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Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Multi-Layer Perceptrons
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Linear classifiers

• Perceptron = use hyperplane to partition feature space  classes


‣ Soft classifiers (logistic) = sensitive to margin from decision boundary


→

linear response 

r = θ0 + θ1x1 + θ2x2

T(r)

weighted sum of features threshold 
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

T(r)

r
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Adding features
• If data is non-separable in current feature space


‣ Perhaps it will be separable in higher dimension  add more features


‣ E.g., polynomial features: linear classifier  polynomial classifier


• Which features to add?


‣ Perhaps outputs of simpler perceptrons?


⟹

→

x1 x1

x2 x2

Linearly separable data Linearly non-separable data
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Combining step functions
• Combinations of step functions allow more complex decision boundaries


• Need to learn:


‣ Thresholds 


‣ Weights 

a1, a2, a3

w1, w2, w3, w4

F1(x) = T(x − a1)

a1

a2

F2(x) = T(x − a2)

a3

F3(x) = T(x − a3)
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

 
is piecewise constant

Φ(x) = [F1(x) F2(x) F3(x)]
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Multi-Layer Perceptron (MLP)

x1

1

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

F1

T

F3

T

F2

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)
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Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression 
F(x) = w⊺Φ(x)
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Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

σ
w1

w2

w3

Σ
F(x) = σ(w⊺Φ(x)) = σ(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression 
F(x) = w⊺Φ(x)

σ

σ

σ
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MLPs: properties

• Simple building blocks


‣ Each unit is a perceptron: linear response  non-linear activation


• MLPs are universal approximators:


‣ Can approximate any function arbitrarily well, with enough units


→

w0
w0 + w1

h1
h2
⋮

x0 x1

h1 h2 h3 hℓ

y

⋯

⋯

output

hidden layer

input features
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“Neural” Networks

• Biologically inspired


• Neurons:


‣ “Simple” cells


‣ Dendrites take input voltage


‣ Cell body “weights” inputs


‣ Axons “fire” voltage


‣ Synapses connect to other cells
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Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply


‣ Deep architectures are subject of much current research


input 
features

layer 2layer 1

⋯

layer 3 ⋯

r1 = w[0].T @ x + b[0]   # linear response 
h1 = sig(r1)             # activation function 

r2 = w[1].T @ h1 + b[1]  # linear response 
h2 = sig(r2)             # activation function 

                         # ...
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Activation functions

• Logistic


• Hyperbolic tangent


• Gaussian


• Rectified linear (ReLU)

σ(z) =
1

1 + exp(−z)

σ(z) =
1 − exp(−2z)
1 + exp(−2z)

σ(z) = exp(− 1
2 z2)

σ(z) = max(0,z)

σ′ (z) = σ(z)(1 − σ(z))

σ′ (z) = 1 − σ2(z)

σ′ (z) = − zσ(z)

σ′ (z) = δ[z > 0]
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Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:


‣ Inputs  shallow layers  deeper layers  outputs


‣ Alternative: recurrent NNs (information loops back)


• Multiple outputs  efficiency:


‣ Shared parameters, less data, less computation


• Multi-class classification: 


‣ One-hot labels 


‣ Multilogistic regression (softmax): 

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs
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Training MLPs

• Observe instance , target 


• Feed  forward through NN = prediction 


• Loss =  (or another loss function)


• How should we update the weights?


• Single layer:


‣ Use differentiable activation function, e.g. logistic


‣ (Stochastic) Gradient Descent = logistic regression

x y

x ̂y

ℓw(y, ̂y) = (y − ̂y)2

inputs

hidden layer

outputs
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• MLPs are function compositions of single layers


‣ Apply chain rule:


• Backpropagation = chain rule + dynamic programming to avoid repetitions

Gradient computation

g(⋯)

h(⋯)

⋯ ℒ(⋯)f(g, h)

inputs

hidden layer

outputs

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ
∂fℒ

example:  
 reuse  from the forward pass

f(g, h) = σ(g + h) ⟹ ∂g f = f(1 − f )
⟹ f
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Today's lecture

Support Vector Machines
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Kernel Machines

Multi-Layer Perceptrons
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Linear classifiers
• Assume separable training data


• Which decision boundary is “better”?


‣ Both have 0 training error, but one seems to generalize better


• Let's quantify this intuition
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Decision margin
• Let's try to maximize the margin = distance of data from boundary


• Logistic regression: 


‣ What if we scale ?  loss gets better as 


‣ Optimum at infinity! but the decision boundary  is unchanged...


ℒw,b(x, y) = y log σ(w ⋅ x + b) + (1 − y)log(1 − σ(w ⋅ x + b))

w ⋅ x + b → 10w ⋅ x + 10b ⟹ σ → ± 1

w ⋅ x + b = 0

w ⋅ x + b = 0

w ⋅ x + b > 0 ⟹ f(x) = + 1

w ⋅ x + b < 0 ⟹ f(x) = − 1

scale invariance: 
let's choose  such thatww ⋅ x + b = + 1

w ⋅ x + b = − 1
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Computing the margin

• Basic linear algebra: , with  orthogonal to 


• Support vectors =  and  that are closest points to the boundary





• Margin 


• Maximizing the margin = minimizing 

x = rw + z = w ⋅ x
∥w∥2 w + z z w

x+ x−

w ⋅ x+ + b = + 1
w ⋅ x− + b = − 1
w ⋅ (r+w + z+ + b − r−w − bz− − b) = 2
(r+ − r−)∥w∥2 = 2

= ∥(r+ − r−)w∥ = 2
∥w∥

∥w∥2

w ⋅ x + b = 0

wmargin

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin


• 


‣ such that all data points predicted with enough margin:


‣  (  constraints)


• Example of Quadratic Program (QP)


‣ Quadratic objective, linear constraints

w* = arg max
w

2
∥w∥ = arg min

w
∥w∥

⟹ s.t. y( j)(w ⋅ x( j) + b) ≥ 1 m
{w ⋅ x( j) + b ≥ + 1 if y( j) = + 1

w ⋅ x( j) + b ≤ − 1 if y( j) = − 1

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Example: one feature
• Suppose we have three data points


‣ , 


‣ , 


‣ , 


• Many separating perceptrons 


‣ Separating if  and 


• Margin constraints:


‣ 


‣ 


‣

x = − 3 y = − 1

x = − 1 y = − 1

x = 2 y = + 1

T(ax + b)

a > 0 − b
a ∈ (−1,2)

−3a + b ≤ − 1 ⟹ b ≤ 3a − 1

−1a + b ≤ − 1 ⟹ b ≤ a − 1

+2a + b ≥ + 1 ⟹ b ≥ − 2a + 1

x

b

a

  -3       -1                 2

minimize  and set  to match: 
 

2 constraints are active 
 these are the support vectors

|a | b
a = 2

3 b = − 1
3

⟹
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Lagrange method

• Constrained optimization: 


• Lagrange method: introduce Lagrange multipliers  (one per constraint)


 


‣ If optimally, 


‣ If optimally, this  cannot achieve the minimum


‣ If doesn't matter; generally, 


‣ Complementary slackness: for optimal , if 

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t.  1 − y( j)(w ⋅ x( j) + b) ≤ 0

λj

θ* = arg min
θ

max
λ≥0

f(θ) + ∑
j

λjgj(θ)

gj(θ) < 0 ⟹ λj = 0

gj(θ) > 0 ⟹ λj → ∞ ⟹ θ

gj(θ) = 0 ⟹ λj > 0

θ, λ λj > 0 ⟹ gj(θ) = 0

f(θ) g(θ)
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Margin optimization

• Original problem: 


• Lagrangian: 


• Optimally: 


‣ For support vector : 


‣ Lagrangian linear in 


 for  to be finite

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y( j)(w ⋅ x( j) + b) ≤ 0

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y( j)(w ⋅ x( j) + b))

w* = ∑
j

λjy( j)x( j)

j ∈ SV b* = y( j) − w* ⋅ x( j)

b

⟹ ∑
j

λjy( j) = 0 b*

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Primal–dual optimization

• Primal problem: 


• Lagrangian: 


• Plug in the solution: ; constraint: 


‣ Dual problem:  


• Another Quadratic Program (QP):


‣ Complicated objective in  variables;  simple constraints (instead of v.v.)

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y( j)(w ⋅ x( j) + b) ≤ 0

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y( j)(w ⋅ x( j) + b))

w = ∑
j

λjy( j)x( j) ∑
j

λjy( j) = 0

max
λ≥0 ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)x( j) ⋅ x(k)) s.t. ∑
j

λjy( j) = 0

m m + 1
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Non-separable problems

• SVM: 


• Can't work with non-separable data: constraints violated 


• What if we fix ?


 


• Similar to MAE +  regularizer  considers all data points (not just margin)

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y( j)(w ⋅ x( j) + b))

⟹ λj → ∞

λj = R

w*, b* = arg min
w,b

1
2 ∥w∥2 − R∑

j

y( j)(w ⋅ x( j) + b)

= arg min
w,b ∑

j

|y( j)M − (w ⋅ x( j) + b) |+ 1
2R ∥w∥2

L2 ⟹
M > |w ⋅ x( j) + b |
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Soft margin
• Only consider points that violate the margin constraint:


 


 


‣  = how much is margin constraint violated


• Primal problem: 


‣ s.t.  (relaxed constraints satisfied)


‣  (only “snug fit” violating points)

ℓhinge(y, ̂y) = max{0,1 − y ̂y}

w*, b* = arg min
w,b

1
2 ∥w∥2 + R∑

j

ℓhinge(y( j), w ⋅ x( j) + b)

ϵ( j) = max{0,1 − y( j)(w ⋅ x( j) + b)}

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ( j)

y( j)(w ⋅ x( j) + b) ≥ 1 − ϵ( j)

ϵ( j) ≥ 0
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Soft margin: dual form

• Primal problem: 


‣ s.t. ;     


• Dual problem: 


‣ Optimally: ; to handle : add constant feature 


‣ Support vector = points on or inside margin = 


‣ Gram matrix =  = similarity of every pair of instances

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ( j)

y( j)(w ⋅ x( j) + b) ≥ 1 − ϵ( j) ϵ( j) ≥ 0

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)x( j) ⋅ x(k)) s.t. ∑
j

λjy( j) = 0

w* = ∑
j

λjy( j)x( j) b x0 = 1

λj > 0

Kjk = x( j) ⋅ x(k)
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Adding features
• So far: linear SVMs, not very expressive


‣  add features 


• Linearly non-separable:


• Linearly separable in quadratic features:


⟹ x ↦ Φ(x)

x1

x1

x2 = x2
1
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Adding features

• Prediction: 


• Dual problem: 


• Example: quadratic features 


‣  features   features


‣ Why ? Next slide... But just scale corresponding weights

̂y(x) = sign(w ⋅ Φ(x) + b)

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)Φ(x( j)) ⋅ Φ(x(k))) s.t. ∑
j

λjy( j) = 0

Φ(x) = [1 2xi x2
i 2xixi′ ]

n ↦ O(n2)

2
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Implicit features

• For dual problem, we need 


• Kernel trick: with :


 


‣ Each of  elements computed in  time (instead of )

Kjk = Φ(x( j)) ⋅ Φ(x(k))

Φ(x) = [1 2xi x2
i 2xixi′ ]

Kjk = 1 + ∑
i

2x( j)
i x(k)

i + ∑
i

(x( j)
i x(k)

i )2 + ∑
i<i′ 

2(x( j)
i x(k)

i )(x( j)
i′ 

x(k)
i′ 

)

= (1 + ∑
i

x( j)
i x(k)

i )
2

m2 O(n) O(n2)
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Mercer's Theorem

• Reminder: positive semidefinite matrix :  for all vectors 


• Positive semidefinite kernel : matrix  for all datasets


• Mercer's Theorem: if  for some 


•  may be hard to calculate


‣ May even be infinite dimensional (Hilbert space)


‣ Not an issue, only the kernel  should be easy to compute (  times)

A ⪰ 0 v⊺Av ≥ 0 v

K ⪰ 0 K(x( j), x(k)) ⪰ 0

K ⪰ 0 ⟹ K(x, x′ ) = Φ(x) ⋅ Φ(x′ ) Φ(x)

Φ

K(x, x′ ) O(m2)
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Common kernel functions
• Polynomial: 


• Radial Basis Functions (RBF): 


• Saturating: 


• Domain-specific: textual similarity, genetic code similarity, ...


‣ May not be positive semidefinite, and still work well in practice

K(x, x′ ) = (1 + x ⋅ x′ )d

K(x, x′ ) = exp (− ∥x − x′ ∥2

2σ2 )

K(x, x′ ) = tanh(ax ⋅ x′ + c)
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Kernel SVMs
• Define kernel 


• Solve dual QP: 


• Learned parameters =  (  parameters)


‣ But also need to store all support vectors (having )


• Prediction: 


 

K : (x, x′ ) ↦ ℝ

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)K(x( j), x(k))) s.t. ∑
j

λjy( j) = 0

λ m

λj > 0

̂y(x) = sign(w ⋅ Φ(x))

= sign ∑
j

λjy( j)Φ(x( j)) ⋅ Φ(x) = sign ∑
j

λjy( j)K(x( j), x)
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Demo

•  https://cs.stanford.edu/people/karpathy/svmjs/demo/

https://cs.stanford.edu/people/karpathy/svmjs/demo/


Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Linear vs. kernel SVMs

• Linear SVMs


‣    parameters


‣ Alternatively: represent by indexes of SVs; usually, #SVs = #parameters


• Kernel SVMs


‣  may correspond to high- (possibly infinite-) dimensional 


‣ Typically more efficient to store the SVs  (not )


- And their corresponding 

̂y = sign(w ⋅ x + b) ⟹ n + 1

K(x, x′ ) Φ(x)

x( j) Φ(x( j))

λj
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Recap
• Maximize margin for separable data


‣ Primal QP: maximize  subject to linear constraints


‣ Dual QP:  variables,  dot products


• Soft margin for non-separable data


‣ Primal problem: regularized hinge loss


‣ Dual problem: -dimensional QP


• Kernel Machines


‣ Dual form involves only pairwise similarity


‣ Mercer kernels: equivalent to dot products in implicit high-dimensional space

∥w∥2

m m2

m
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Logistics

• Project abstract due Tue, Nov 16
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• If you're eligible to be remote — let us know immediately

• Assignment 4 will be published soon, due Fri, Nov 12
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