CS 273A: Machine Learning

Fall 2021

Lecture 12: Support Vector Machines

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Assignment 4 will be published soon, due Fri, Nov 12

project

- Project abstract due Tue, Nov 16
- Midterm exam on Thu, Nov 4, 11am-12:20 in SH 128
midterm
- If you're eligible to be remote - let us know immediately

Today's lecture

Multi-Layer Perceptrons

Support Vector Machines

Lagrangian and duality

Kernel Machines

Linear classifiers

- Perceptron = use hyperplane to partition feature space \rightarrow classes
- Soft classifiers (logistic) = sensitive to margin from decision boundary

Adding features

- If data is non-separable in current feature space
- Perhaps it will be separable in higher dimension \Longrightarrow add more features
- E.g., polynomial features: linear classifier \rightarrow polynomial classifier
- Which features to add?
- Perhaps outputs of simpler perceptrons?

Linearly separable data Linearly non-separable data

x_{1}

Combining step functions

- Combinations of step functions allow more complex decision boundaries

$$
\begin{gathered}
\Phi(x)=\left[\begin{array}{lll}
F_{1}(x) & F_{2}(x) & F_{3}(x)
\end{array}\right] \\
\text { is piecewise constant }
\end{gathered}
$$

$$
F(x)=T\left(w^{\top} \Phi(x)\right)=T\left(w_{1} F_{1}(x)+w_{2} F_{2}(x)+w_{3} F_{3}(x)+w_{4}\right)
$$

- Need to learn:
- Thresholds a_{1}, a_{2}, a_{3}
- Weights $w_{1}, w_{2}, w_{3}, w_{4}$

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

MLPs: properties

- Simple building blocks
- Each unit is a perceptron: linear response \rightarrow non-linear activation
- MLPs are universal approximators:
- Can approximate any function arbitrarily well, with enough units

"Neural" Networks

- Biologically inspired
- Neurons:
- "Simple" cells
- Dendrites take input voltage
- Cell body "weights" inputs
- Axons "fire" voltage

- Synapses connect to other cells

Deep Neural Networks (DNNs)

- Layers of perceptrons can be stacked deeply
- Deep architectures are subject of much current research

Activation functions

- Logistic

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

$$
\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))
$$

- Hyperbolic tangent

$$
\sigma(z)=\frac{1-\exp (-2 z)}{1+\exp (-2 z)}
$$

$$
\sigma^{\prime}(z)=1-\sigma^{2}(z)
$$

- Gaussian

$$
\sigma(z)=\exp \left(-\frac{1}{2} z^{2}\right)
$$

$$
\sigma^{\prime}(z)=-z \sigma(z)
$$

- Rectified linear (ReLU) $\sigma(z)=\max (0, z)$

$$
\sigma^{\prime}(z)=\delta[z>0]
$$

Feed-forward (FF) networks

- Information flow in feed-forward (FF) networks:
- Inputs \rightarrow shallow layers \rightarrow deeper layers \rightarrow outputs
- Alternative: recurrent NNs (information loops back)
- Multiple outputs \Longrightarrow efficiency:
- Shared parameters, less data, less computation
- Multi-class classification:

- Multilogistic regression (softmax): $\hat{y}_{c}=\frac{\exp \left(h_{c}\right)}{\sum_{\bar{c}} \exp \left(h_{\bar{c}}\right)}$

Training MLPs

hidden layer

- Observe instance x, target y
- Feed x forward through $\mathrm{NN}=$ prediction \hat{y}
- Loss $=\ell_{w}(y, \hat{y})=(y-\hat{y})^{2}$ (or another loss function)
- How should we update the weights?
- Single layer:
- Use differentiable activation function, e.g. logistic

- (Stochastic) Gradient Descent = logistic regression

Gradient computation

- MLPs are function compositions of single layers
- Apply chain rule:

hidden layer

example: $f(g, h)=\sigma(g+h) \Longrightarrow \partial_{g} f=f(1-f)$
\Longrightarrow reuse f from the forward pass
- Backpropagation = chain rule + dynamic programming to avoid repetitions

Today's lecture

Multi-Layer Perceptrons

Support Vector Machines

Lagrangian and duality

Kernel Machines

Linear classifiers

- Assume separable training data
- Which decision boundary is "better"?
- Both have 0 training error, but one seems to generalize better
- Let's quantify this intuition

Decision margin

- Let's try to maximize the margin = distance of data from boundary
- Logistic regression: $\mathscr{L}_{w, b}(x, y)=y \log \sigma(w \cdot x+b)+(1-y) \log (1-\sigma(w \cdot x+b))$
- What if we scale $w \cdot x+b \rightarrow 10 w \cdot x+10 b ? \Longrightarrow$ loss gets better as $\sigma \rightarrow \pm 1$
- Optimum at infinity! but the decision boundary $w \cdot x+b=0$ is unchanged...

Computing the margin

- Basic linear algebra: $x=r w+z=\frac{w \cdot x}{\|w\|^{2}} w+z$, with z orthogonal to w
- Support vectors $=x^{+}$and x^{-}that are closest points to the boundary

$$
\begin{aligned}
& w \cdot x^{+}+b=+1 \\
& w \cdot x^{-}+b=-1 \\
& w \cdot\left(r^{+} w+z^{+}+b-r^{-} w-b z^{-}-b\right)=2 \\
& \left(r^{+}-r^{-}\right)\|w\|^{2}=2
\end{aligned}
$$

- Margin $=\left\|\left(r^{+}-r^{-}\right) w\right\|=\frac{2}{\|w\|}$
- Maximizing the margin $=$ minimizing $\|w\|^{2}$

Maximizing the margin

- Constrained optimization: get all data points correctly + maximize the margin
- $w^{*}=\arg \max _{w} \frac{2}{\|w\|}=\arg \min _{w}\|w\|$
- such that all data points predicted with enough margin: $\begin{cases}w \cdot x^{(j)}+b \geq+1 & \text { if } y^{(j)}=+1 \\ w \cdot x^{(j)}+b \leq-1 & \text { if } y^{(j)}=-1\end{cases}$
- \Longrightarrow s.t. $y^{(j)}\left(w \cdot x^{(j)}+b\right) \geq 1$ (m constraints)
- Example of Quadratic Program (QP)
- Quadratic objective, linear constraints

Example: one feature

- Suppose we have three data points
- $x=-3, y=-1$
- $x=-1, y=-1$
- $x=2, y=+1$

- Many separating perceptrons $T(a x+b)$
- Separating if $a>0$ and $-\frac{b}{a} \in(-1,2)$
- Margin constraints:
- $-3 a+b \leq-1 \Longrightarrow b \leq 3 a-1$
minimize $|a|$ and set b to match: $a=\frac{2}{3} \quad b=-\frac{1}{3}$
2 constraints are active
- $-1 a+b \leq-1 \Longrightarrow b \leq a-1$
\Longrightarrow these are the support vectors

Today's lecture

Multi-Layer Perceptrons

Support Vector Machines

Lagrangian and duality

Kernel Machines

Lagrange method

- Constrained optimization: $w^{*}, b^{*}=\arg \min _{w, b} \underbrace{\frac{1}{2}\|w\|^{2}}_{f(\theta)}$
s.t. $1-y^{(j)}\left(w \cdot x^{(j)}+b\right) \leq 0$ $\underbrace{}_{g(\theta)}$
- Lagrange method: introduce Lagrange multipliers λ_{j} (one per constraint)

$$
\theta^{*}=\arg \min _{\theta} \max _{\lambda \geq 0} f(\theta)+\sum_{j} \lambda_{j} g_{j}(\theta)
$$

- If $g_{j}(\theta)<0 \Longrightarrow$ optimally, $\lambda_{j}=0$
- If $g_{j}(\theta)>0 \Longrightarrow$ optimally, $\lambda_{j} \rightarrow \infty \Longrightarrow$ this θ cannot achieve the minimum
- If $g_{j}(\theta)=0 \Longrightarrow$ doesn't matter; generally, $\lambda_{j}>0$
- Complementary slackness: for optimal θ, λ, if $\lambda_{j}>0 \Longrightarrow g_{j}(\theta)=0$

Margin optimization

- Original problem: $w^{*}, b^{*}=\arg \min _{w, b} \frac{1}{2}\|w\|^{2} \quad$ s.t. $1-y^{(j)}\left(w \cdot x^{(j)}+b\right) \leq 0$
- Lagrangian: $w^{*}, b^{*}=\arg \min _{w, b} \max _{\lambda \geq 0} \frac{1}{2}\|w\|^{2}+\sum_{j} \lambda_{j}\left(1-y^{(j)}\left(w \cdot x^{(j)}+b\right)\right)$
. Optimally: $w^{*}=\sum_{j} \lambda_{j} y^{(j)} x^{(j)}$
- For support vector $j \in \mathrm{SV}: b^{*}=y^{(j)}-w^{*} \cdot x^{(j)}$
- Lagrangian linear in b
$\Longrightarrow \sum_{j} \lambda_{j} y^{(j)}=0$ for b^{*} to be finite

Primal-dual optimization

- Primal problem: $w^{*}, b^{*}=\arg \min _{w, b} \frac{1}{2}\|w\|^{2} \quad$ s.t. $1-y^{(j)}\left(w \cdot x^{(j)}+b\right) \leq 0$
- Lagrangian: $w^{*}, b^{*}=\arg \min _{w, b} \max _{\lambda \geq 0} \frac{1}{2}\|w\|^{2}+\sum_{j} \lambda_{j}\left(1-y^{(j)}\left(w \cdot x^{(j)}+b\right)\right)$
- Plug in the solution: $w=\sum_{j} \lambda_{j} y^{(j)} x^{(j)}$; constraint: $\sum_{j} \lambda_{j} y^{(j)}=0$
- Dual problem: $\max _{1 \geq 0} \sum_{j}\left(\lambda_{j}-\frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)}\right) \quad$ s.t. $\sum_{j} \lambda_{j} y^{(j)}=0$
- Another Quadratic Program (QP):
- Complicated objective in m variables; $m+1$ simple constraints (instead of v.v.)

Non-separable problems

- SVM: $w^{*}, b^{*}=\arg \min _{w, b} \max _{\lambda \geq 0} \frac{1}{2}\|w\|^{2}+\sum_{j} \lambda_{j}\left(1-y^{(j)}\left(w \cdot x^{(j)}+b\right)\right)$
- Can't work with non-separable data: constraints violated $\Longrightarrow \lambda_{j} \rightarrow \infty$
- What if we fix $\lambda_{j}=R$?

$$
\begin{aligned}
& w^{*}, b^{*}= \arg \min _{w, b} \frac{1}{2}\|w\|^{2}-R \sum_{j} y^{(j)}\left(w \cdot x^{(j)}+b\right) \\
&= \arg \min _{w, b} \sum_{j}\left|y^{(j)} M-\left(w \cdot x^{(j)}+b\right)\right|+\frac{1}{2 R}\|w\|^{2} \\
& M>\left|w \cdot x^{(j)}+b\right|
\end{aligned}
$$

- Similar to MAE $+L_{2}$ regularizer \Longrightarrow considers all data points (not just margin)

Soft margin

- Only consider points that violate the margin constraint:

$$
\begin{gathered}
\ell_{\text {hinge }}(y, \hat{y})=\max \{0,1-y \hat{y}\} \\
w^{*}, b^{*}=\arg \min _{w, b} \frac{1}{2}\|w\|^{2}+R \sum_{j} \ell_{\text {hinge }}\left(y^{(j)}, w \cdot x^{(j)}+b\right)
\end{gathered}
$$

- $\epsilon^{(j)}=\max \left\{0,1-y^{(j)}\left(w \cdot x^{(j)}+b\right)\right\}$ how much is margin constraint violated
- Primal problem: $w^{*}, b^{*}=\arg \min _{w, b} \min _{\epsilon} \frac{1}{2}\|w\|^{2}+R \sum_{j} \epsilon^{(j)}$
- s.t. $y^{(j)}\left(w \cdot x^{(j)}+b\right) \geq 1-\epsilon^{(j)}$ (relaxed constraints satisfied)
- $\epsilon^{(j)} \geq 0$ (only "snug fit" violating points)

Soft margin: dual form

- Primal problem: $w^{*}, b^{*}=\underset{w, b}{\arg \min _{\epsilon} \min } \frac{1}{2}\|w\|^{2}+R \sum_{j} \epsilon^{(j)}$
- s.t. $y^{(j)}\left(w \cdot x^{(j)}+b\right) \geq 1-\epsilon^{(j)} ; \quad \epsilon^{(j)} \geq 0$
- Dual problem: $\max _{0 \leq \lambda \leq R} \sum_{j}\left(\lambda_{j}-\frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)}\right) \quad$ s.t. $\sum_{j} \lambda_{j} y^{(j)}=0$
- Optimally: $w^{*}=\sum_{j} \lambda_{j} y^{(j)} x^{(j)}$; to handle b : add constant feature $x_{0}=1$
- Support vector $=$ points on or inside margin $=\lambda_{j}>0$
- Gram matrix $=K_{j k}=x^{(j)} \cdot x^{(k)}=$ similarity of every pair of instances

Today's lecture

Multi-Layer Perceptrons

Support Vector Machines

Lagrangian and duality

Kernel Machines

Adding features

- So far: linear SVMs, not very expressive
- \Longrightarrow add features $x \mapsto \Phi(x)$
- Linearly non-separable:

Adding features

- Prediction: $\hat{y}(x)=\operatorname{sign}(w \cdot \Phi(x)+b)$

0

- Example: quadratic features $\Phi(x)=\left[\begin{array}{llll}1 & \sqrt{2} x_{i} & x_{i}^{2} & \sqrt{2} x_{i} x_{i^{\prime}}\end{array}\right]$
- n features $\mapsto O\left(n^{2}\right)$ features
- Why $\sqrt{2}$? Next slide... But just scale corresponding weights

Implicit features

- For dual problem, we need $K_{j k}=\Phi\left(x^{(j)}\right) \cdot \Phi\left(x^{(k)}\right)$
- Kernel trick: with $\Phi(x)=\left[\begin{array}{llll}1 & \sqrt{2} x_{i} & x_{i}^{2} & \sqrt{2} x_{i} x_{i^{\prime}}\end{array}\right]$:

$$
\begin{aligned}
K_{j k} & =1+\sum_{i} 2 x_{i}^{(j)} x_{i}^{(k)}+\sum_{i}\left(x_{i}^{(j)} x_{i}^{(k)}\right)^{2}+\sum_{i<i^{\prime}} 2\left(x_{i}^{(j)} x_{i}^{(k)}\right)\left(x_{i^{\prime}}^{(j)} x_{i^{\prime}}^{(k)}\right) \\
& =\left(1+\sum_{i} x_{i}^{(j)} x_{i}^{(k)}\right)^{2}
\end{aligned}
$$

- Each of m^{2} elements computed in $O(n)$ time (instead of $O\left(n^{2}\right)$)

Mercer's Theorem

- Reminder: positive semidefinite matrix $A \succeq 0: v^{\top} A v \geq 0$ for all vectors v
- Positive semidefinite kernel $K \succeq 0$: matrix $K\left(x^{(j)}, x^{(k)}\right) \succeq 0$ for all datasets
- Mercer's Theorem: if $K \succeq 0 \Longrightarrow K\left(x, x^{\prime}\right)=\Phi(x) \cdot \Phi\left(x^{\prime}\right)$ for some $\Phi(x)$
- Φ may be hard to calculate
- May even be infinite dimensional (Hilbert space)
- Not an issue, only the kernel $K\left(x, x^{\prime}\right)$ should be easy to compute ($O\left(m^{2}\right)$ times)

Common kernel functions

- Polynomial: $K\left(x, x^{\prime}\right)=\left(1+x \cdot x^{\prime}\right)^{d}$

- Radial Basis Functions (RBF): $K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$

- Saturating: $K\left(x, x^{\prime}\right)=\tanh \left(a x \cdot x^{\prime}+c\right)$

- Domain-specific: textual similarity, genetic code similarity, ...
- May not be positive semidefinite, and still work well in practice

Kernel SVMs

- Define kernel $K:\left(x, x^{\prime}\right) \mapsto \mathbb{R}$
- Solve dual QP: $\max _{0 \leq \lambda \leq R} \sum_{j}\left(\lambda_{j}-\frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} K\left(x^{(j)}, x^{(k)}\right)\right) \quad$ s.t. $\sum_{j} \lambda_{j} y^{(j)}=0$
- Learned parameters $=\lambda$ (m parameters)
- But also need to store all support vectors (having $\lambda_{j}>0$)
- Prediction: $\hat{y}(x)=\operatorname{sign}(w \cdot \Phi(x))$

$$
=\operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi\left(x^{(j)}\right) \cdot \Phi(x)\right)=\operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K\left(x^{(j)}, x\right)\right)
$$

Demo

- https://cs.stanford.edu/people/karpathy/svmjs/demo/

Linear vs. kernel SVMs

- Linear SVMs
- $\hat{y}=\operatorname{sign}(w \cdot x+b) \Longrightarrow n+1$ parameters
- Alternatively: represent by indexes of SVs; usually, \#SVs = \#parameters
- Kernel SVMs
- $K\left(x, x^{\prime}\right)$ may correspond to high- (possibly infinite-) dimensional $\Phi(x)$
- Typically more efficient to store the SVs $x^{(j)}$ (not $\Phi\left(x^{(j)}\right)$)
- And their corresponding λ_{j}

Recap

- Maximize margin for separable data
- Primal QP: maximize $\|w\|^{2}$ subject to linear constraints
- Dual QP: m variables, m^{2} dot products
- Soft margin for non-separable data
- Primal problem: regularized hinge loss
- Dual problem: m-dimensional QP
- Kernel Machines
- Dual form involves only pairwise similarity
- Mercer kernels: equivalent to dot products in implicit high-dimensional space

Logistics

assignments

- Assignment 4 will be published soon, due Fri, Nov 12

project

- Project abstract due Tue, Nov 16
- Midterm exam on Thu, Nov 4, 11am-12:20 in SH 128
midterm
- If you're eligible to be remote - let us know immediately

