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Growing ensembles

• Ensemble = collection of models: 


‣ Models should “cover” for each other


• If we could add a model to a given ensemble, what would we add?


 


• Let's find  that minimizes this loss


‣ If we could do this well — done in one step


‣ Instead, let's do it badly but many times  gradually improve

̂y(x) = ∑
k

fk(x)

ℒ(y, ̂y′￼) = ℒ(y, ̂y + fK+1(x))

fK+1(x)

→
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Boosting
• Question: can we create a strong learner from many weak learners?


‣ Weak learner = underfits, but fast and simple (e.g., decision stump, perceptron)


‣ Strong learner = performs well but increasingly complex


• Boosting: focus new learners on instances that current ensemble gets wrong


‣ Train new learner


‣ Measure errors


‣ Re-weight data points to emphasize large residuals


‣ Repeat
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Example: MSE loss

• Ensemble: ; MSE loss: 


‣ To minimize: have  try to predict 


‣ Then update 


̂yK = ∑
k

fk(x) ℒ(y, ̂yk) = 1
2 (y − ̂yk−1 − fk(x))2

fk(x) y − ̂yk−1

̂yk = ̂yk−1 + fk(x)

data 
prediction

residual 
weak model

increasingly accurate 
increasingly complex
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Gradient Boosting

• More generally: pseudo-residuals 


‣  = steepest descent of loss in “prediction space” (how  should change)


‣ For MSE loss:  as before


• Gradient Boosting:


‣ Learn weak model to predict 


‣ Find best step size  (line search)

r( j)
k = − ∂ ̂yℒ(y( j), ̂y)

̂y= ̂y( j)
k−1

r( j)
k ̂y( j)

k−1

r( j)
k = y( j) − ̂y( j)

k−1

fk : x( j) ↦ r( j)
k

αk = arg min
α

1
m ∑

j

ℒ (y( j), ̂y( j)
k−1 + αfk(x( j)))
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Demo

• http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
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Growing ensembles

• Ensemble = collection of models: 


‣ Models should “cover” for each other


• If we could add a model to a given ensemble, what would we add?


 


• Let's find ,  that minimize this loss


‣ If we could do this well — done in one step


‣ Instead, let's do it badly but many times  gradually improve

̂y(x) = ∑
k

αk fk(x)

ℒ(y, ̂yk) = ℒ(y, ̂yk−1 + αk fk(x))

αk fk(x)

→
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Example: exponential loss
• Exponential loss: 


‣ Optimal :  (proof by derivative)


‣ If we can minimize the loss   is the more likely label


• Let's find model  that minimizes


 


 

ℒ(y, ̂y) = e−y ̂y

̂y(x) arg min
̂y

𝔼y|x[ℒ(y, ̂y)] = 1
2 ln p(y = + 1 |x)

p(y = − 1 |x)

⟹ sign( ̂y)

fk : x ↦ {+1, − 1}

∑
j

ℒ(y( j), ̂y( j)
k ) = ∑

j

ℒ(y( j), ̂y( j)
k−1 + αk fk(x( j))) = ∑

j

e−y( j) ̂y( j)
k−1 e−y( j)αk fk(x( j))

= (eαk − e−αk)∑
j

w( j)
k−1δ[y( j) ≠ fk(x( j))] + e−αk ∑

j

w( j)
k−1

independent of fk

w( j)
k−1

independent of fk
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Minimizing weighted loss

• So far, we minimized average loss: 


• We can also minimize weighted loss: 


‣ Every data point “counts” as 


‣ E.g., in decision trees, weighted info gain obtained by 


• In our current case, weighted 0–1 loss: 

1
m ∑

j

ℒ(y( j), ̂y( j))

∑
j

w( j)ℒ(y( j), ̂y( j))

w( j)

p(y = c) ∝ ∑
j:y( j)=c

w( j)

∑
j

w( j)
k−1δ[y( j) ≠ fk(x( j))]



Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

Boosting with exponential loss (cont.)

• The best classifier to add to the ensemble minimizes weighted 0–1 loss:


    with 


• It gives weighted error rate 


• Plugging into the loss and solving: 


• Now add the model and update the ensemble 

∑
j

w( j)
k−1δ[y( j) ≠ fk(x( j))] w( j)

k−1 = e−y( j) ̂y( j)
k−1

ϵk =
∑j w( j)

k−1δ[y( j) ≠ fk(x( j))]

∑j w( j)
k−1

αk = 1
2 ln

1 − ϵk

ϵk

̂yk(x) = ̂yk−1(x) + αk fk(x)
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AdaBoost
• AdaBoost = adaptive boosting:


‣ Initialize 


‣ Train classifier  on training data with weights 


‣ Compute weighted error rate 


‣ Compute 


‣ Update weights  (increase weight for misclassified points)


• Predict 

w( j)
0 = 1

m

fk wk−1

ϵk =
∑j w( j)

k−1δ[y( j) ≠ fk(x( j))]

∑j w( j)
k−1

αk = 1
2 ln

1 − ϵk

ϵk

w( j)
k = w( j)

k−1e
−y( j)αk fk(x( j))

̂y(x) = sign∑
k

αk fk(x)
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Recap

• Ensembles = collections of predictors


‣ Combine predictions to improve performance


• Boosting: Gradient Boost, AdaBoost, ...


‣ Build strong predictor from many weak ones


‣ Train sequentially; later predictors focus on mistakes by earlier


- Weight “hard” examples more
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Unsupervised learning
• Supervised learning: learn decision  from 


• Unsupervised learning: discover patterns in  from 


‣ Explain some features in terms of others


‣ Impute missing values


‣ Estimate data density (for data generation or anomaly detection) 


‣ Generate succinct representation (via feature selection or generation)


• Example: clustering


‣ Represent data point as member of one of few sets (clusters) with some property

f : x ↦ y 𝒟 = {(x( j), y( j))}

x 𝒟 = {x( j)}
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Clustering
• Group data points into few sets


‣ Clustering function: 


‣ Similar to classification, except true labels never seen (latent)


• Examples:


f : x ↦ c

close to each other 
far from others

large margin density
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Clustering & compression

• Suppose we must communicate  using only finite symbols (bit string, word)


‣ We need an encoder  and decoder 


‣ Codebook = dictionary of the possible codewords = values of 


• Vector quantization = encoding vector to the nearest dictionary vector


x

f : x ↦ c g : c ↦ ̂x

c

f gx c ̂x

Voronoi regions
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-Meansk
• Simple clustering algorithm


• Repeat:


‣ Update the clustering = assignment of data points to clusters


‣ Update the cluster's representation to match the assigned points


• Notation:


‣  = data point in the dataset


‣  = number of clusters


‣  = representation of cluster 

xi

k

μc c

xi

μc
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-Meansk
• Iterate until convergence:


‣ For each , find the closest cluster:  


‣ Set each cluster centroid  to the mean of assigned points:  


xi ∈ 𝒟 zi = arg min
c

∥xi − μc∥2

μc μc = 1
mc ∑

i:zi=c

xi

μ1

μ2

μ2

μ1
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-Meansk

• -Means optimizes the MSE loss: 


‣ Optimize with respect to : closest centroid


‣ Optimize with respect to : cluster mean


• Coordinate descent = each step descends on subset of parameters


• -Means is guaranteed to converge:


‣ , and decreasing every step


‣ But convergence may not be to global optimum

k ℒ(z, μ) = ∑
i

∥xi − μzi
∥2

z

μ

k

ℒ ≥ 0

μ1

μ2

μ2

μ1



Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

Sensitivity to initialization
• The loss landscape has many local optima


• Different initializations of  lead to different results


‣ Randomly try various initializations


‣ Use  (“training loss”) to select best initialization


μ

ℒ

ℒ = 223.3 ℒ = 212.6 ℒ = 167.0

Not a problem in the supervised version: 
 given  1-Nearest Neighborμ ⟹
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Initialization methods
• Random


‣ Initialize each centroid to a random data point


‣ Ensures centroids are near some data


‣ Issue: may initialize several centroids close together


• Distance-based


‣ Initialize first centroid to a random data point


‣ Initialize each next centroid to the point farthest from other centroids


‣ Issue: may choose outliers


• Randomized distance-based (“k-means++”)


‣ Randomize over far points


‣ Distribution of next initial centroid: 


‣ Likely to put a cluster far away, in a region with lots of data

p(x) ∝ (d(x, μ))2
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Initialization methods
• Random
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‣ Initialize each next centroid to the point farthest from other centroids


‣ Issue: may choose outliers


• Randomized distance-based (“k-means++”)
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Out-of-sample clustering

• How can we use clustering to assign new data points?


• In -Means: choose nearest centroid


‣ 1-NN with learned centroids


k
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Choosing k
• How to choose the number of clusters ?


• More clusters  can make them closer to more points


‣  Loss  generally decreases with  (validation loss too...)


‣ Larger   larger model complexity


• One solution: penalize complexity; loss = MSE + regularizer


‣ More clusters may increase loss if they don't help much


‣ Example: simplified BIC 

k

⟹

⟹ ℒ(z, μ) = ∑
i

∥xi − μzi
∥2 k

k ⟹

ℒ(z, μ) = log ( 1
md ∑

i

∥xi − μzi
∥2) + k log m

m

k = 3 k = 5 k = 10

k

ℒ
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Choosing k
• How to choose the number of clusters ?


• More clusters  can make them closer to more points


‣  Loss  generally decreases with  (validation loss too...)


‣ Larger   larger model complexity


• One solution: penalize complexity; loss = MSE + regularizer


‣ More clusters may increase loss if they don't help much


‣ Example: simplified BIC 

k

⟹

⟹ ℒ(z, μ) = ∑
i

∥xi − μzi
∥2 k

k ⟹

ℒ(z, μ) = log ( 1
md ∑

i

∥xi − μzi
∥2) + k log m

m

k

ℒ
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Recap: -meansk
• Clusters represented as centroids in feature space


• Initialize centroids; repeat:


‣ Assign each data point to its closest centroid


‣ Move centroids minimize mean squared error (i.e. means of assigned points)


• Coordinate descent on MSE loss


• Prone to local optima; initialization important


• Can use to assign out-of-sample data


• Choosing  = #clusters: model selection; penalize for complexity (BIC, etc.)k
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Hierarchical agglomerative clustering
• Another simple clustering algorithm


• Define distance (dissimilarity) between clusters 


• Initialize: every data point is its own cluster


• Repeat:


‣ Compute distance between each pair of clusters


‣ Merge two closest clusters


• Output: tree of merge operations (“dendrogram”)


• Complexity: in  iterations, merge distances and sort   

d(Ci, Cj)

m − 1 ⟹ O(m2 log m)
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Iteration 1
• Build clustering hierarchically, bottom up (“agglomerative”)


data

height of join 
indicates dissimilarity

dendrogram
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Iteration 2
• Build clustering hierarchically, bottom up (“agglomerative”)


data dendrogram
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Iteration 3
• Build clustering hierarchically, bottom up (“agglomerative”)


data dendrogram
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Iteration m − 3

   

   

      

     

• Build clustering hierarchically, bottom up (“agglomerative”)


data dendrogram
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Iteration m − 2

   

   

      

     

• Build clustering hierarchically, bottom up (“agglomerative”)


data dendrogram
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Iteration m − 1
• Build clustering hierarchically, bottom up (“agglomerative”)


   

   

      

     

data dendrogram
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From dendrogram to clusters
• Given the hierarchy of clusters, choose a frontier of subtrees = clusters


‣ For a given , or a given level of dissimilarityk

   

   

      

     

data dendrogram
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Distance measures

• 


• 


•



• 


• Important property: iterative computation


 

dmin(Ci, Cj) = min
x∈Ci,y∈Cj

∥x − y∥2

dmax(Ci, Cj) = max
x∈Ci,y∈Cj

∥x − y∥2

davg(Ci, Cj) = 1
|Ci | ⋅ |Cj | ∑

x∈Ci,y∈Cj

∥x − y∥2

dmeans(Ci, Cj) = ∥μi − μj∥2

d(Ci ∪ Cj, Ck) = f(d(Ci, Ck), d(Cj, Ck))

produces minimum spanning tree

avoids elongated clusters
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Distance measures
• Dissimilarity measure affects the clustering qualitatively


single linkage (min) complete linkage (max)
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Recap: agglomerative clustering

• Hierarchical clustering: build “dendrogram”


‣ Bottom-up: agglomerative clustering


• Successively merge closest pair of clusters


‣ Dendrogram = tree of merges & distances


‣ Complexity = 


• Clusters quality depend on choice of a distance / dissimilarity measure

O(m2 log m)
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