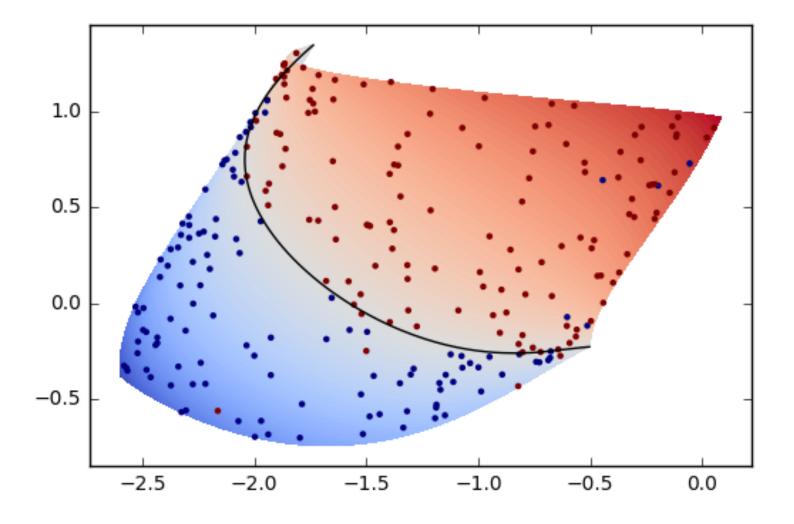
CS 273A: Machine Learning Fall 2021 Lecture 13: Ensemble Methods

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



assignments

• Assignment 4 due Friday, Nov 12

• Project abstract due Tue, Nov 16 on Canvas

Today's lecture

Kernel Machines

Gradient boosting

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Bagging

AdaBoost

Soft margin: dual form

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{e} \frac{1}{2} ||w||^2 + R \sum_{j} e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_{j} \lambda_j y^{(j)} = 0$

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{e} \frac{1}{2} ||w||^2 + R \sum_{j} e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_{j} \lambda_j y^{(j)} = 0$

• Optimally:
$$w^* = \sum_{j} \lambda_j y^{(j)} x^{(j)}$$
; to hand

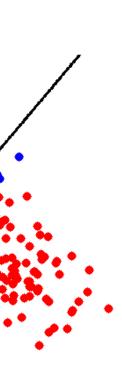
• Support vector = points on or inside margin = $\lambda_i > 0$

• Gram matrix =
$$K_{jk} = x^{(j)} \cdot x^{(k)} = \text{simila}$$

lle b: add constant feature $x_0 = 1$

J

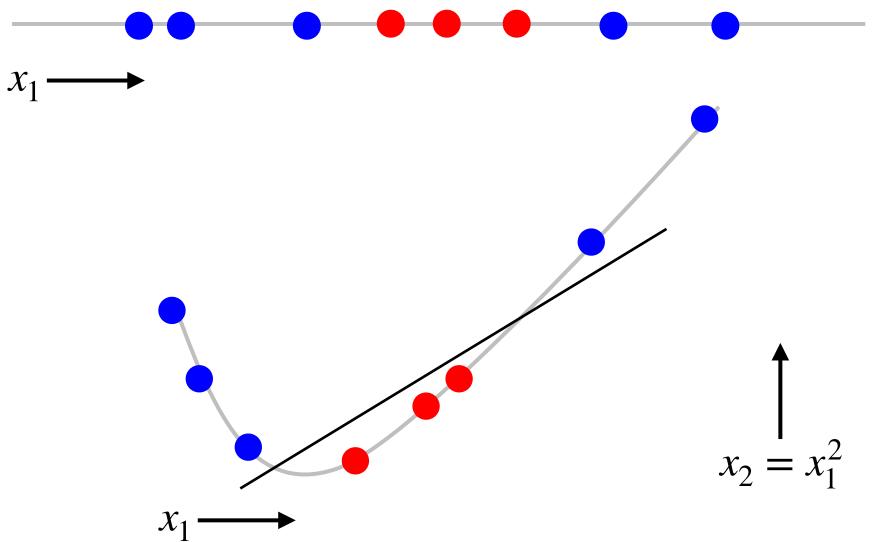
arity of every pair of instances



Adding features

- So far: linear SVMs, not very expressive
 - \implies add features $x \mapsto \Phi(x)$
- Linearly non-separable:

• Linearly separable in quadratic features:



Adding features

• Prediction: $\hat{y}(x) = \operatorname{sign}(w \cdot \Phi(x) +$

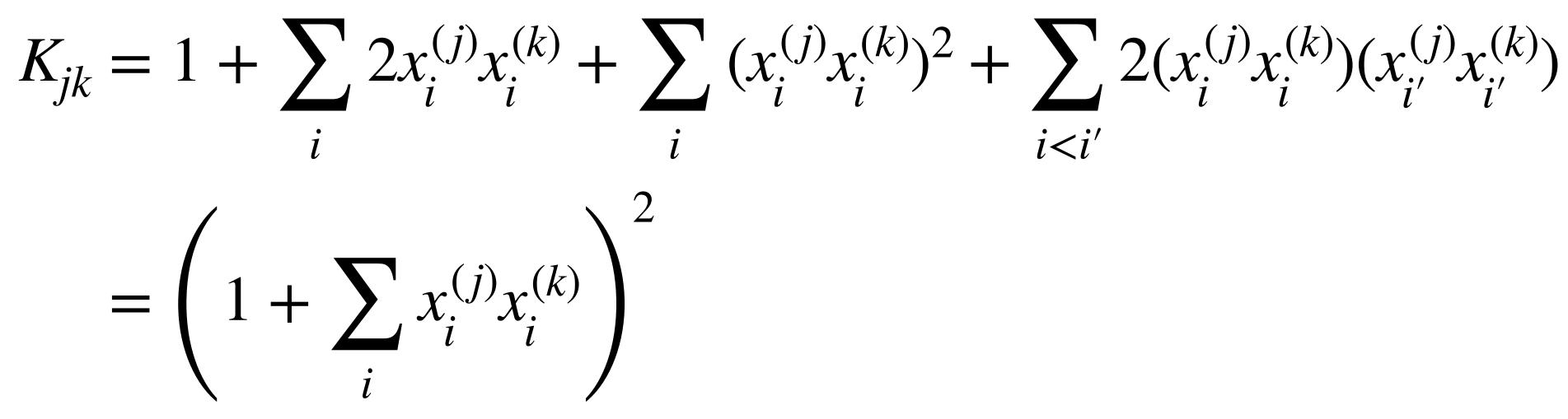
• Dual problem: $\max_{0 \le \lambda \le R} \sum_{i} \left(\lambda_{i} - \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{i} \right)$

- Example: quadratic features $\Phi(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - *n* features $\mapsto O(n^2)$ features
 - $\sqrt{2}$ just scales corresponding weights; why $\sqrt{2?}$ up next...

$$\begin{aligned} + b \\ \lambda_k y^{(j)} y^{(k)} \Phi(x^{(j)}) \cdot \Phi(x^{(k)}) \\ \end{bmatrix} \quad \text{s.t.} \quad \sum_j \lambda_j y^{(j)} = 0 \\ 1 \quad \sqrt{2} x_i \quad x_i^2 \quad \sqrt{2} x_i x_{i'} \end{aligned}$$

Implicit features

- For dual problem, we need $K_{ik} = \Phi(x^{(j)}) \cdot \Phi(x^{(k)})$
- Kernel trick: with $\Phi(x) = \begin{bmatrix} 1 & \sqrt{2}x_i & x_i^2 & \sqrt{2}x_i x_{i'} \end{bmatrix}$:



• Each of m^2 elements computed in O(n) time (instead of $O(n^2)$)

i < i'

Mercer's Theorem

- Reminder: positive semidefinite matrix $A \geq 0$: $v^{\mathsf{T}}Av \geq 0$ for all vectors v
- Positive semidefinite kernel $K \geq 0$: matrix $K(x^{(j)}, x^{(k)}) \geq 0$ for all datasets
- Mercer's Theorem: if $K \geq 0 \implies K(x, x') = \Phi(x) \cdot \Phi(x')$ for some $\Phi(x)$
- Φ may be hard to calculate
 - May even be infinite dimensional (Hilbert space)
 - Not an issue, only the kernel K(x, x') should be easy to compute ($O(m^2)$) times)

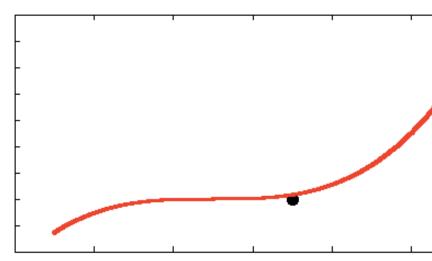
Common kernel functions

• Polynomial: $K(x, x') = (1 + x \cdot x')^d$

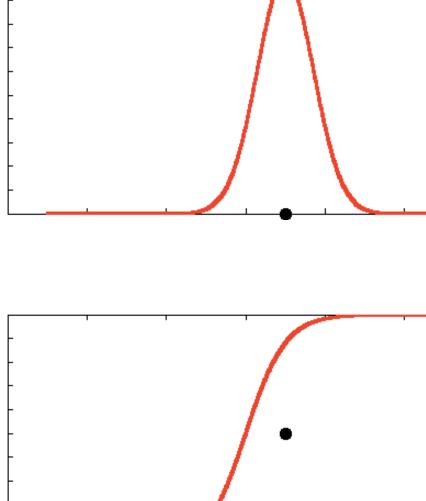
Radial Basis Functions (RBF): K(x, x') =

• Saturating: $K(x, x') = \tanh(ax \cdot x' + c)$

- Domain-specific: textual similarity, genetic code similarity, ...
 - May not be positive semidefinite, and still work well in practice



$$= \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$$



		-
		-
		_
		-

	-
	-
	-
	_
	-
	-
	_

Kernel SVMs

• Define kernel $K : (x, x') \mapsto \mathbb{R}$

• Solve dual QP: $\max_{0 \le \lambda \le R} \sum_{i} \left(\lambda_{j} - \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} \right)$

- Learned parameters = λ (*m* parameters)
 - But also need to store all support vectors (having $\lambda_i > 0$)
- Prediction: $\hat{y}(x) = \operatorname{sign}(w \cdot \Phi(x))$

$$= \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x)\right) = \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K(x^{(j)}, x)\right)$$

$${}^{(j)}y^{(k)}K(x^{(j)}, x^{(k)})\right) \quad \text{s.t. } \sum_{j} \lambda_j y^{(j)} = 0$$

https://cs.stanford.edu/people/karpathy/svmjs/demo/ \bullet

Linear vs. kernel SVMs

- Linear SVMs
 - $\hat{y} = \operatorname{sign}(w \cdot x + b) \Longrightarrow n + 1$ parameters
 - Alternatively: represent by indexes of SVs; usually, #SVs = #parameters
- Kernel SVMs
 - K(x, x') may correspond to high- (possibly infinite-) dimensional $\Phi(x)$
 - Typically more efficient to store the SVs $x^{(j)}$ (not $\Phi(x^{(j)})$)
 - And their corresponding λ_i

Recap

- Maximize margin for separable data
 - Primal QP: minimize $||w||^2$ subject to linear constraints
 - Dual QP: *m* variables, m^2 dot products
- Soft margin for non-separable data
 - Primal problem: regularized hinge loss
 - Dual problem: *m*-dimensional QP
- **Kernel Machines**
 - Dual form involves only pairwise similarity
 - Mercer kernels: equivalent to dot products in implicit high-dimensional space

Today's lecture

Kernel Machines

Gradient boosting

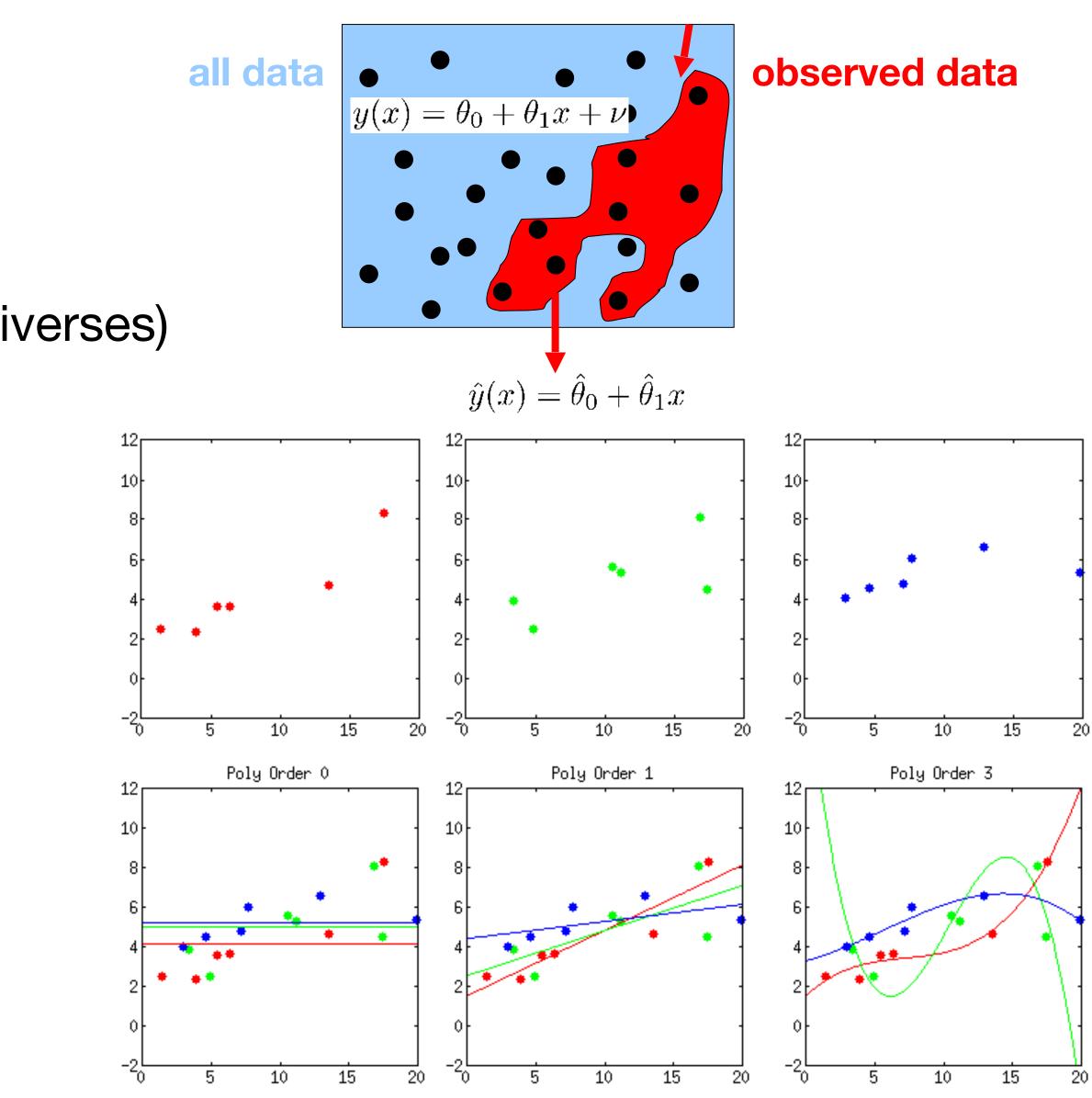
Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Bagging

AdaBoost

Bias vs. variance

- Imagine 3 universes \rightarrow 3 datasets
- A simple model:
 - Poor prediction (on average across universes)
 - High bias
 - Doesn't vary much between universes
 - Low variance
- A complex model: \bullet
 - Low bias
 - High variance

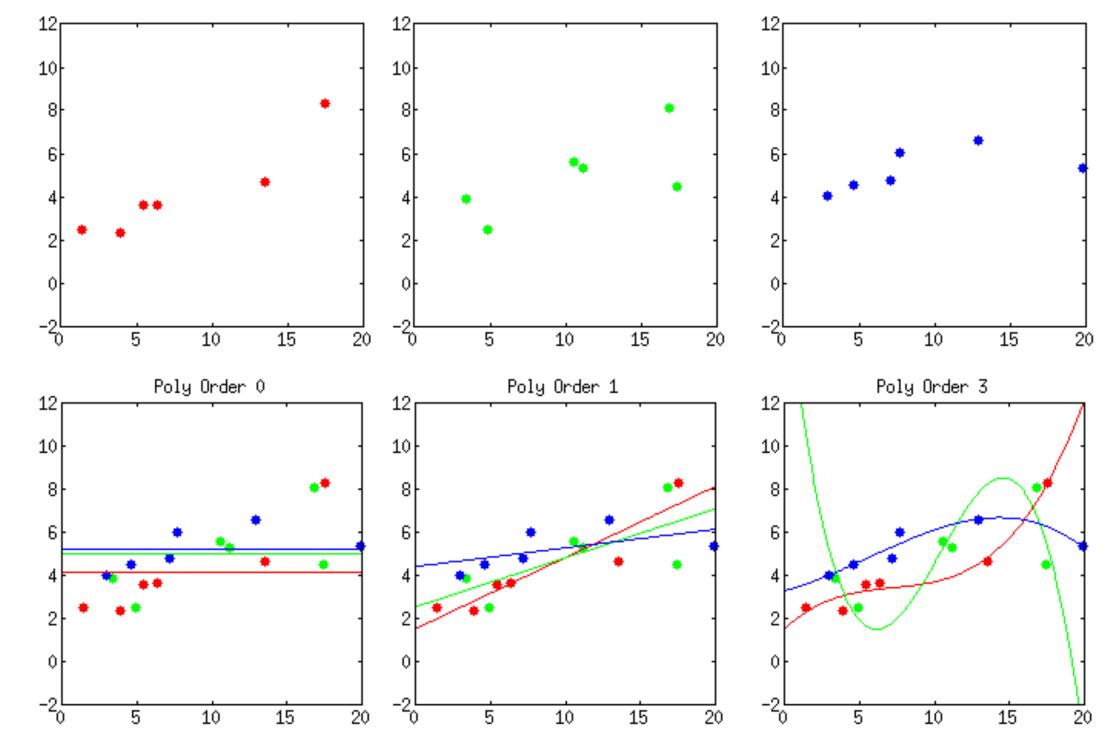


Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Averaging across datasets

- What if we could reach out across universes
 - Average models for different datasets
 - For classification: majority vote of different models
- Same bias
- Lower variance
- But we only have our training set \mathscr{D}
 - Idea: resample $\mathscr{D}_1, \ldots, \mathscr{D}_K$ from \mathscr{D}

- Average models trained for each \mathcal{D}_k



Bootstrap

• Resampling = any method that samples a new dataset from the training set

$$\tilde{\mathcal{D}} = \{(x^{(j_1)}, y^{(j_1)}), \dots, (x^{(j_b)}, y^{(j_b)})\} \quad j_1, \dots, j_b \sim \mathrm{U}(1, \dots, m)$$

- Subsampling = resampling without replacement (choose a subset)
- Bootstrap = resampling with replacement (may repeat same datapoint)
 - Preferred for theory that is less sensitive to good choice of b
 - But has higher variance

Bagging

- Bagging = bootstrap aggregating:
 - Resample *K* datasets $\mathscr{D}_1, \ldots, \mathscr{D}_K$ of size *b*
 - Train K models $\theta_1, \ldots, \theta_K$ on each dataset

Regression: output $f_{\theta} : x \mapsto \frac{1}{K} \sum f_{\theta_k}(x)$

- Classification: output $f_{\theta} : x \mapsto \text{majority}\{f_{\theta_{\mu}}(x)\}$
- Similar to cross-validation (for different purpose), but outputs average model
 - Also, datasets are resampled (with replacement), not a partition

Bagging: properties

- Each model is trained from less data
 - More bias
 - More variance
- Models are averaged
 - Doesn't affect bias (defined as average over models)
 - Variance reduced a lot (roughly as $\frac{1}{\nu}$, under some conditions)

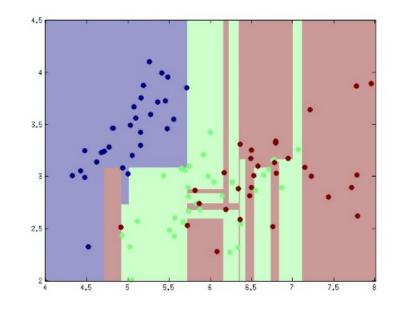
Replacement also adds variance (repetitions throw off the data distribution)

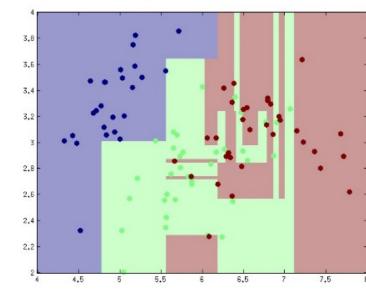
17

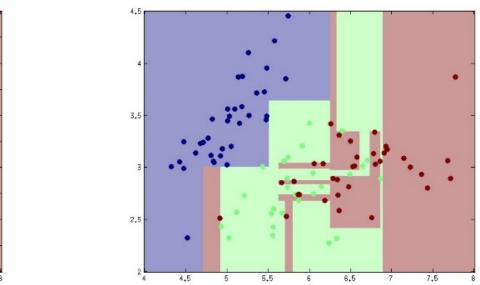
• More bias, less variance \implies less overfitting = simpler model, in a sense

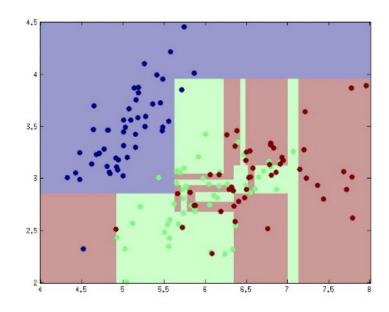
Bagged decision trees

- A model badly in need for complexity reduction: decision trees
 - Very low bias, very high variance
- Randomly resample data
- Train decision tree for each sample; no max depth
 - Still low bias, high variance
- Average / majority decision over models



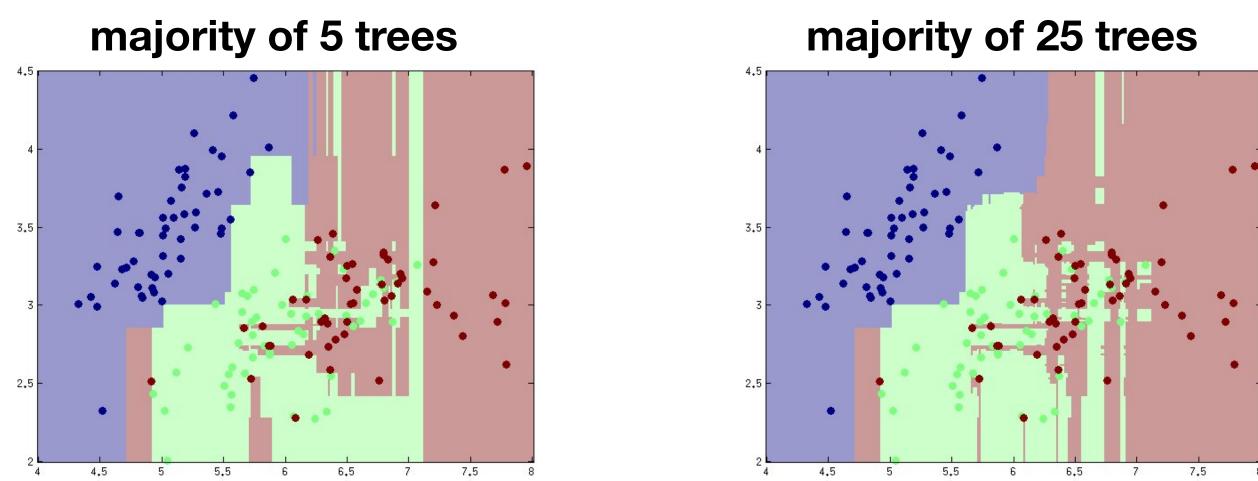




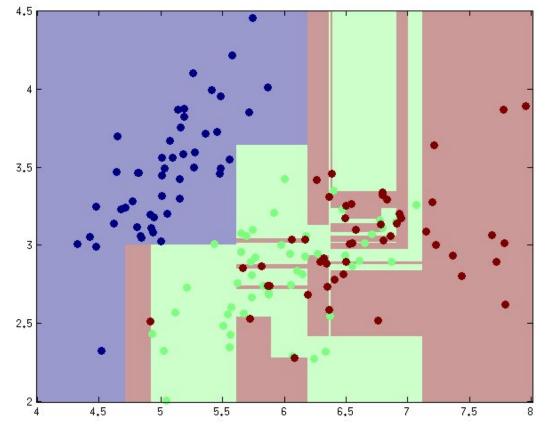


Bagged decision trees

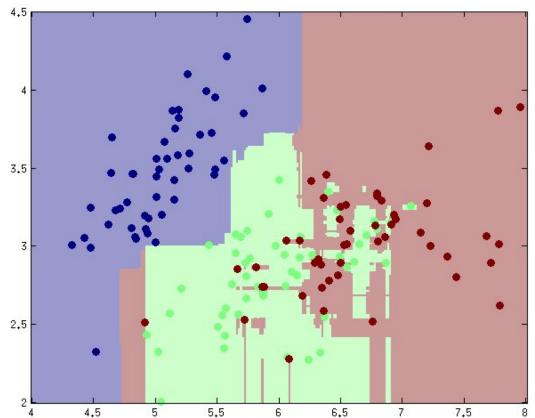
- Average model can't just "memorize" training data
 - Each data point only seen by few models
 - Hopefully still predicted well by majority of other models



full training dataset



majority of 100 trees



Ensemble methods

- Ensemble = "committee" of models: $\hat{v}_{L}(x) = f_{\Omega}(x)$
 - Decisions made by average / majori

May be weighted: better model = high

- - f_{A} trained on held out data = validation of which model should be trusted
 - f_{θ} linear \implies weighted committee, with learned weights

S:
$$y_k(x) = f_{\theta_k}(x)$$

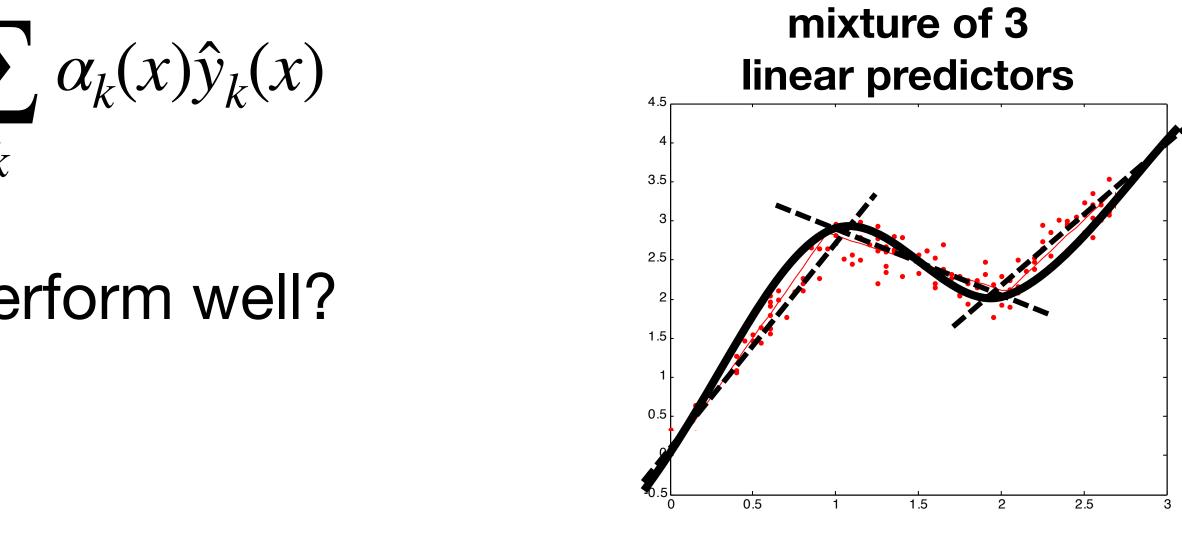
ity vote: $\hat{y}(x) = \frac{1}{K} \sum_k \hat{y}_k(x)$

gher weight:
$$\hat{y}(x) = \sum_{k} \alpha_k \hat{y}_k(x)$$

• Stacking = use ensemble as inputs (as in MLP): $\hat{y}(x) = f_{\theta}(\hat{y}_1(x), \dots, \hat{y}_K(x))$

Mixture of Experts (MoE)

- Experts = models can "specialize", good only for some instances
 - Let weights depend on *x*: $\hat{y}(x) = \sum \alpha_k(x)\hat{y}_k(x)$
- Can we predict which model will perform well?
 - Learn a predictor $\alpha_{\phi}(k \mid x)$
 - E.g., multilogistic regression (softmax



$$\mathbf{x}) \ \alpha_{\phi}(k \,|\, x) = \frac{\exp(\phi_k \cdot x)}{\sum_{k'} \exp(\phi_{k'} \cdot x)}$$

Loss, experts, weights differentiable \implies end-to-end gradient-based learning

Random Forests

- Bagging over decision trees: which feature at root?
 - Much data \implies max info gain stable across data samples
 - Little diversity among models \implies little gained from ensemble
- Random Forests = subsample features
 - Each tree only allowed to use a subset of features
 - Still low, but higher bias
 - Average over trees for lower variance
- Works very well in practice \implies go-to algorithm for small ML tasks

- Ensembles = collections of predictors
 - Combine predictions to improve performance
- Bagging = bootstrap aggregation
 - Reduces model class complexity to mitigate overfitting
 - Resample the data many times (with replacement)
 - For each, train model
 - More bias but less variance
 - Also more compute both at training time and at test time

Today's lecture

Kernel Machines

Gradient boosting

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Bagging

AdaBoost

Growing ensembles

Ensemble = collection of models: \hat{y}

- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add? $\mathscr{L}(\mathbf{y}, \hat{\mathbf{y}}') = \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}')$
- Let's find $f_{K+1}(x)$ that minimizes this loss
 - If we could do this well done in one step
 - Instead, let's do it badly but many times \rightarrow gradually improve

$$\dot{y}(x) = \sum_{k} f_k(x)$$

$$\mathscr{L}(y, \hat{y} + f_{K+1}(x))$$

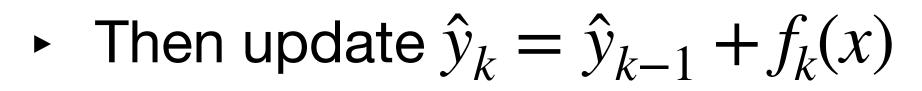
Boosting

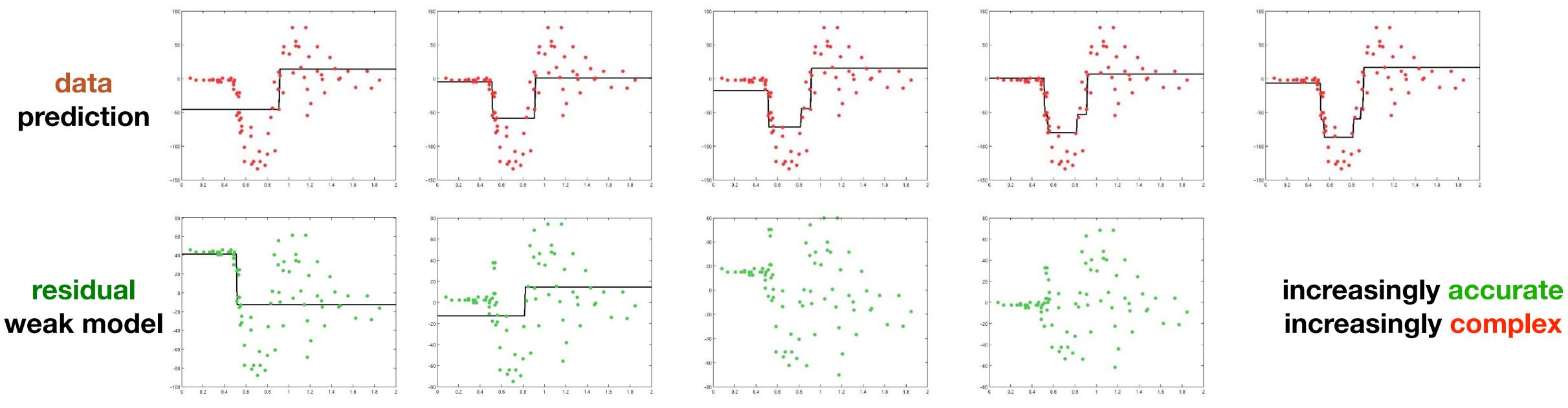
- Question: can we create a strong learner from many weak learners?
 - Weak learner = underfits, but fast and simple (e.g., decision stump, perceptron)
 - Strong learner = performs well but increasingly complex
- Boosting: focus new learners on instances that current ensemble gets wrong
 - Train new learner
 - Measure errors
 - Re-weight data points to emphasize large residuals
 - Repeat

Example: MSE loss

Ensemble:
$$\hat{y}_{K} = \sum_{k} f_{k}(x)$$
; MSE loss: $\mathscr{L}(y, \hat{y}_{k}) = \frac{1}{2}(y - \hat{y}_{k-1} - f_{k}(x))^{2}$

• To minimize: have $f_k(x)$ try to predict





$$x y - \hat{y}_{k-1}$$

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Gradient Boosting

- More generally: pseudo-residuals r

 - For MSE loss: $r_k^{(j)} = y^{(j)} \hat{y}_{k-1}^{(j)}$ as before
- Gradient Boosting:
 - Learn weak model to predict f_k : $x^{(j)}$

Find best step size $\alpha_k = \arg \min_{\alpha} \frac{1}{m}$ α

$$\hat{y}_{k}^{(j)} = -\partial_{\hat{y}} \mathscr{L}(y^{(j)}, \hat{y}) \Big|_{\hat{y} = \hat{y}_{k-1}^{(j)}}$$

• $r_k^{(j)}$ = steepest descent of loss in "prediction space" (how $\hat{y}_{k-1}^{(j)}$ should change)

$$\hat{y}^{(j)} \mapsto r_k^{(j)}$$

- $\sum_{i} \mathscr{L}\left(y^{(j)}, \hat{y}_{k-1}^{(j)} + \alpha f_k(x^{(j)})\right)$ (line search)

• http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

Today's lecture

Kernel Machines

Gradient boosting

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Bagging

AdaBoost

Growing ensembles

Ensemble = collection of models: \hat{y}

- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?
- Let's find α_k , $f_k(x)$ that minimize this loss
 - If we could do this well done in one step
 - Instead, let's do it badly but many times \rightarrow gradually improve

$$\dot{y}(x) = \sum_{k} \alpha_{k} f_{k}(x)$$

 $\mathscr{L}(y, \hat{y}_k) = \mathscr{L}(y, \hat{y}_{k-1} + \alpha_k f_k(x))$

Example: exponential loss

- Exponential loss: $\mathscr{L}(y, \hat{y}) = e^{-y\hat{y}}$
 - Optimal $\hat{y}(x)$: arg min $\mathbb{E}_{y|x}[\mathscr{L}(y, \hat{y})] = \hat{y}$
 - If we can minimize the loss $\implies sign(\hat{y})$ is the more likely label
- Let's find model $f_k : x \mapsto \{+1, -1\}$

 $\sum_{i} \mathscr{L}(y^{(j)}, \hat{y}_{k}^{(j)}) = \sum_{i} \mathscr{L}(y^{(j)}, \hat{y}_{k-1}^{(j)})$ $= (e^{\alpha_k} - e^{-\alpha_k})$ $W_{1}^{(j)}\delta$

independent of

$$= \frac{1}{2} \ln \frac{p(y = +1 | x)}{p(y = -1 | x)}$$
 (proof by derivative)

that minimizes

$$+ \alpha_k f_k(x^{(j)})) = \sum_{j} e^{-y^{(j)} \hat{y}_{k-1}^{(j)}} e^{-y^{(j)} \alpha_k f_k(x^{(j)})}$$
independent of f_k

$$[y^{(j)} \neq f_k(x^{(j)})] + e^{-\alpha_k} \sum_{j} w_{k-1}^{(j)}$$

Minimizing weighted loss

So far, we minimized average loss: $\frac{1}{m}\sum \mathscr{L}(y^{(j)}, \hat{y}^{(j)})$

We can also minimize weighted loss: $\sum w^{(j)} \mathscr{L}(y^{(j)}, \hat{y}^{(j)})$

- Every data point "counts" as $w^{(j)}$

E.g., in decision trees, weighted info gain obtained by $p(y = c) \propto \sum w^{(j)}$ $j:v^{(j)}=c$

In our current case, weighted 0–1 loss: $\sum w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]$

Boosting with exponential loss (cont.)

$$\sum_{j} w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})] \quad \text{with } w_{k-1}^{(j)} = e^{-y^{(j)}\hat{y}_{k-1}^{(j)}}$$

It gives weighted error rate $\epsilon_k = --$

- Plugging into the loss and solving:

• The best classifier to add to the ensemble minimizes weighted 0–1 loss:

$$\sum_{j=1}^{j} w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]$$

 $\sum_{i} W_{k-1}$

$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

• Now add the model and update the ensemble $\hat{y}_k(x) = \hat{y}_{k-1}(x) + \alpha_k f_k(x)$

AdaBoost

• AdaBoost = adaptive boosting:

• Initialize
$$w_0^{(j)} = \frac{1}{m}$$

• Train classifier f_k on training data with weights w_{k-1}

Compute weighted error rate $\epsilon_k = \frac{\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]}{\sum_i w_{k-1}^{(j)}}$

• Compute
$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

• Update weights $w_k^{(j)} = w_{k-1}^{(j)} e^{-y^{(j)}\alpha_k f_k(x^{(j)})}$ (increase weight for misclassified points)

Predict
$$\hat{y}(x) = \text{sign} \sum_{k} \alpha_k f_k(x)$$

- Ensembles = collections of predictors
 - Combine predictions to improve performance
- Boosting: Gradient Boost, AdaBoost, ...
 - Build strong predictor from many weak ones
 - Train sequentially; later predictors focus on mistakes by earlier
 - Weight "hard" examples more

assignments

• Assignment 4 due Friday, Nov 12

• Project abstract due Tue, Nov 16 on Canvas