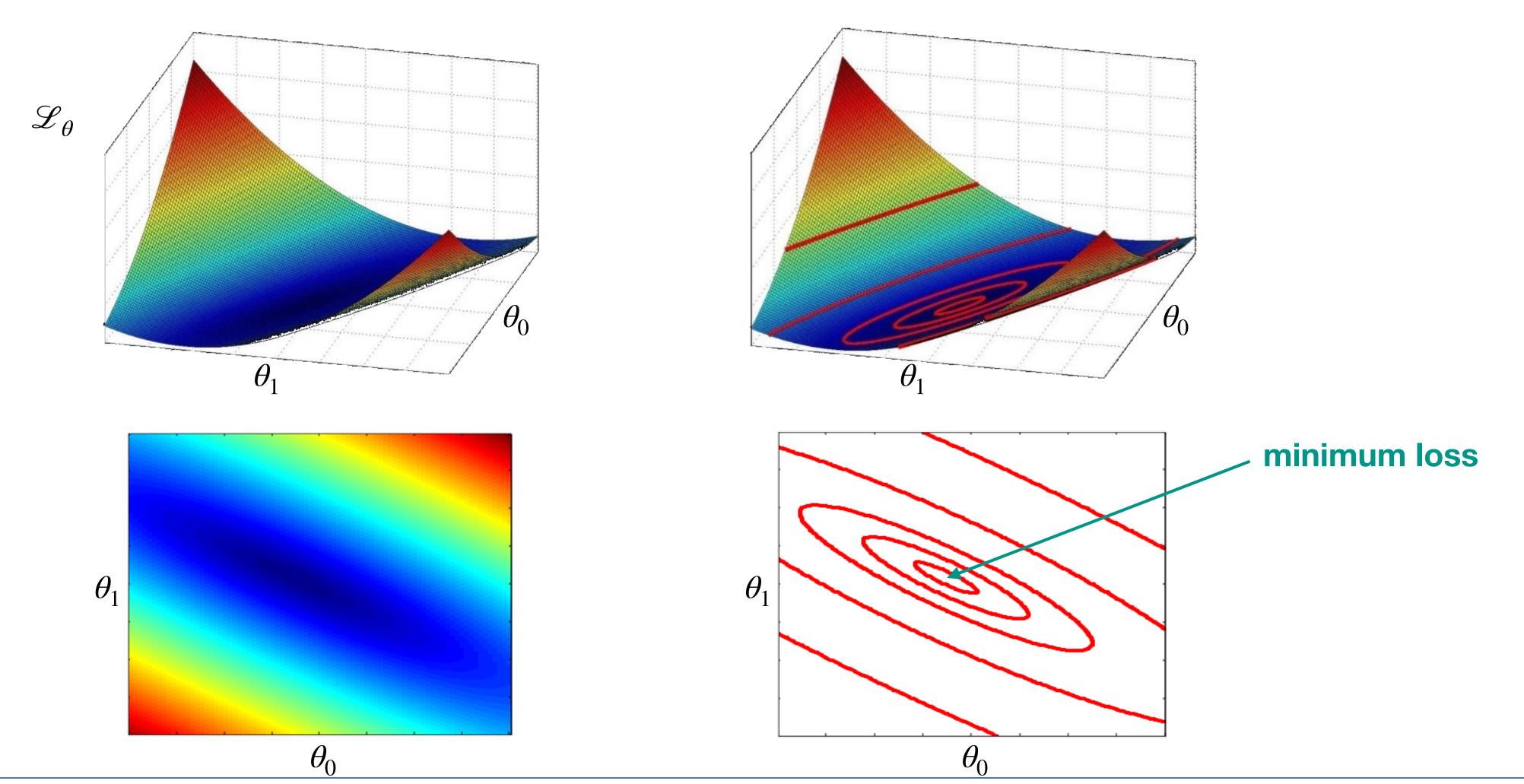
What if we use the
$$L_1$$
 norm $\|y-\theta^\intercal X\|_1=\sum_j \|y-\theta^\intercal X\|_2$?

Mean Absolute Error (MAE):
$$\frac{1}{m} \sum_{m} |y - \theta^{\dagger}X|$$



Loss landscape

•
$$\mathscr{L}_{\theta}(\mathscr{D}) = \frac{1}{m}(y - \theta^{\intercal}X)(y - \theta^{\intercal}X)^{\intercal} = \frac{1}{m}(\theta^{\intercal}XX^{\intercal}\theta - 2yX^{\intercal}\theta + yy^{\intercal})$$
 quadratic!

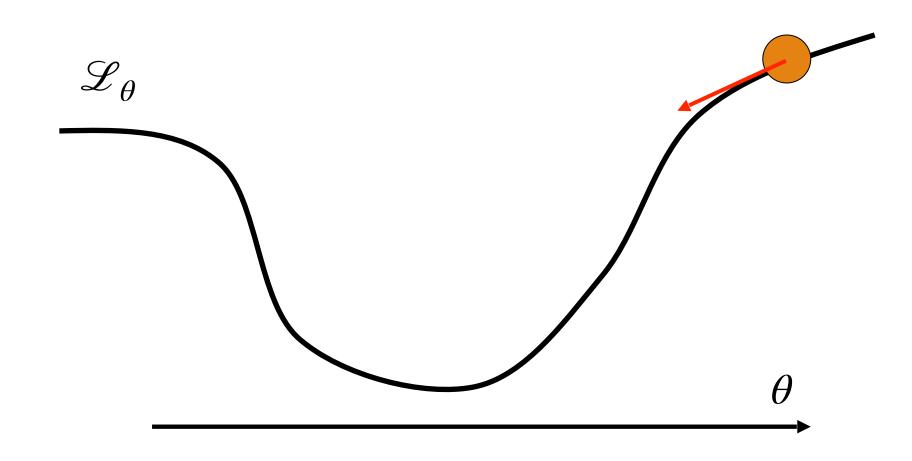


Gradient descent

- How to vary $\theta \in \mathbb{R}^{n+1}$ to improve the loss \mathcal{L}_{θ} ?
 - Find a direction in parameter space in which \mathcal{L}_{θ} is decreasing

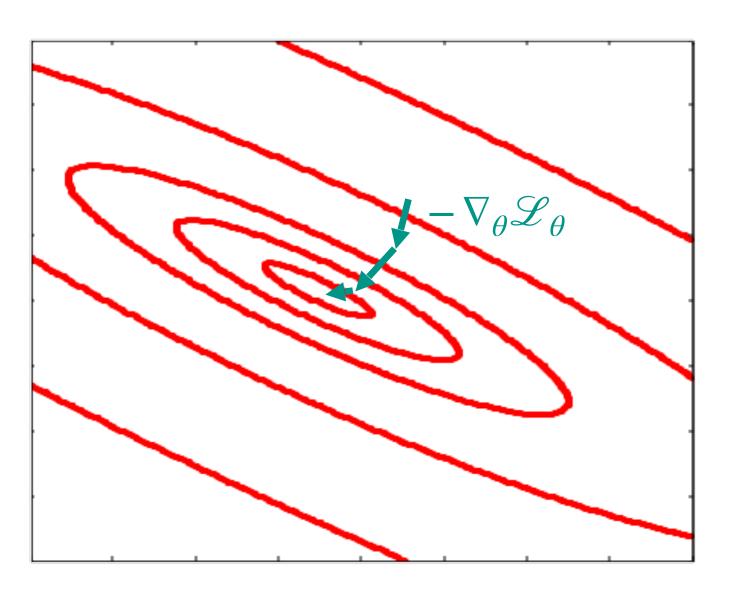
. Derivative
$$\partial_{\theta} \mathcal{L}_{\theta} = \lim_{\delta\theta \to 0} \frac{\mathcal{L}_{\theta + \delta\theta} - \mathcal{L}_{\theta}}{\delta\theta}$$

- Positive = loss increases with θ
- Negative = loss decreases with θ



Gradient descent in higher dimension

- Gradient vector: $\nabla_{\theta} \mathcal{L}_{\theta} = \left[\partial_{\theta_0} \mathcal{L}_{\theta} \quad \cdots \quad \partial_{\theta_n} \mathcal{L}_{\theta} \right]$
- Taylor expansion: $\mathcal{L}(\theta + \delta\theta) = \mathcal{L}(\theta) + (\delta\theta)^{\mathsf{T}} \nabla_{\theta} \mathcal{L}_{\theta} + o(\|\delta\theta\|^2)$
 - If we take a small step $\delta \theta$, the best one is in direction $\nabla_{\theta} \mathscr{L}_{\theta}$
 - Gradient = direction of steepest ascent (negative = steepest descent)



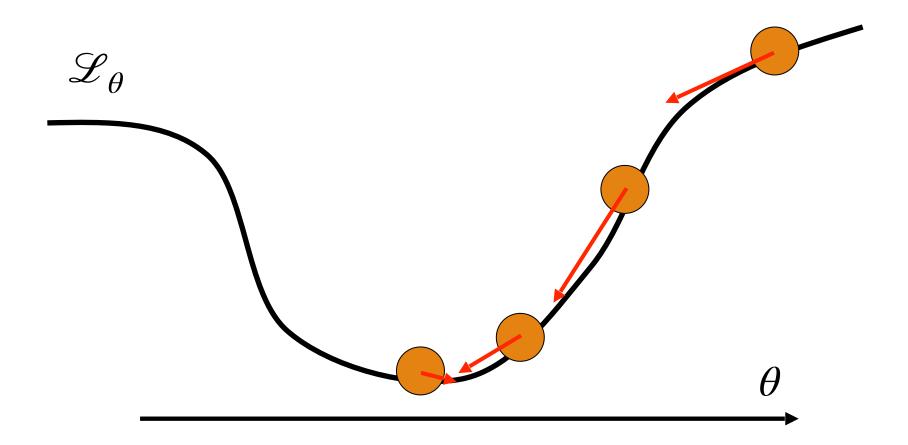
Gradient Descent

- Initialize θ
- Do

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\theta}$$

• While $\|\alpha \nabla_{\theta} \mathcal{L}_{\theta}\| \leq \epsilon$

- Learning rate: α
 - Can change in each iteration



Stochastic / Online Gradient Descent

- Estimate $\nabla_{\theta} \mathcal{L}_{\theta}$ fast on a sample of data points
- For each data point:

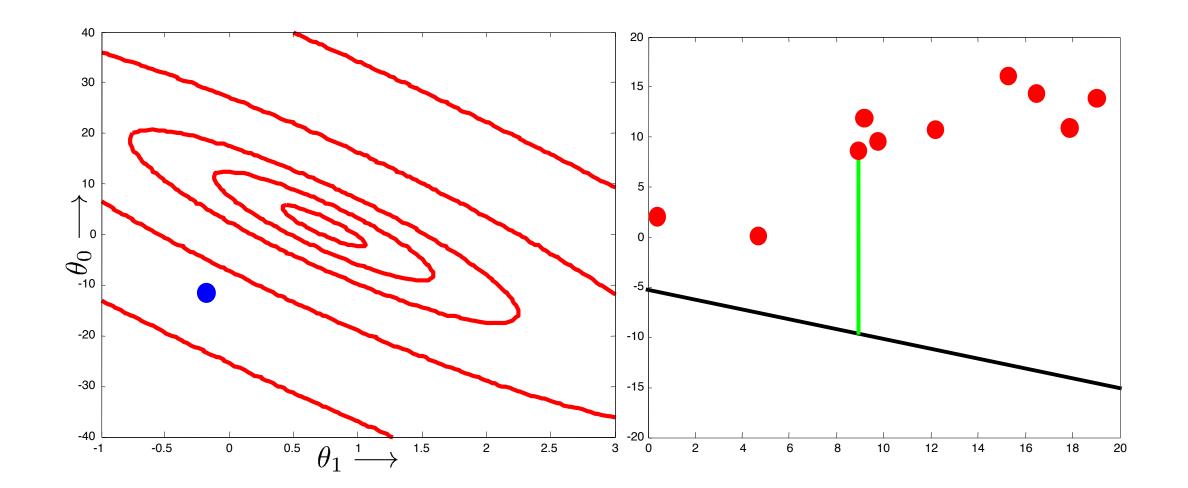
$$\nabla_{\theta} \mathcal{L}_{\theta}(x^{(j)}, y^{(j)}) = \nabla_{\theta}(y^{(j)} - \theta^{\dagger} x^{(j)})^2 = -2(y^{(j)} - \theta^{\dagger} x^{(j)})(x^{(j)})^{\dagger}$$

• This is an unbiased estimator of the gradient, i.e. in expectation

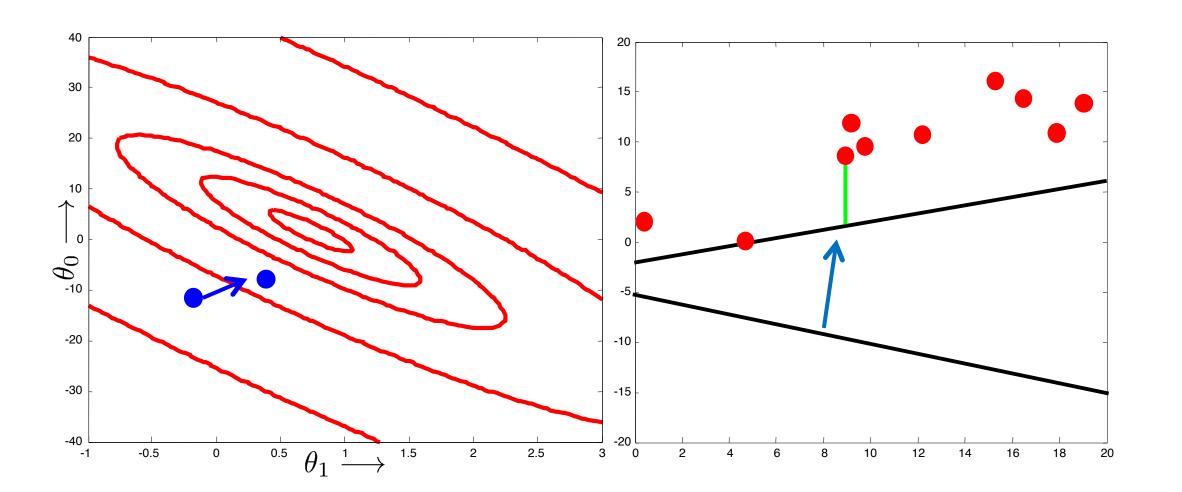
$$\mathbb{E}_{j \sim \text{Uniform}(1,...,m)} \left[\nabla_{\theta} \mathcal{L}_{\theta}^{(j)} \right] = \frac{1}{m} \sum_{j} \nabla_{\theta} \mathcal{L}_{\theta}^{(j)} = \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$$

- $\nabla_{\theta}\mathscr{L}_{\theta}(\mathscr{D})$ is already a noisy unbiased estimator of true gradient $\mathbb{E}_{x,y\sim p}[\ \nabla_{\theta}\mathscr{L}_{\theta}(x,y)]$
 - SGD is even more noisy

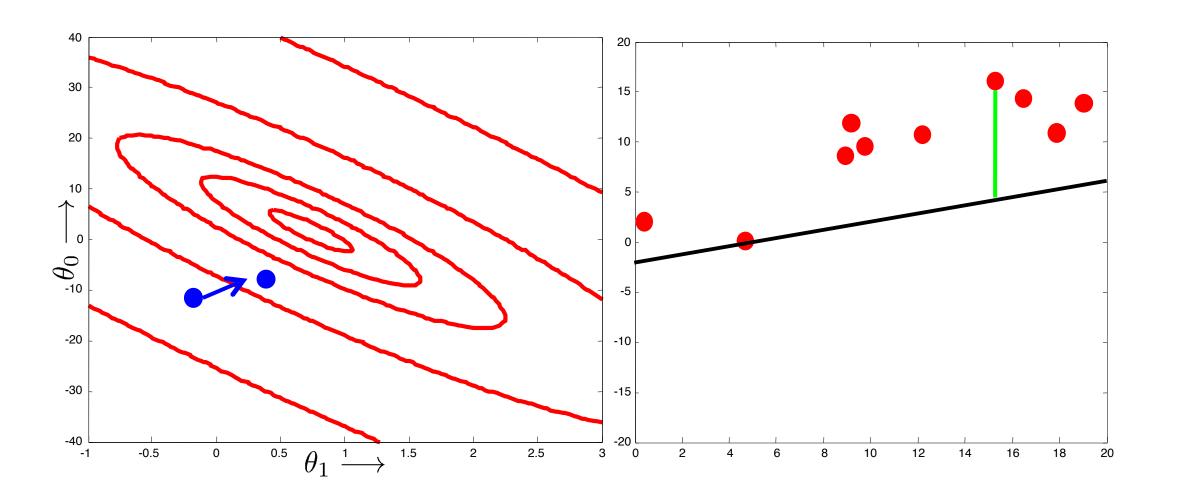
- Initialize θ
- Repeat:
 - ► Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$



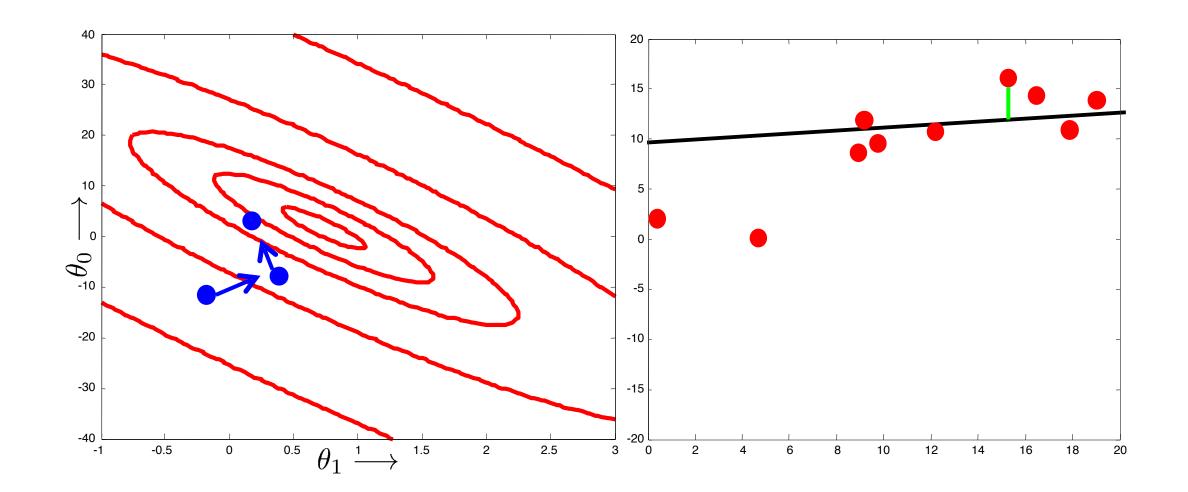
- Initialize θ
- Repeat:
 - ► Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$



- Initialize θ
- Repeat:
 - ► Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$

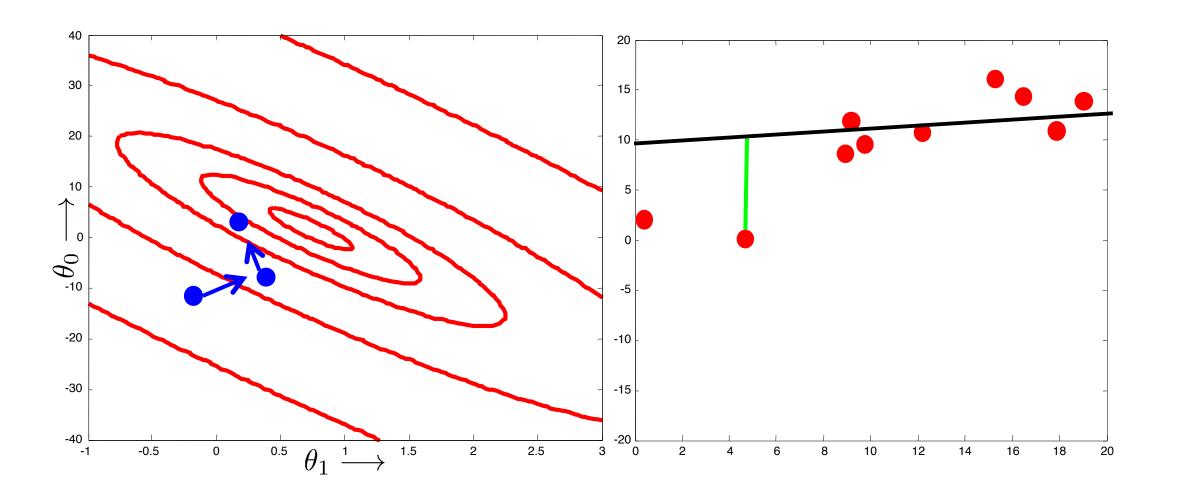


- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$



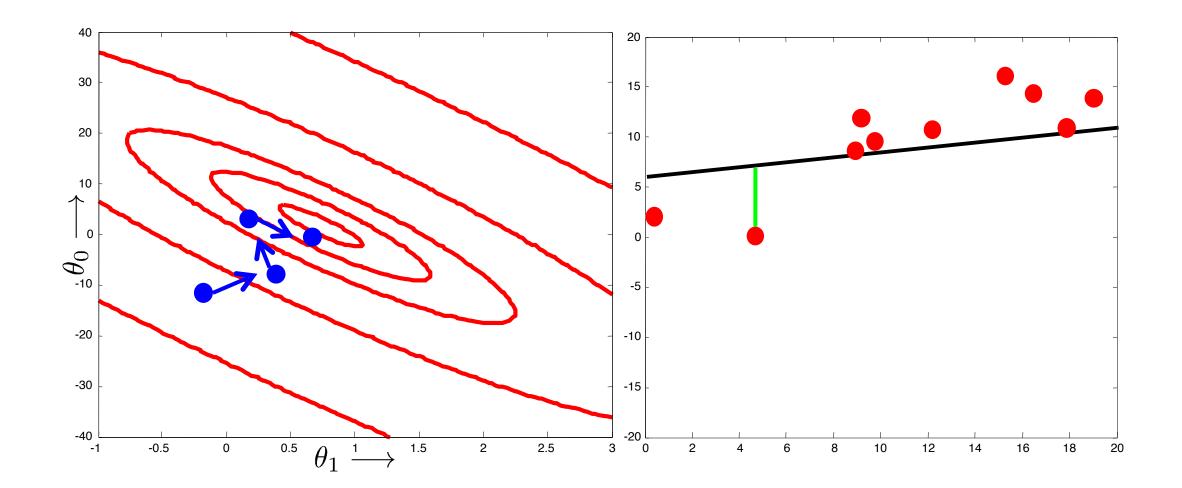
Stochastic Gradient Descent

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$



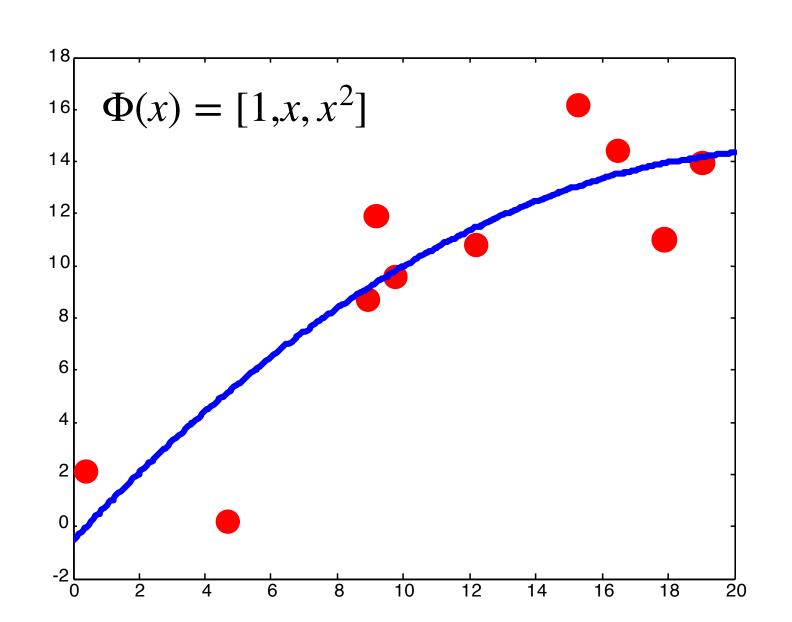
Stochastic Gradient Descent

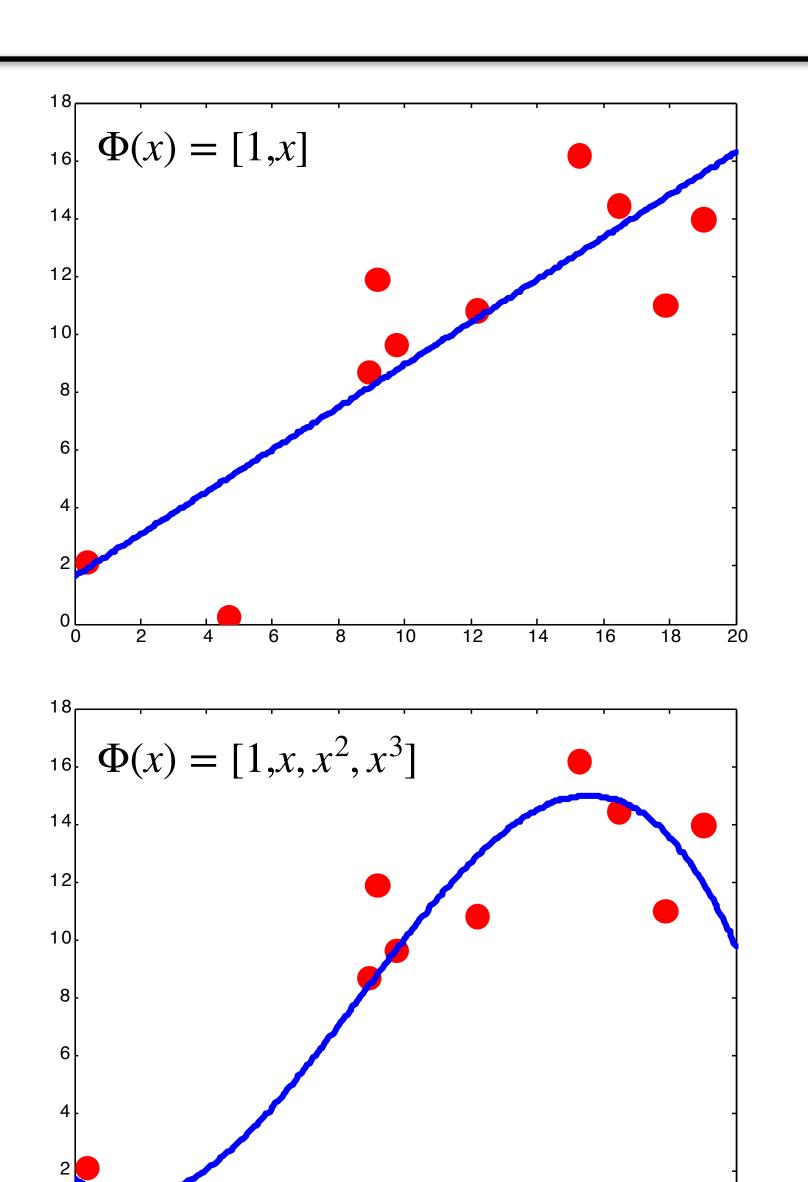
- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$



Polynomial regression

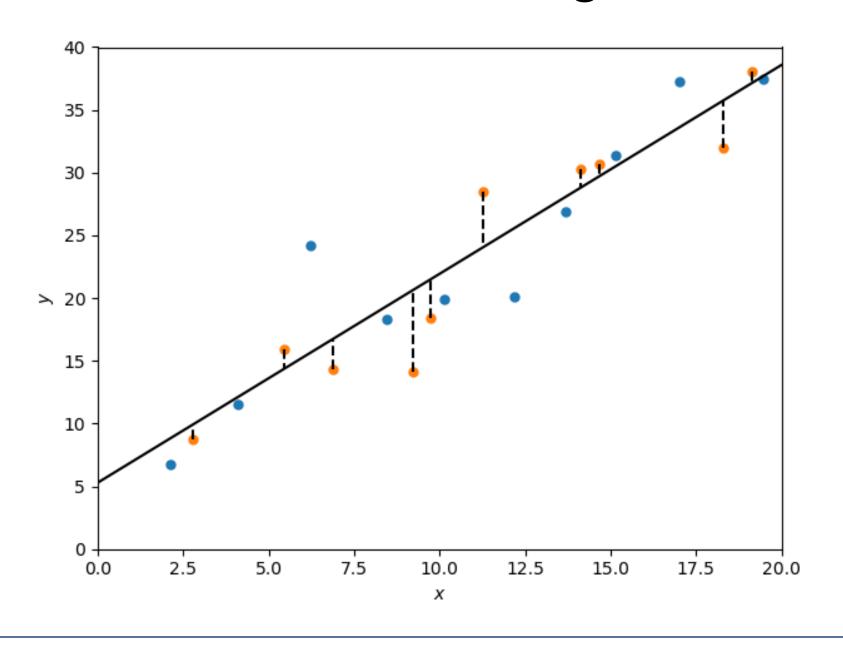
- Fit the same way as linear regression
 - With more features $\Phi(x)$

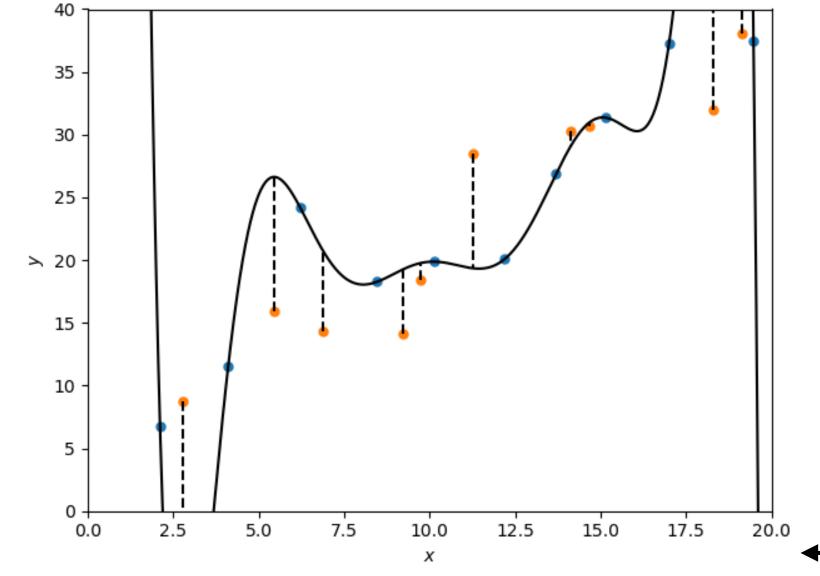


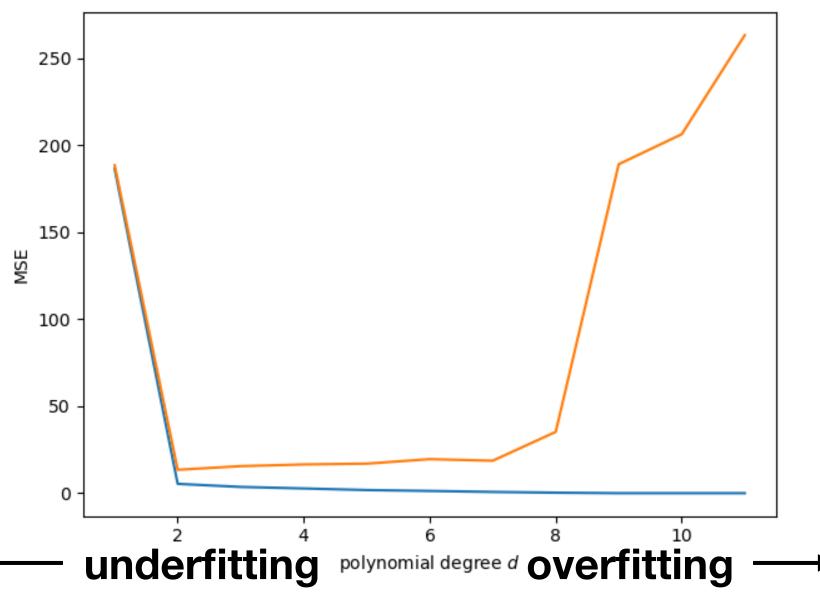


How many features to add?

- The more features we add, the more complex the model class
- Learning can always fall back to simpler model with $\theta_4=\theta_5=\cdots=0$
- But generally it won't, it will overfit
 - Better training data fit, worse test data fit





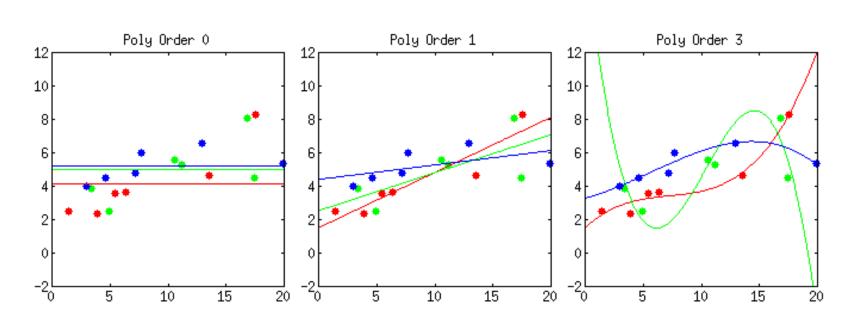


Bias-variance tradeoff

- For given test (x, y)
 - Expected MSE over datasets decomposes into bias and variance:

$$\mathbb{E}_{\mathscr{D}}[(y - \hat{y}_{\theta(\mathscr{D})}(x))^{2}] = (\mathbb{E}_{\mathscr{D}}[\hat{y}] - y)^{2} = (\text{bias}_{\mathscr{D}}[\hat{y}])^{2} + \mathbb{E}_{\mathscr{D}}[(\hat{y} - \mathbb{E}_{\mathscr{D}}[\hat{y}])^{2}] + \text{var}_{\mathscr{D}}[\hat{y}]$$

- Both components contribute equally to the quality of our algorithm
 - We can generally improve one at the expense of the other
 - Bias generally decreases with complexity
 - Variance generally increases with complexity



L_2 regularization

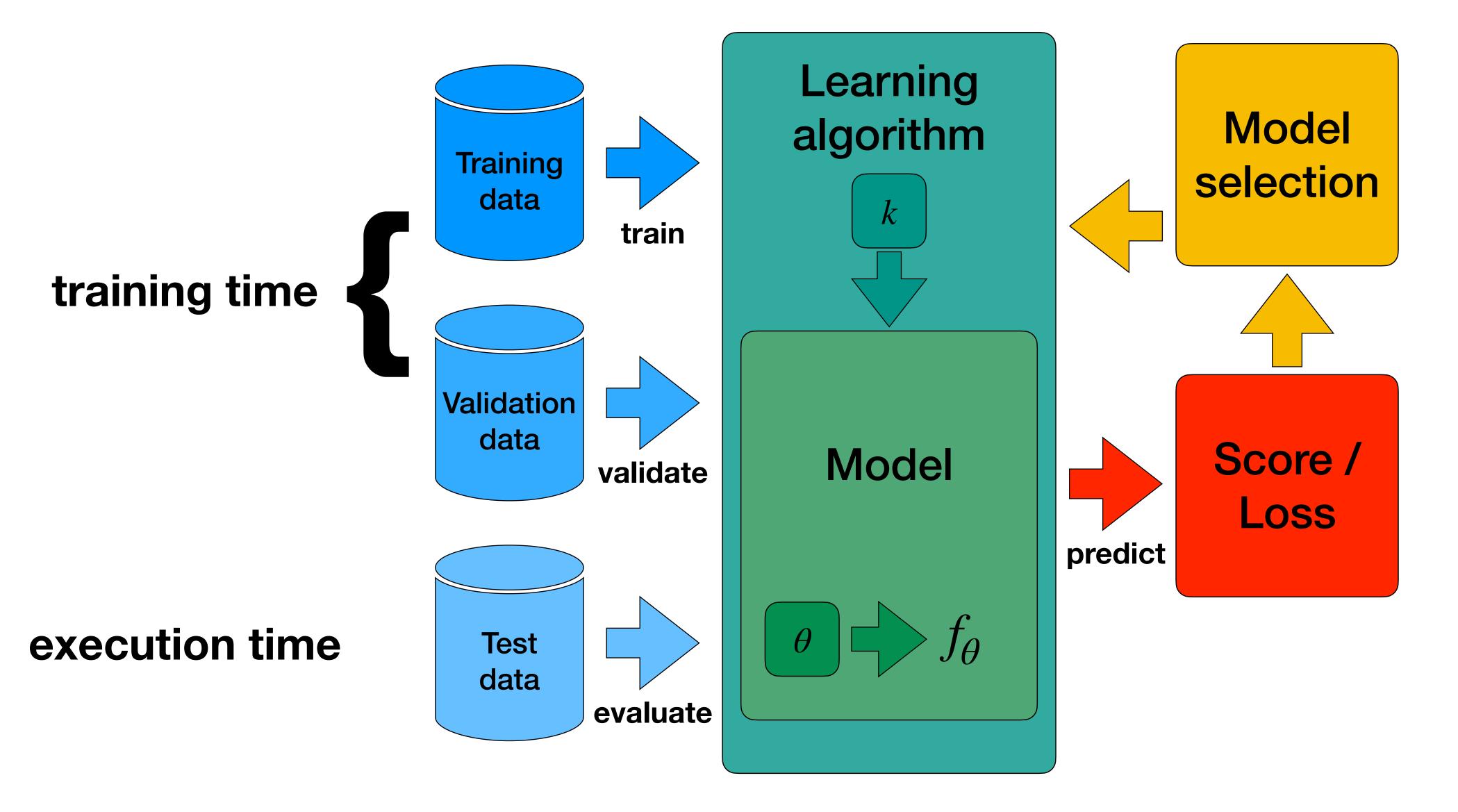
- Modify the loss function by adding a regularization term
- L_2 regularization (ridge regression) for MSE: $\mathcal{L}_{\theta} = \frac{1}{2}(\|y \theta^{\intercal}X\|^2 + \alpha\|\theta\|^2)$
- Optimally: $\theta^{\intercal} = yX^{\intercal}(XX^{\intercal} + \alpha I)^{-1}$
 - αI moves XX^{T} away from singularity \rightarrow inverse exists, better "conditioned"
 - Shrinks θ towards 0 (as expected)
 - At the expense of training MSE
 - Regularization term $\alpha \|\theta\|^2$ independent of data = prior?

Regularization: L_1 vs. L_2

- $oldsymbol{ heta}$ estimate balances training loss and regularization
- Lasso (L_1) tends to generate sparser solutions than ridge (L_2) regularizer

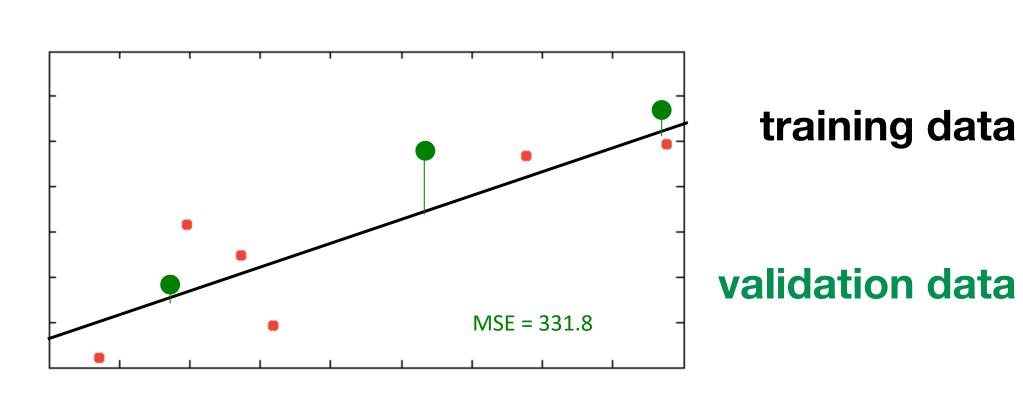


Model selection



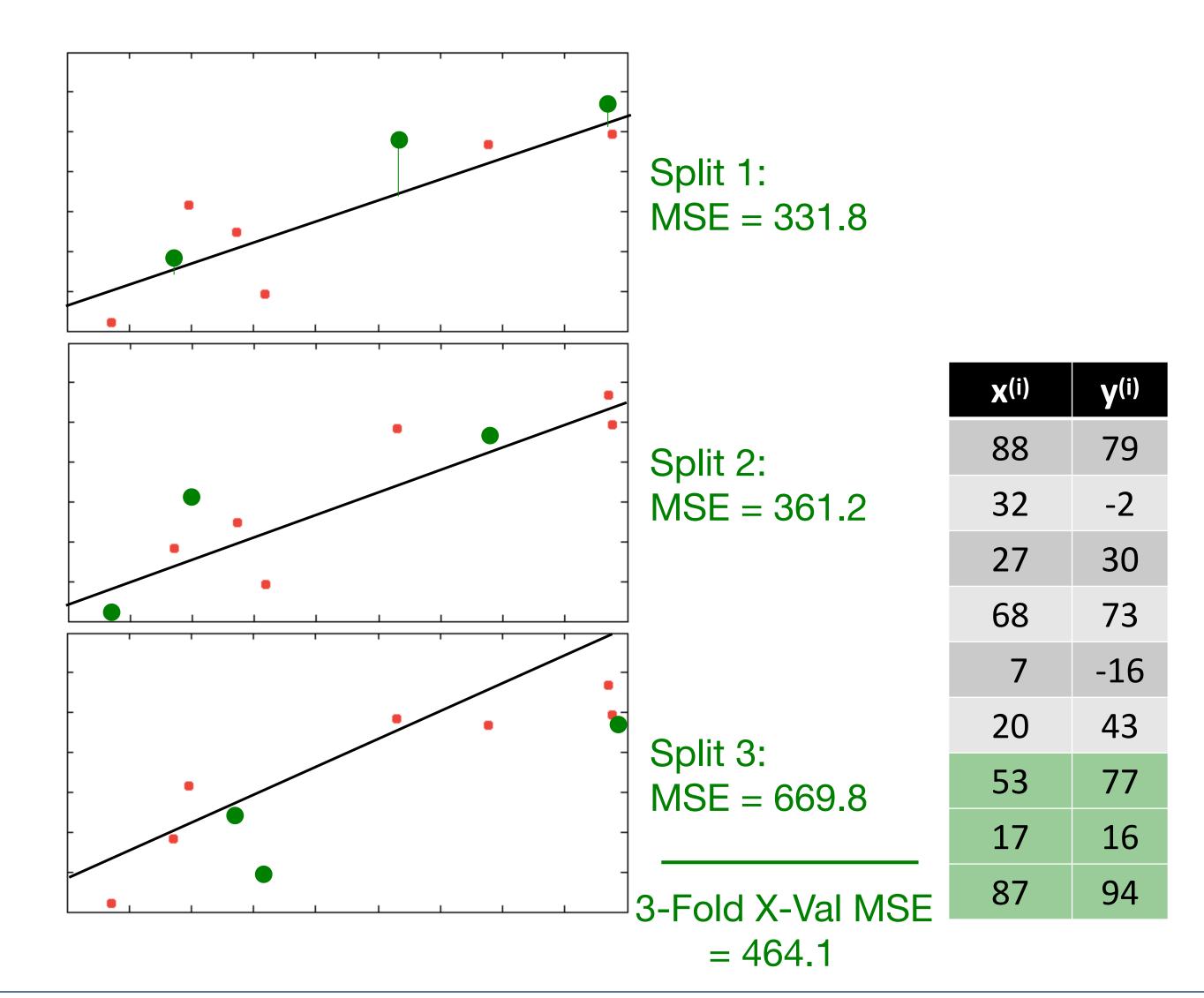
Hold-out method

- Hold out some data for validation; e.g., random 30% of the data
 - Don't just sample training + validation with repetitions they must be disjoint
- How to split?
 - ▶ Too few training data points \rightarrow poor training, bad θ
 - ► Too few validation data points → poor validation, bad loss estimate
- Can we use more splits?



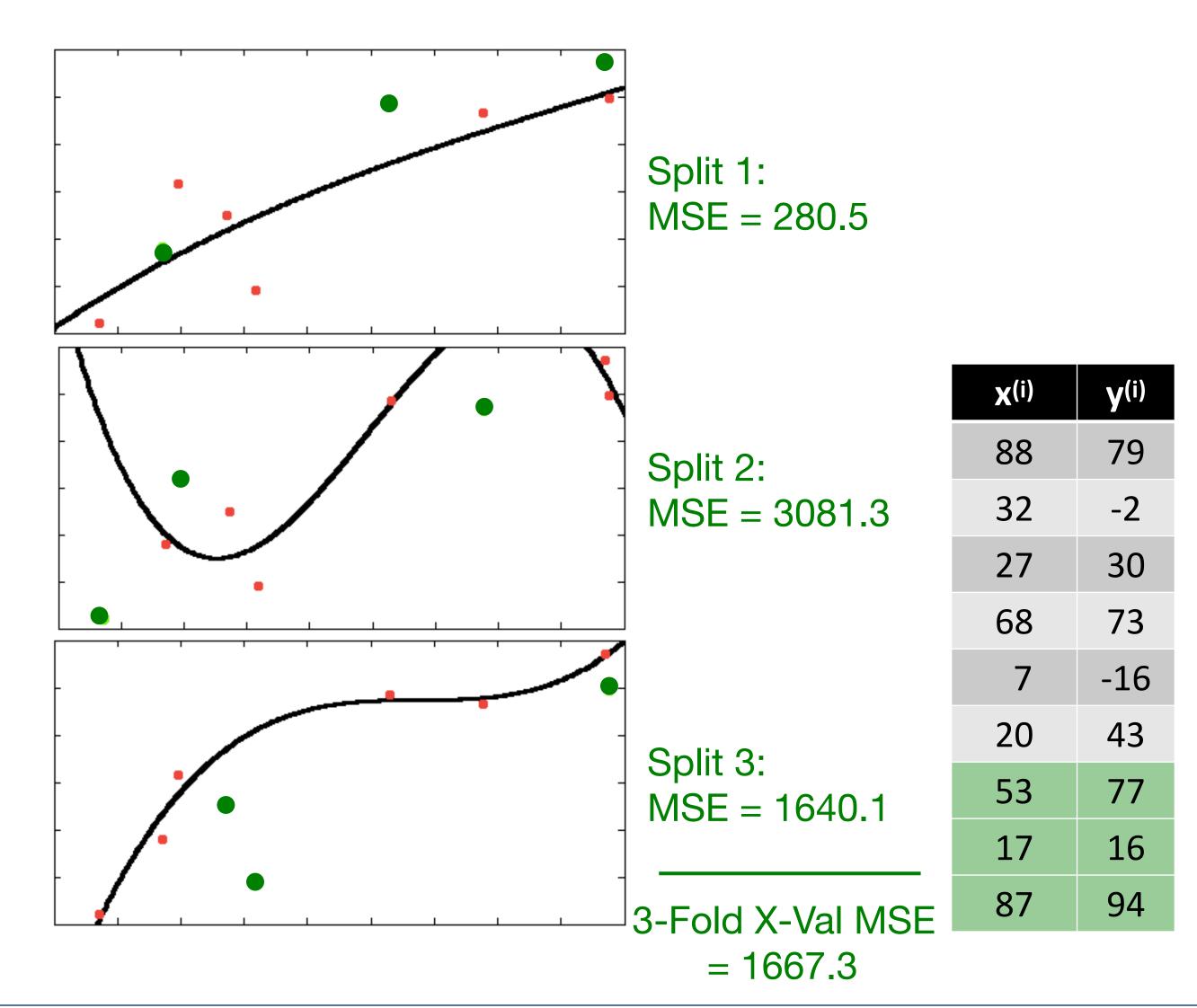
k-fold cross-validation method

- Benefits:
 - Use all data for validation
 - Use all data to train final model

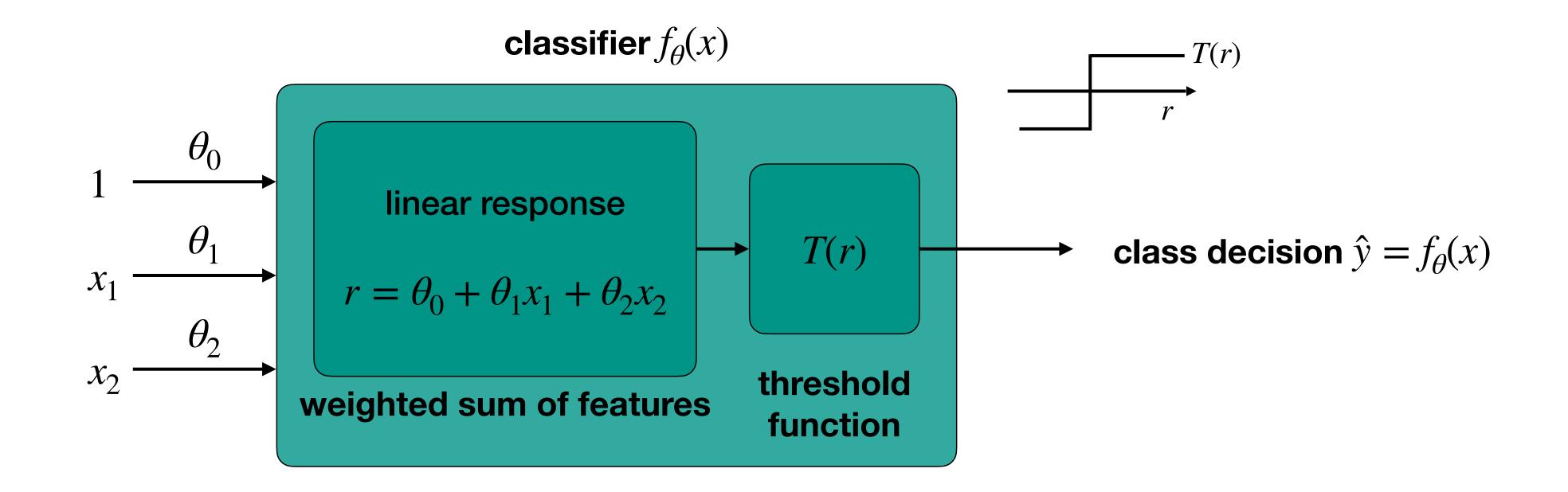


k-fold cross-validation method

- Benefits:
 - Use all data for validation
 - Use all data to train final model
- Drawbacks:
 - ► Trains k (+1) models
 - Each model still gets noisy validation from $\frac{m}{k}$ data points
 - No validation for the final model
- When k = m: Leave-One-Out (LOO)



Perceptron

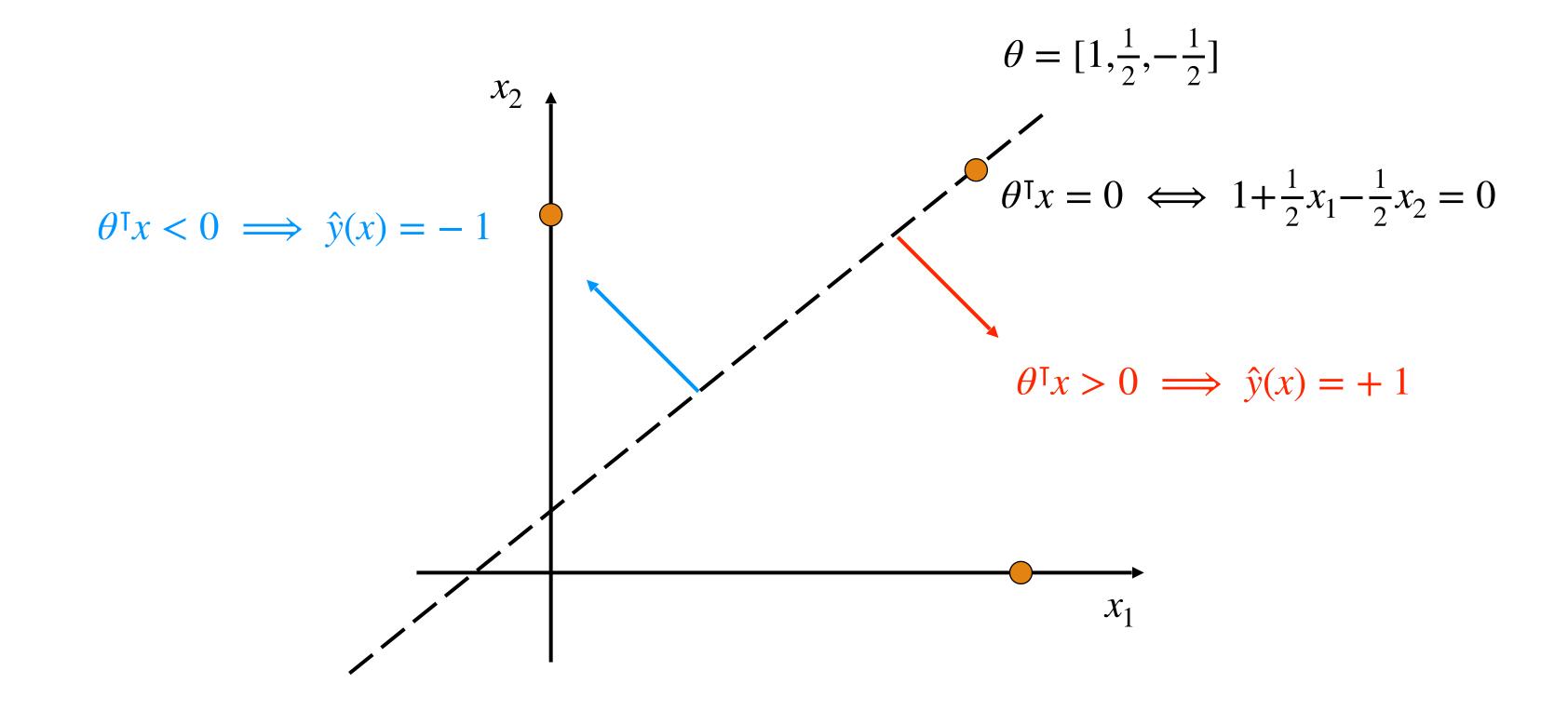


```
r = theta.T @ X  # compute linear response

y_hat = (r > 0)  # predict class 1 vs. 0

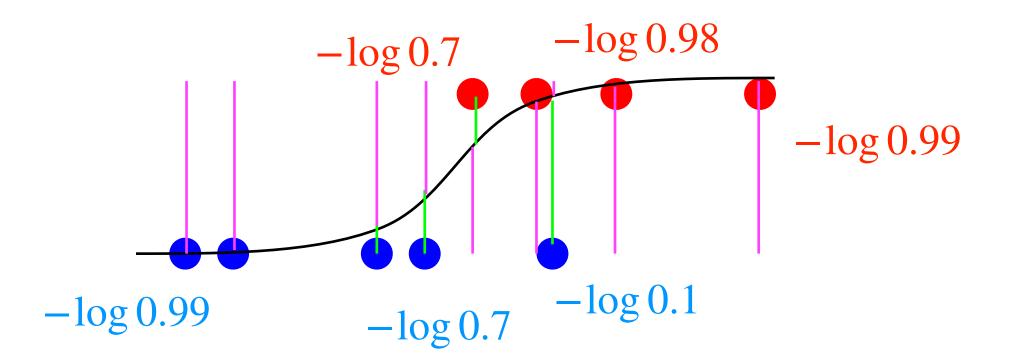
y_hat = 2*(r > 0) - 1 # predict class 1 vs. -1
```

Example



Logistic Regression

- Can we turn a linear response into a probability? Sigmoid! $\sigma: \mathbb{R} \to [0,1]$
- Think of $\sigma(\theta^{\mathsf{T}}x) = p_{\theta}(y = 1 \mid x)$
- Negative Log-Likelihood (NLL) loss:



Logistic Regression: gradient

• Logistic NLL loss: $\mathcal{L}_{\theta}(x, y) = -y \log \sigma(\theta^{\mathsf{T}} x) - (1 - y) \log(1 - \sigma(\theta^{\mathsf{T}} x))$

$$-\nabla_{\theta} \mathcal{L}_{\theta}(x, y) = \left(y \frac{\sigma'(\theta^{\dagger} x)}{\sigma(\theta^{\dagger} x)} - (1 - y) \frac{\sigma'(\theta^{\dagger} x)}{1 - \sigma(\theta^{\dagger} x)}\right) x$$

Gradient:

$$= (y (1 - \sigma(\theta^{\mathsf{T}} x)) - (1 - y)\sigma(\theta^{\mathsf{T}} x))x$$
 error for $y = 1$ error for $y = 0$

$$= (y - p_{\theta}(y = 1 | x))x$$

but update toward -x

• Compare:

 $\sigma(r)$

Multi-class linear models

More generally: add features — can even depend on y!

$$f_{\theta}(x) = \arg\max_{y} \theta^{\mathsf{T}} \Phi(x, y)$$

- Example: $y \in \{1, 2, ..., C\}$
 - $\Phi(x, y) = [0 \ 0 \ \cdots \ x \ \cdots \ 0] = \text{one-hot}(y) \otimes x$
 - $\bullet \ \theta = [\theta_1 \ \cdots \ \theta_C]$

$$\Longrightarrow f_{\theta}(x) = \arg\max_{c} \theta_{c}^{\mathsf{T}} x \longleftarrow \operatorname{largest linear response}$$

Multi-class perceptron algorithm

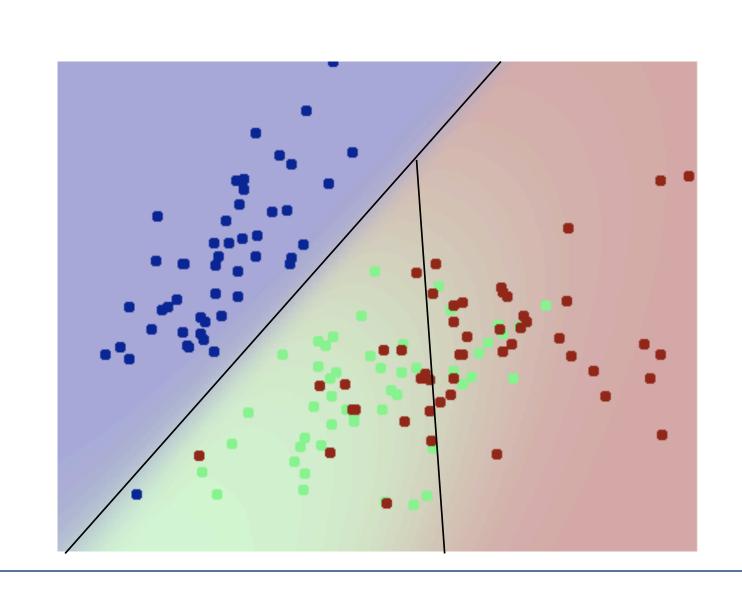
- While not done:
 - For each data point $(x, y) \in \mathcal{D}$:
 - Predict: $\hat{y} = \arg \max_{c} \theta_{c}^{\mathsf{T}} x$
 - Increase response for true class: $\theta_y \leftarrow \theta_y + \alpha x$
 - Decrease response for predicted class: $\theta_{\hat{y}} \leftarrow \theta_{\hat{y}} \alpha x$
- More generally:
 - Predict: $\hat{y} = \arg \max_{y} \theta^{T} \Phi(x, y)$
 - Update: $\theta \leftarrow \theta + \alpha(\Phi(x, y) \Phi(x, \hat{y}))$

Multilogit Regression

Define multi-class probabilities:
$$p_{\theta}(y \mid x) = \frac{\exp(\theta_y^\intercal x)}{\sum_{c} \exp(\theta_c^\intercal x)} = \underbrace{\operatorname{soft} \max_{c} \theta_c^\intercal x}_{\text{logit" for } c}$$

$$p_{\theta}(y=1\,|\,x) = \frac{\exp(\theta_1^\intercal x)}{\exp(\theta_1^\intercal x) + \exp(\theta_2^\intercal x)}$$
 For binary y :
$$= \frac{1}{1 + \exp((\theta_2 - \theta_1)^\intercal x)} = \sigma((\theta_1 - \theta_2)^\intercal x)$$

- Benefits:
 - Probabilistic predictions: knows its confidence
 - Linear decision boundary: $\underset{y}{\operatorname{arg max}} \exp(\theta_y^\intercal x) = \underset{y}{\operatorname{arg max}} \theta_y^\intercal x$
 - NLL is convex



Learning Decision Trees

- Start from empty decision tree
- Split on max-info-gain feature x_i
 - $\arg\max_{i} \mathbb{I}[x_i; y \mid b] = \arg\max_{i} \mathbb{H}[y \mid b] \mathbb{H}[y \mid b, x_i]$
- Repeat for each sub-tree, until:
 - Entropy = 0 (all y are the same)
 - No more features
 - Information gain very small?
- Label leaf with majority y

Entropy reduction

- Select feature that most decreases uncertainty
- Entropy of y in branch b (before the next split):

$$\mathbb{H}[y \mid b] = -\sum_{c} p(y = c \mid b) \log p(y = c \mid b)$$
$$= -\frac{5}{8} \log \frac{5}{8} - \frac{3}{8} \log \frac{3}{8} = 0.66$$

• Entropy after splitting by x_1 :

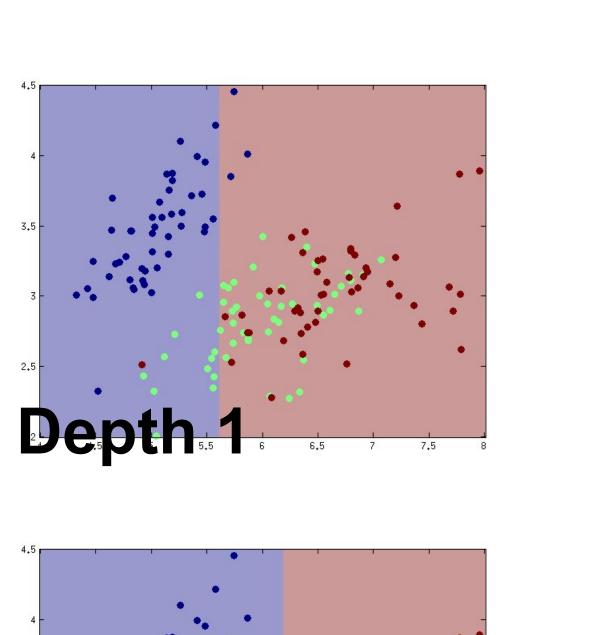
$$\begin{aligned} \mathbb{H}[y \mid b, x_1] &= \mathbb{E}_{x_1 \mid b}[\mathbb{H}[y \mid b, x_1]] = -\sum_{v} p(x_1 = v \mid b) \sum_{c} p(y = c \mid b, x_1 = v) \log p(y = c \mid b, x_1 = v) \\ &= -\frac{4}{8} (\frac{4}{4} \log \frac{4}{4} + \frac{0}{4} \log \frac{0}{4}) - \frac{4}{8} (\frac{1}{4} \log \frac{1}{4} + \frac{3}{4} \log \frac{3}{4}) = 0.28 \end{aligned}$$

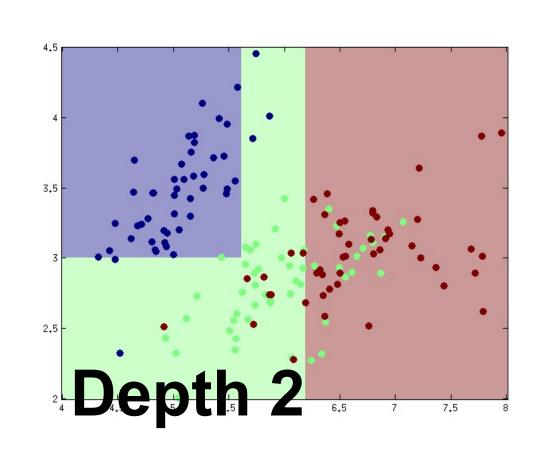
Information gain

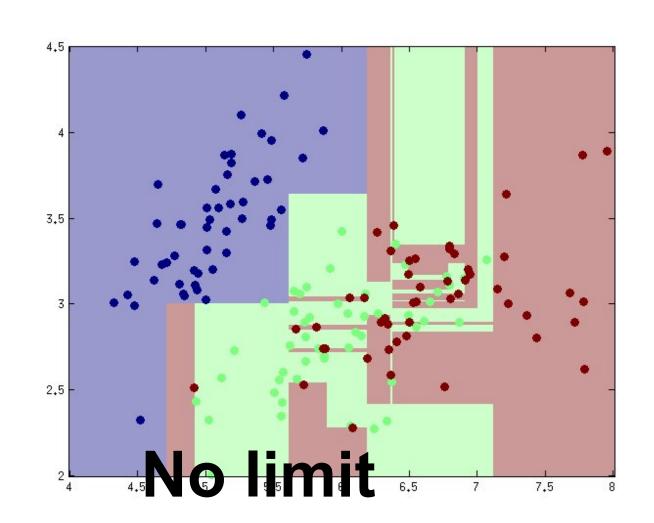
- Information gain = reduction in entropy from conditioning y on x_1
 - The amount of new information that x_1 has on y

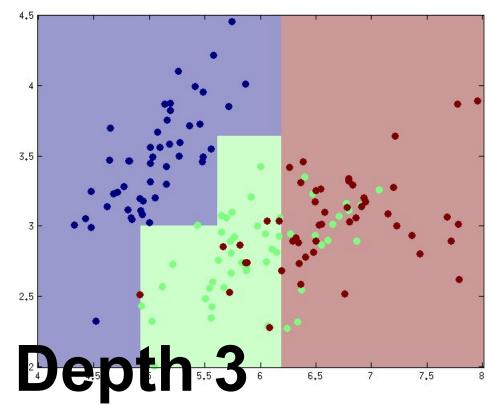
- Information gain is always non-negative
 - By convexity of the entropy

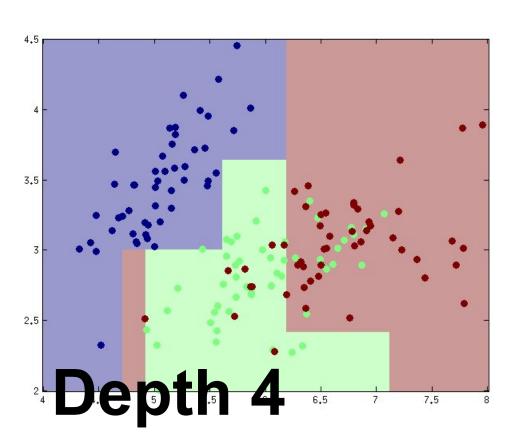
Controlling complexity

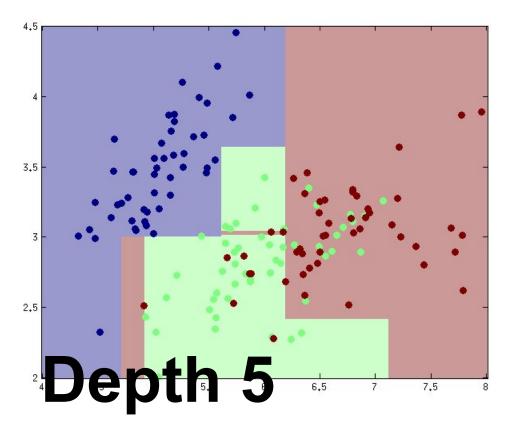












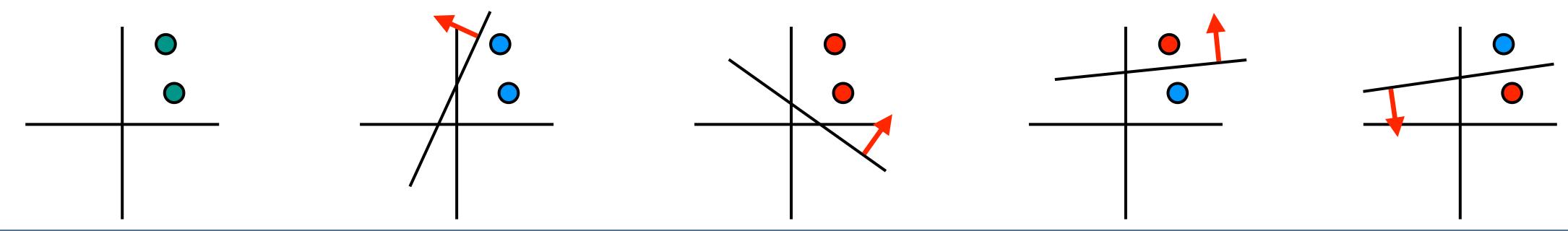
Shattering

- Separability / realizability: there's a model that classifies all points correctly
- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, ..., x^{(h)}$

if for any labeling $y^{(1)}, ..., y^{(h)}$

there exists a model that classifies all of them correctly

• Example: can $f_{\theta}(x) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ shatter these points?

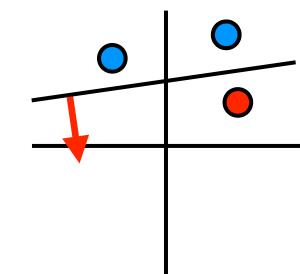


Vapnik-Chervonenkis (VC) dimension

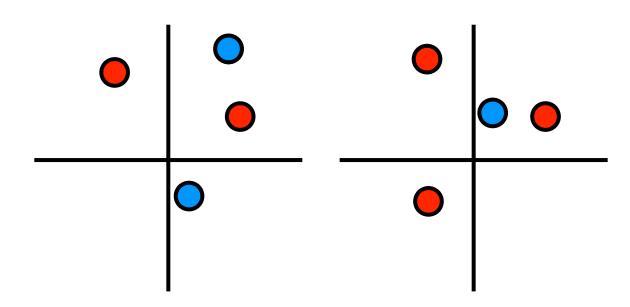
- ullet VC dimension: maximum number H of points that can be shattered by a class
- A game:
 - Fix a model class $f_{\theta}: x \to y \quad \theta \in \Theta$
 - ► Player 1: choose h points $x^{(1)}, ..., x^{(h)}$
 - ► Player 2: choose labels $y^{(1)}, ..., y^{(h)}$
 - Player 1: choose model θ
 - Are all $y^{(j)} = f_{\theta}(x^{(j)})$? \Longrightarrow Player 1 wins $\exists x^{(1)}, ..., x^{(h)} : \forall y^{(1)}, ..., y^{(h)} : \exists \theta : \forall j : y^{(j)} = f_{\theta}(x^{(j)})$
- $h \le H \implies$ Player 1 can win, otherwise cannot win

VC dimension: example (2)

- Example: $f_{\theta}(x) = \operatorname{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - We can place 3 points and shatter them



- If they form a convex shape, alternate labels
- Otherwise, label differently the point in the triangle



- H = 3
- Linear classifiers (perceptrons) of \emph{d} features have VC-dim $\emph{d}+1$
 - But VC-dim is generally not #parameters

Model selection with VC-dim

- Using validation / cross-validation:
 - Estimate loss on held out set
 - Use validation loss to select model

- Using VC dimension:
 - Use generalization bound to select model
 - Structural Risk Minimization (SRM)
 - Bound not tight, much too conservative

