
Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

CS 273A: Machine Learning

Fall 2021

Lecture 12: Support Vector
Machines

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Logistics

• Project abstract due Tue, Nov 16

• Midterm exam on Thu, Nov 4, 11am–12:20 in SH 128

• If you're eligible to be remote — let us know immediately

• Assignment 4 will be published soon, due Fri, Nov 12

project

midterm

assignments

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Multi-Layer Perceptrons

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Linear classifiers

• Perceptron = use hyperplane to partition feature space classes

‣ Soft classifiers (logistic) = sensitive to margin from decision boundary

→

linear response

r = θ0 + θ1x1 + θ2x2

T(r)

weighted sum of features threshold
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

T(r)

r

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Adding features
• If data is non-separable in current feature space

‣ Perhaps it will be separable in higher dimension add more features

‣ E.g., polynomial features: linear classifier polynomial classifier

• Which features to add?

‣ Perhaps outputs of simpler perceptrons?

⟹

→

x1 x1

x2 x2

Linearly separable data Linearly non-separable data

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Combining step functions
• Combinations of step functions allow more complex decision boundaries

• Need to learn:

‣ Thresholds

‣ Weights

a1, a2, a3

w1, w2, w3, w4

F1(x) = T(x − a1)

a1

a2

F2(x) = T(x − a2)

a3

F3(x) = T(x − a3)
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

is piecewise constant

Φ(x) = [F1(x) F2(x) F3(x)]

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Multi-Layer Perceptron (MLP)

x1

1

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

F1

T

F3

T

F2

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

σ
w1

w2

w3

Σ
F(x) = σ(w⊺Φ(x)) = σ(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

σ

σ

σ

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

MLPs: properties

• Simple building blocks

‣ Each unit is a perceptron: linear response non-linear activation

• MLPs are universal approximators:

‣ Can approximate any function arbitrarily well, with enough units

→

w0
w0 + w1

h1
h2
⋮

x0 x1

h1 h2 h3 hℓ

y

⋯

⋯

output

hidden layer

input features

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

“Neural” Networks

• Biologically inspired

• Neurons:

‣ “Simple” cells

‣ Dendrites take input voltage

‣ Cell body “weights” inputs

‣ Axons “fire” voltage

‣ Synapses connect to other cells

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply

‣ Deep architectures are subject of much current research

input
features

layer 2layer 1

⋯

layer 3 ⋯

r1 = w[0].T @ x + b[0] # linear response

h1 = sig(r1) # activation function

r2 = w[1].T @ h1 + b[1] # linear response

h2 = sig(r2) # activation function

 # ...

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Activation functions

• Logistic

• Hyperbolic tangent

• Gaussian

• Rectified linear (ReLU)

σ(z) =
1

1 + exp(−z)

σ(z) =
1 − exp(−2z)
1 + exp(−2z)

σ(z) = exp(− 1
2 z2)

σ(z) = max(0,z)

σ′￼(z) = σ(z)(1 − σ(z))

σ′￼(z) = 1 − σ2(z)

σ′￼(z) = − zσ(z)

σ′￼(z) = δ[z > 0]

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:

‣ Inputs shallow layers deeper layers outputs

‣ Alternative: recurrent NNs (information loops back)

• Multiple outputs efficiency:

‣ Shared parameters, less data, less computation

• Multi-class classification:

‣ One-hot labels

‣ Multilogistic regression (softmax):

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Training MLPs

• Observe instance , target

• Feed forward through NN = prediction

• Loss = (or another loss function)

• How should we update the weights?

• Single layer:

‣ Use differentiable activation function, e.g. logistic

‣ (Stochastic) Gradient Descent = logistic regression

x y

x ̂y

ℓw(y, ̂y) = (y − ̂y)2

inputs

hidden layer

outputs

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

• MLPs are function compositions of single layers

‣ Apply chain rule:

• Backpropagation = chain rule + dynamic programming to avoid repetitions

Gradient computation

g(⋯)

h(⋯)

⋯ ℒ(⋯)f(g, h)

inputs

hidden layer

outputs

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ
∂fℒ

example:
 reuse from the forward pass

f(g, h) = σ(g + h) ⟹ ∂g f = f(1 − f)
⟹ f

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Multi-Layer Perceptrons

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Linear classifiers
• Assume separable training data

• Which decision boundary is “better”?

‣ Both have 0 training error, but one seems to generalize better

• Let's quantify this intuition

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Decision margin
• Let's try to maximize the margin = distance of data from boundary

• Logistic regression:

‣ What if we scale ? loss gets better as

‣ Optimum at infinity! but the decision boundary is unchanged...

ℒw,b(x, y) = y log σ(w ⋅ x + b) + (1 − y)log(1 − σ(w ⋅ x + b))

w ⋅ x + b → 10w ⋅ x + 10b ⟹ σ → ± 1

w ⋅ x + b = 0

w ⋅ x + b = 0

w ⋅ x + b > 0 ⟹ f(x) = + 1

w ⋅ x + b < 0 ⟹ f(x) = − 1

scale invariance:
let's choose such thatww ⋅ x + b = + 1

w ⋅ x + b = − 1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Computing the margin

• Basic linear algebra: , with orthogonal to

• Support vectors = and that are closest points to the boundary

• Margin

• Maximizing the margin = minimizing

x = rw + z = w ⋅ x
∥w∥2 w + z z w

x+ x−

w ⋅ x+ + b = + 1
w ⋅ x− + b = − 1
w ⋅ (r+w + z+ + b − r−w − bz− − b) = 2
(r+ − r−)∥w∥2 = 2

= ∥(r+ − r−)w∥ = 2
∥w∥

∥w∥2

w ⋅ x + b = 0

wmargin

w ⋅ x + b = + 1

w ⋅ x + b = − 1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin

•

‣ such that all data points predicted with enough margin:

‣ (constraints)

• Example of Quadratic Program (QP)

‣ Quadratic objective, linear constraints

w* = arg max
w

2
∥w∥ = arg min

w
∥w∥

⟹ s.t. y(j)(w ⋅ x(j) + b) ≥ 1 m
{w ⋅ x(j) + b ≥ + 1 if y(j) = + 1

w ⋅ x(j) + b ≤ − 1 if y(j) = − 1

w ⋅ x + b = + 1

w ⋅ x + b = − 1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Example: one feature
• Suppose we have three data points

‣ ,

‣ ,

‣ ,

• Many separating perceptrons

‣ Separating if and

• Margin constraints:

‣

‣

‣

x = − 3 y = − 1

x = − 1 y = − 1

x = 2 y = + 1

T(ax + b)

a > 0 − b
a ∈ (−1,2)

−3a + b ≤ − 1 ⟹ b ≤ 3a − 1

−1a + b ≤ − 1 ⟹ b ≤ a − 1

+2a + b ≥ + 1 ⟹ b ≥ − 2a + 1

x

b

a

 -3 -1 2

minimize and set to match:

2 constraints are active
 these are the support vectors

|a | b
a = 2

3 b = − 1
3

⟹

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Multi-Layer Perceptrons

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Lagrange method

• Constrained optimization:

• Lagrange method: introduce Lagrange multipliers (one per constraint)

‣ If optimally,

‣ If optimally, this cannot achieve the minimum

‣ If doesn't matter; generally,

‣ Complementary slackness: for optimal , if

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y(j)(w ⋅ x(j) + b) ≤ 0

λj

θ* = arg min
θ

max
λ≥0

f(θ) + ∑
j

λjgj(θ)

gj(θ) < 0 ⟹ λj = 0

gj(θ) > 0 ⟹ λj → ∞ ⟹ θ

gj(θ) = 0 ⟹ λj > 0

θ, λ λj > 0 ⟹ gj(θ) = 0

f(θ) g(θ)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Margin optimization

• Original problem:

• Lagrangian:

• Optimally:

‣ For support vector :

‣ Lagrangian linear in

 for to be finite

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y(j)(w ⋅ x(j) + b) ≤ 0

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y(j)(w ⋅ x(j) + b))

w* = ∑
j

λjy(j)x(j)

j ∈ SV b* = y(j) − w* ⋅ x(j)

b

⟹ ∑
j

λjy(j) = 0 b*

w ⋅ x + b = + 1

w ⋅ x + b = − 1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Primal–dual optimization

• Primal problem:

• Lagrangian:

• Plug in the solution: ; constraint:

‣ Dual problem:

• Another Quadratic Program (QP):

‣ Complicated objective in variables; simple constraints (instead of v.v.)

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y(j)(w ⋅ x(j) + b) ≤ 0

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y(j)(w ⋅ x(j) + b))

w = ∑
j

λjy(j)x(j) ∑
j

λjy(j) = 0

max
λ≥0 ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)x(j) ⋅ x(k)) s.t. ∑
j

λjy(j) = 0

m m + 1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Non-separable problems

• SVM:

• Can't work with non-separable data: constraints violated

• What if we fix ?

• Similar to MAE + regularizer considers all data points (not just margin)

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y(j)(w ⋅ x(j) + b))

⟹ λj → ∞

λj = R

w*, b* = arg min
w,b

1
2 ∥w∥2 − R∑

j

y(j)(w ⋅ x(j) + b)

= arg min
w,b ∑

j

|y(j)M − (w ⋅ x(j) + b) |+ 1
2R ∥w∥2

L2 ⟹
M > |w ⋅ x(j) + b |

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Soft margin
• Only consider points that violate the margin constraint:

‣ = how much is margin constraint violated

• Primal problem:

‣ s.t. (relaxed constraints satisfied)

‣ (only “snug fit” violating points)

ℓhinge(y, ̂y) = max{0,1 − y ̂y}

w*, b* = arg min
w,b

1
2 ∥w∥2 + R∑

j

ℓhinge(y(j), w ⋅ x(j) + b)

ϵ(j) = max{0,1 − y(j)(w ⋅ x(j) + b)}

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ(j)

y(j)(w ⋅ x(j) + b) ≥ 1 − ϵ(j)

ϵ(j) ≥ 0

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Soft margin: dual form

• Primal problem:

‣ s.t. ;

• Dual problem:

‣ Optimally: ; to handle : add constant feature

‣ Support vector = points on or inside margin =

‣ Gram matrix = = similarity of every pair of instances

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ(j)

y(j)(w ⋅ x(j) + b) ≥ 1 − ϵ(j) ϵ(j) ≥ 0

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)x(j) ⋅ x(k)) s.t. ∑
j

λjy(j) = 0

w* = ∑
j

λjy(j)x(j) b x0 = 1

λj > 0

Kjk = x(j) ⋅ x(k)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Multi-Layer Perceptrons

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Adding features
• So far: linear SVMs, not very expressive

‣ add features

• Linearly non-separable:

• Linearly separable in quadratic features:

⟹ x ↦ Φ(x)

x1

x1

x2 = x2
1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Adding features

• Prediction:

• Dual problem:

• Example: quadratic features

‣ features features

‣ Why ? Next slide... But just scale corresponding weights

̂y(x) = sign(w ⋅ Φ(x) + b)

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)Φ(x(j)) ⋅ Φ(x(k))) s.t. ∑
j

λjy(j) = 0

Φ(x) = [1 2xi x2
i 2xixi′￼]

n ↦ O(n2)

2

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Implicit features

• For dual problem, we need

• Kernel trick: with :

‣ Each of elements computed in time (instead of)

Kjk = Φ(x(j)) ⋅ Φ(x(k))

Φ(x) = [1 2xi x2
i 2xixi′￼]

Kjk = 1 + ∑
i

2x(j)
i x(k)

i + ∑
i

(x(j)
i x(k)

i)2 + ∑
i<i′￼

2(x(j)
i x(k)

i)(x(j)
i′￼

x(k)
i′￼

)

= (1 + ∑
i

x(j)
i x(k)

i)
2

m2 O(n) O(n2)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Mercer's Theorem

• Reminder: positive semidefinite matrix : for all vectors

• Positive semidefinite kernel : matrix for all datasets

• Mercer's Theorem: if for some

• may be hard to calculate

‣ May even be infinite dimensional (Hilbert space)

‣ Not an issue, only the kernel should be easy to compute (times)

A ⪰ 0 v⊺Av ≥ 0 v

K ⪰ 0 K(x(j), x(k)) ⪰ 0

K ⪰ 0 ⟹ K(x, x′￼) = Φ(x) ⋅ Φ(x′￼) Φ(x)

Φ

K(x, x′￼) O(m2)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Common kernel functions
• Polynomial:

• Radial Basis Functions (RBF):

• Saturating:

• Domain-specific: textual similarity, genetic code similarity, ...

‣ May not be positive semidefinite, and still work well in practice

K(x, x′￼) = (1 + x ⋅ x′￼)d

K(x, x′￼) = exp (− ∥x − x′￼∥2

2σ2)

K(x, x′￼) = tanh(ax ⋅ x′￼+ c)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Kernel SVMs
• Define kernel

• Solve dual QP:

• Learned parameters = (parameters)

‣ But also need to store all support vectors (having)

• Prediction:

K : (x, x′￼) ↦ ℝ

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)K(x(j), x(k))) s.t. ∑
j

λjy(j) = 0

λ m

λj > 0

̂y(x) = sign(w ⋅ Φ(x))

= sign ∑
j

λjy(j)Φ(x(j)) ⋅ Φ(x) = sign ∑
j

λjy(j)K(x(j), x)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Demo

• https://cs.stanford.edu/people/karpathy/svmjs/demo/

https://cs.stanford.edu/people/karpathy/svmjs/demo/

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Linear vs. kernel SVMs

• Linear SVMs

‣ parameters

‣ Alternatively: represent by indexes of SVs; usually, #SVs = #parameters

• Kernel SVMs

‣ may correspond to high- (possibly infinite-) dimensional

‣ Typically more efficient to store the SVs (not)

- And their corresponding

̂y = sign(w ⋅ x + b) ⟹ n + 1

K(x, x′￼) Φ(x)

x(j) Φ(x(j))

λj

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Recap
• Maximize margin for separable data

‣ Primal QP: maximize subject to linear constraints

‣ Dual QP: variables, dot products

• Soft margin for non-separable data

‣ Primal problem: regularized hinge loss

‣ Dual problem: -dimensional QP

• Kernel Machines

‣ Dual form involves only pairwise similarity

‣ Mercer kernels: equivalent to dot products in implicit high-dimensional space

∥w∥2

m m2

m

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Logistics

• Project abstract due Tue, Nov 16

• Midterm exam on Thu, Nov 4, 11am–12:20 in SH 128

• If you're eligible to be remote — let us know immediately

• Assignment 4 will be published soon, due Fri, Nov 12

project

midterm

assignments

