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Logistics

* Assignment 4 will be published soon, due Fri, Nov 12

* Project abstract due Tue, Nov 16

e Midterm exam on Thu, Nov 4, 11am-12:20 in SH 128

* |f you're eligible to be remote — let us know immediately
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Today's lecture
Support Vector Machines
Lagrangian and duality

Kernel Machines
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Linear classifiers

o Perceptron = use hyperplane to partition feature space — classes

» Soft classifiers (logistic) = sensitive to margin from decision boundary

T(r)
—— r ]
O
|
0, > class decision y = f,(x)
X1
0,
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Adding features

e If data is non-separable in current feature space
> Perhaps it will be separable in higher dimension = add more features

> E.g., polynomial features: linear classifier — polynomial classifier

e Which features to add?

> Perhaps outputs of simpler perceptrons?

Linearly separable data Linearly non-separable data
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Combining step functions

 Combinations of step functions allow more complex decision boundaries

Fi(x) =T(x - a)) | O(x) = |Fi(x) Fp(x) F3)]
a IS pilecewise constant

Fr(x) = T(x — a,) ‘

F(x) = Tw®(x)) = T(w F{(x) + wyF5(x) + wiF5(x) + wy)
Fi(x) =T(x — a3)

e Need to learn:

» Thresholds al, Clz, Cl3

> Weights wy, Wy, Wy, Wy
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Multi-Layer Perceptron (MLP)

r 1
Wi 2 A
W
Xq 01
W F2
12 Ws
W02 2 > T Z > T
1 W F(x) = TwT®(x)) = T(w, F,(x) + woFo(x) + wiF3(x) + wy)
3
Wo3 > A
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Multi-Layer Perceptron (MLP)

F 1
W11 )> A
”
Xq 01
w F2
12 W2
Woo Z - Z
1 W F(x) = TwT®(x)) = T(w F,(x) + woF,(x) + wyF5(x) + wy)
3
Wo3 > A
regression ‘

F(x) = wTd(x) |
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Multi-Layer Perceptron (MLP)

Fl
Wy > " O
W
Xq 01
F2
W12 W,
Wo2 2 O 2. s O
1 W F(x) = c(WTD(x)) = o(w,F,(x) + woF,(x) + wiF5(x) + wy)
3
regression

Fx) =wid(x) ~
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MLPs: properties

e Simple building blocks

> Each unit is a perceptron: linear response — non-linear activation

« MLPs are universal approximators:

> Can approximate any function arbitrarily well, with enough units

output
hidden | Wo T Wi
idden layer
Wo
h, |

input features
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“Neural” Networks

* Biologically inspired

e Neurons: | Basic Neuron Design
- Dendrites
> “Simple” cells cell
Axon
Body ST Hillock

Myelin

. \ / Sheath

> Dendrites take input voltage

» Cell body “weights” inputs

Ranvier

92001 HowStuffWorks

> Axons “fire” voltage

» Synapses connect to other cells
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Deep Neural Networks (DNNs)

e |ayers of perceptrons can be stacked deeply

> Deep architectures are subject of much current research

A/
()

9{,“\ ,
5

hl = sig(rl)

‘ rl = w[O].T @ x + b[O]
/\

input layer 1 layer 2
features

# linear response
# activation function

# activation function

*H ...

"N
V‘V‘V‘ r2 = w[lg-T)@ hli + b[1] # linear response
h2 = sig(r2
(—C

layer 3
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Activation functions

|
. Logistic oD =TT oS - 5'(2) = o(2)(1 - 0(2))
l — -2
» Hyperbolic tangent 0(z) = = ZEE_ 23 J/ 6'(2) =1 — 6%(2)

. Gaussian 6(2) = exp(—7z?) 0'(2) = — z0(2)

» Rectified linear (ReLU) o(z) = max(0,z) * 6'(z) = o[z > 0]
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Feed-forward (FF) networks

* Information flow in feed-forward (FF) networks: hidden layer

> Inputs — shallow layers — deeper layers — outputs _ ‘
Inputs A outputs

> Alternative: recurrent NNs (information loops back) , ‘
 Multiple outputs = efficiency: ‘V’f'.“?y/'
| TS
S\ /"
» Shared parameters, less data, less computation \ W

e Multi-class classification: '

> One-hotlabelsy=10 0 1 0 -.-] I

information

exp(h,.)
2 - exp(h;z)

., Multilogistic regression (softmax): y,. =

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines



Training MLPs

hidden layer
* Observe instance x, target y o

~ inputs outputs
* Feed x forward through NN = prediction y ‘

‘ ‘
. Loss =7, (v,9) = (y — $)* (or another loss function) ‘gz:"“)y('
X ;
K
 How should we update the weights”? \\ /"

e Single layer: \v

> Use differentiable activation function, e.g. logistic

» (Stochastic) Gradient Descent = logistic regression
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Gradient computation

» MLPs are function compositions of single layers

> Apply chain rule:

r

.

8(-

')

~

hidden layer

o7 =0l 4D

v

~

\/ \/

&

h(--

')

>

S@@.h) —— o Z0)

0w = 0,f @D

\/

J

@ )
example: f(g,h) = 6(g +h) = d,f = f(1 - f)
= reuse f from the forward pass y

 Backpropagation = chain rule + dynamic programming to avoid repetitions
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Today's lecture

Multi-Layer Perceptrons

Lagrangian and duality

Kernel Machines
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Linear classifiers

 Assume separable training data

* Which decision boundary is “better”?

> Both have 0 training error, but one seems to generalize better

e Let's quantify this intuition
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Decision margin

e Let's try to maximize the margin = distance of data from boundary
» Logistic regression: £, ,(x,y) = ylogo(w - x + b) + (1 — y)log(1l — o(w - x + b))
» Whatifwescalew-x+b — 10w - x4+ 100? = loss gets betteras o — * 1

» Optimum at infinity! but the decision boundary w - x + b = 0 is unchanged...

. ¢ °, w-x+b>0 = f(x)=+1

scale invariance:
let's choose w such that

~ ©
N

®
W-x+b=+1
N

/

Wex+b<0 = f)=—1 =+ "o
w-x+b=—-1"+_ w-x+b=20
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Computing the margin

w-X
[wl|?

» Basic linear algebra: x =rw + z = w + z, with Z orthogonal to w

 Support vectors = x and x~ that are closest points to the boundary

w-xT+b=+1
w-x +b=-1
w-(r'rw+zt+b—-—rw—->bz"—->b)=2
(rt = r)wl|l* =2

2

. Maragin = l(r* — rw]|| = —=—

. Maximizing the margin = minimizing ||w||?

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines



Maximizing the margin

o Constrained optimization: get all data points correctly + maximize the margin

. WF¥ =arg max — = arg min ||w||
2wl "

woxP+b>41 ify? =41

> such that all data points predicted with enough margin: {

w-axWepb< -1 ifyl) = -1

> = s.t. YO w - xY + b) > 1 (m constraints)

 Example of Quadratic Program (QP)

» Quadratic objective, linear constraints
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Example: one feature

* Suppose we have three data points

4
[ 7
> X = — 3, = — 1] l' ,{,"
I I
[ 2 1
B
x=-lLy=-1 e e
4’ II
/
- x=2,y=+1 -3 -1 ,/,,"’ ,l'l
/7 1 II
« Many separating perceptrons T(ax + b)
, b
» Separating if a > 0 and —— € (—1,2)
* Margin constraints: minimize |a| and set b to match: ‘
a== b=—= -
» —3a+b< -1 = b<3a-1 3 3 p‘v
2 constraints are active
v —la+b<—-—1 — b<a-1 —> these are the support vectors

» +2a+b>+1 = b>—-2a+1
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Today's lecture

Multi-Layer Perceptrons

Support Vector Machines

Kernel Machines
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Lagrange method

Constrained optimization: w*, b* = arg min %HWHZ st. 1 —yY(w-xV 4+5) <0
w.,b )

\ - > 4

70) | g(0)

o Lagrange method: introduce Lagrange multipliers /1]- (one per constraint)

0* = arg min max (@) + A.0.(0
g min max f(6) 2]‘, 5(0)

> If g(0) <0 = optimally, 4, = 0
> If g(0) > 0 = optimally, /; » co = this € cannot achieve the minimum
> If g(0) =0 = doesn't matter; generally, 4, > 0

> Complementary slackness: for optimal 6, 4, if 4, > 0 = g(0) =0
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Margin optimization

. Original problem: w*, b* = arg min%Hsz st. 1 —yPw-xY+5) <0
w.,b

Lagrangian: w*, b* = arg min max %le\z + Z Al — yO(w - xU + b))
° w,b  1>0 j

Optimally: w* = Z 2.yPx )
j

> For support vector j € SV: b* = yW) — y# . x)

> Lagrangian linear in b

— Z /ij(j) = (0 for b* to be finite
J
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Primal—-dual optimization

Primal problem: w*, b* = arg min%Hsz st. 1 —yYw-xV+p)<0
w.,b

Lagrangian: w*, b* = arg min max %Hsz + Z Al — yO(w - xV + b))
° w,b  A>0 ;

Plug in the solution: w = 2 /ij(j)x(j); constraint: Z /ljy(j) = ()
J J

Dual problem: max A== Y LA yPDy®xl). st /1]);(]) —
’ = ( > 2 2
e Another Quadratic Program (QP):

» Complicated objective in m variables; m + 1 simple constraints (instead of v.v.)
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Non-separable problems

SVM: w*, b* = arg min max %HWHZ + Z Al — yO(w - xU + b))
° w,b  A1>0 j

« Can't work with non-separable data: constraints violated = /1]- — OO

« What if we fix /lj = R?

w*, b* = arg min %HWHZ — R Z YO (w - x) + b)
w,b ;
() () 2
_argman\y M—(w-x +b)\+ HWH
- AN

! M>|w-xY+b]

 Similar to MAE + L, regularizer = considers all data points (not just margin)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines



Soft margin

* Only consider points that violate the margin constraint:

“hinge(y> y) = max{0,1 — yy}

w*, b* = arg migl %”WHZ + R Z fhinge(y(j)a w - xY) + b)
w, :
j

» €Y = max{0,1 — yP(w - xY + b)} = how much is margin constraint violated

. : | .
Primal problem: w*, b* = arg min min EHWHZ + R 2 el
wb € I

> sty (w - xUV + b) > 1 — €V (relaxed constraints satisfied)

» €Y > 0 (only “snug fit” violating points)
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Soft margin: dual form

. . -
Primal problem: w*, b* = arg minmin —||w||* + R Y eV
g 2
w,b € -

° 0<A<R

Dual problem: max Z /lj—% 2 /Ij/lky(j)y(k)x(j) . x ) s.t. Z AyWPD =0
] k

>

Optimally: w* = Z /ij(j)x(j); to handle b: add constant feature x, = 1
J

» Support vector = points on or inside margin = /IJ- > 0

» Gram matrix = Kjk = xW) . x0 - similarity of every pair of instances
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Today's lecture

Multi-Layer Perceptrons

Support Vector Machines

Lagrangian and duality
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Adding features

e So far: linear SVMs, not very expressive

» — add features x > O(x)

e Linearly non-separable;

Xj—

* Linearly separable in quadratic features:
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Adding features

» Prediction: y(x) = sign(w - O(x) + b)

. Dual problem: max 2 (/lj—%Z/Ij,lky(j)y(k)q)(x(j)).q)(x(k))) st Z ) = ()
k

0<ALZR ™=
J

. Example: quadratic features @(x) = [1 \/Exl. xl.z \/Exixi,]

» 1 features — O(n?) features

> Why \/5? Next slide... But just scale corresponding weights
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Implicit features

. For dual problem, we need K = d(xV) . d(xW)
. Kernel trick: with ®(x) = [1 \/in xl.2 \/zxixi,]:

]k =1+ Z 2x(]) (k) + Z (x(]) (k))2 n 2 2()6(]) (k))(x(]) (k))

1<i’
2

_ () (k)
=\ 1+ Z XX,
i

» Each of m? elements computed in O(n) time (instead of O(nz))
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Mercer's Theorem

» Reminder: positive semidefinite matrix A > 0: vIAv > 0 for all vectors v

. Positive semidefinite kernel K > 0: matrix K(x, x¥) > 0 for all datasets

e Mercer's Theorem:if K > 0 = K(x,x") = ®(x) - D(x’) for some D(x)

« @ may be hard to calculate

> May even be infinite dimensional (Hilbert space)

» Not an issue, only the kernel K(x, x") should be easy to compute (O(m?) times)
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Common kernel functions

» Polynomial: K(x,x") = (1 +x - x)?

| | | | . Jx — x|
Radial Basis Functions (RBF): K(x,x") = exp | —

20?

» Saturating: K(x, x") = tanh(ax - x" + ¢)

 Domain-specific: textual similarity, genetic code similarity, ...

> May not be positive semidefinite, and still work well in practice
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Kernel SVMs

e Define kernel K : (x,x") |

0<A<R =
J

. Solve dual QP: max Z (/lj—% Z /ljxlky(j)y(k)K(x(j),x(k))> s.t. Z /ljy(j) =0
k

o |earned parameters = A (m parameters)

» But also need to store all support vectors (having /1]- > ()

e Prediction: y(x) = sign(w - P(x))

= sign Z /ljy(j)CD(x(j)) - D(x) | = s1gn Z /ljy(j)K(x(j),x)
J J
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Demo

» https://cs.stanford.edu/people/karpathy/svmis/demo/
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https://cs.stanford.edu/people/karpathy/svmjs/demo/

Linear vs. kernel SVMs

e Linear SVMs

» y=s1gn(w - x + b) = n + 1 parameters

|

> Alternatively: represent by indexes of SVs; usually, #5Vs = #parameters

e Kernel SVMs
» K(x,x") may correspond to high- (possibly infinite-) dimensional P (x)
» Typically more efficient to store the SVs x) (not ®(x))

- And their corresponding /4,
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Recap

 Maximize margin for separable data
> Primal QP: maximize ||w||? subject to linear constraints

» Dual QP: m variables, m? dot products

e Soft margin for non-separable data

> Primal problem: regularized hinge loss

> Dual problem: m-dimensional QP

 Kernel Machines
> Dual form involves only pairwise similarity

> Mercer kernels: equivalent to dot products in implicit high-dimensional space
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* Assignment 4 will be published soon, due Fri, Nov 12

* Project abstract due Tue, Nov 16

e Midterm exam on Thu, Nov 4, 11am-12:20 in SH 128
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