# CS 273A: Machine Learning Fall 2021 Lecture 14: Clustering

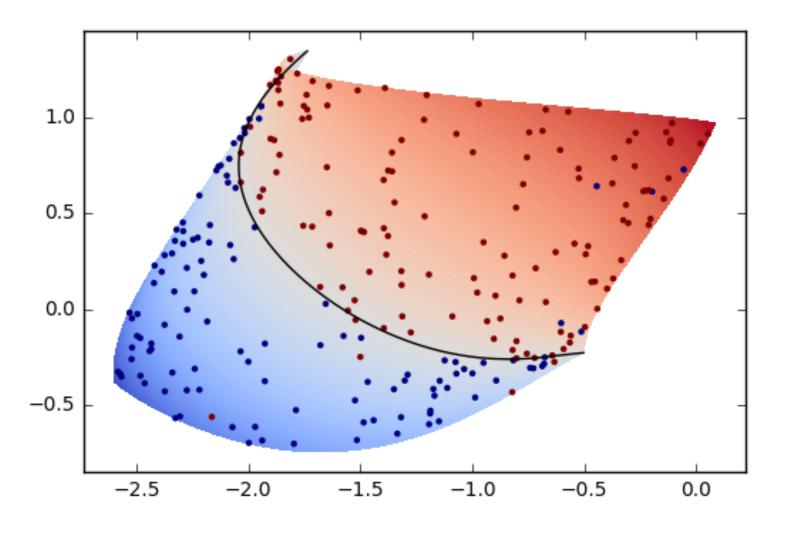
## Roy Fox

**Department of Computer Science** Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

















Project abstract due today on Canvas

## • Assignment 5 due Tuesday, Nov 23

## **Today's lecture**

## **Gradient boosting**

## Agglomerative clustering

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

### AdaBoost

### *k*-Means

# Growing ensembles

**Ensemble** = collection of models:  $\hat{y}$ 

- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?  $\mathscr{L}(\mathbf{y}, \hat{\mathbf{y}}') = \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}')$
- Let's find  $f_{K+1}(x)$  that minimizes this loss
  - If we could do this well done in one step
  - Instead, let's do it badly but many times  $\rightarrow$  gradually improve

$$\dot{y}(x) = \sum_{k} f_k(x)$$

$$\mathscr{L}(y, \hat{y} + f_{K+1}(x))$$

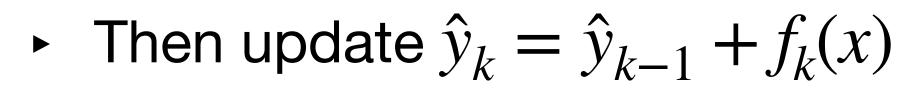
# Boosting

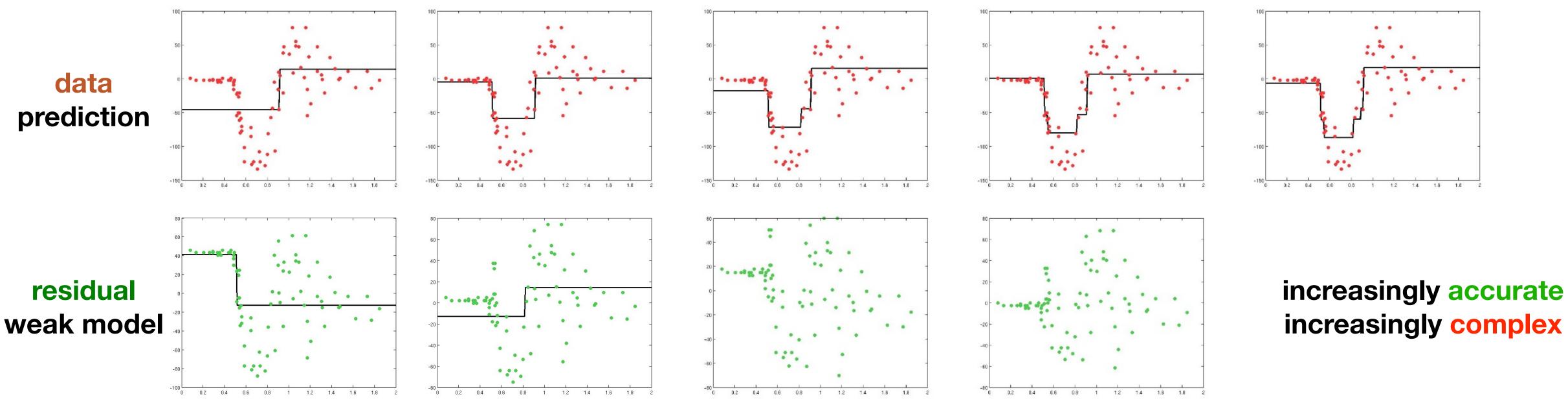
- Question: can we create a strong learner from many weak learners?
  - Weak learner = underfits, but fast and simple (e.g., decision stump, perceptron)
  - Strong learner = performs well but increasingly complex
- Boosting: focus new learners on instances that current ensemble gets wrong
  - Train new learner
  - Measure errors
  - Re-weight data points to emphasize large residuals
  - Repeat

## **Example: MSE loss**

Ensemble: 
$$\hat{y}_{K} = \sum_{k} f_{k}(x)$$
; MSE loss:  $\mathscr{L}(y, \hat{y}_{k}) = \frac{1}{2}(y - \hat{y}_{k-1} - f_{k}(x))^{2}$ 

• To minimize: have  $f_k(x)$  try to predict





$$x y - \hat{y}_{k-1}$$



# **Gradient Boosting**

- More generally: pseudo-residuals r

  - For MSE loss:  $r_k^{(j)} = y^{(j)} \hat{y}_{k-1}^{(j)}$  as before
- Gradient Boosting:
  - Learn weak model to predict  $f_k$ :  $x^{(j)}$

Find best step size  $\alpha_k = \arg\min_{\alpha} \frac{1}{m}$ α

$$\hat{y}_{k}^{(j)} = -\partial_{\hat{y}} \mathscr{L}(y^{(j)}, \hat{y}) \Big|_{\hat{y} = \hat{y}_{k-1}^{(j)}}$$

•  $r_k^{(j)}$  = steepest descent of loss in "prediction space" (how  $\hat{y}_{k-1}^{(j)}$  should change)

$$\hat{y}^{(j)} \mapsto r_k^{(j)}$$
  
 $\sum_{i} \mathscr{L}\left(y^{(j)}, \hat{y}_{k-1}^{(j)} + \alpha f_k(x^{(j)})\right) \text{ (line search)}$ 



### • http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

## **Today's lecture**

## **Gradient boosting**



## Agglomerative clustering

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

### AdaBoost

### *k*-Means

# Growing ensembles

**Ensemble** = collection of models:  $\hat{y}$ 

- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?
- Let's find  $\alpha_k$ ,  $f_k(x)$  that minimize this loss
  - If we could do this well done in one step
  - Instead, let's do it badly but many times  $\rightarrow$  gradually improve

$$\dot{y}(x) = \sum_{k} \alpha_{k} f_{k}(x)$$

 $\mathscr{L}(y, \hat{y}_k) = \mathscr{L}(y, \hat{y}_{k-1} + \alpha_k f_k(x))$ 

## **Example: exponential loss**

- Exponential loss:  $\mathscr{L}(y, \hat{y}) = e^{-y\hat{y}}$ 
  - Optimal  $\hat{y}(x)$ : arg min  $\mathbb{E}_{y|x}[\mathscr{L}(y, \hat{y})] = \hat{y}$
  - If we can minimize the loss  $\implies sign(\hat{y})$  is the more likely label
- Let's find model  $f_k : x \mapsto \{+1, -1\}$

 $\sum_{i} \mathscr{L}(y^{(j)}, \hat{y}_{k}^{(j)}) = \sum_{i} \mathscr{L}(y^{(j)}, \hat{y}_{k-1}^{(j)})$  $=(e^{\alpha_k}-e^{-1})$  $W_{1}^{(j)}\delta$ 

independent of

$$= \frac{1}{2} \ln \frac{p(y = +1 | x)}{p(y = -1 | x)}$$
 (proof by derivative)

that minimizes  

$$+ \alpha_k f_k(x^{(j)})) = \sum_j e^{-y^{(j)} \hat{y}_{k-1}^{(j)}} e^{-y^{(j)} \alpha_k f_k(x^{(j)})}$$
independent of  $f_k$ 

$$[y^{(j)} \neq f_k(x^{(j)})] + e^{-\alpha_k} \sum_j w_{k-1}^{(j)}$$

# Minimizing weighted loss

So far, we minimized average loss:  $\frac{1}{m}\sum \mathscr{L}(y^{(j)}, \hat{y}^{(j)})$ 

We can also minimize weighted loss:  $\sum w^{(j)} \mathscr{L}(y^{(j)}, \hat{y}^{(j)})$ 

- Every data point "counts" as  $w^{(j)}$

E.g., in decision trees, weighted info gain obtained by  $p(y = c) \propto \sum w^{(j)}$  $j:v^{(j)}=c$ 

In our current case, weighted 0–1 loss:  $\sum w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]$ 

# **Boosting with exponential loss (cont.)**

$$\sum_{j} w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})] \quad \text{with } w_{k-1}^{(j)} = e^{-y^{(j)}\hat{y}_{k-1}^{(j)}}$$

It gives weighted error rate  $\epsilon_k = --$ 

- Plugging into the loss and solving:

• The best classifier to add to the ensemble minimizes weighted 0–1 loss:

$$\sum_{j=1}^{j} w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]$$

 $\sum_{i} W_{k-1}$ 

$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

• Now add the model and update the ensemble  $\hat{y}_k(x) = \hat{y}_{k-1}(x) + \alpha_k f_k(x)$ 

## AdaBoost

• AdaBoost = adaptive boosting:

• Initialize 
$$w_0^{(j)} = \frac{1}{m}$$

• Train classifier  $f_k$  on training data with weights  $w_{k-1}$ 

Compute weighted error rate  $\epsilon_k = \frac{\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]}{\sum_i w_{k-1}^{(j)}}$ 

• Compute 
$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

• Update weights  $w_k^{(j)} = w_{k-1}^{(j)} e^{-y^{(j)}\alpha_k f_k(x^{(j)})}$  (increase weight for misclassified points)

Predict 
$$\hat{y}(x) = \operatorname{sign} \sum_{k} \alpha_k f_k(x)$$



- Ensembles = collections of predictors
  - Combine predictions to improve performance
- Boosting: Gradient Boost, AdaBoost, ...
  - Build strong predictor from many weak ones
  - Train sequentially; later predictors focus on mistakes by earlier
    - Weight "hard" examples more

## **Today's lecture**

## **Gradient boosting**



## Agglomerative clustering

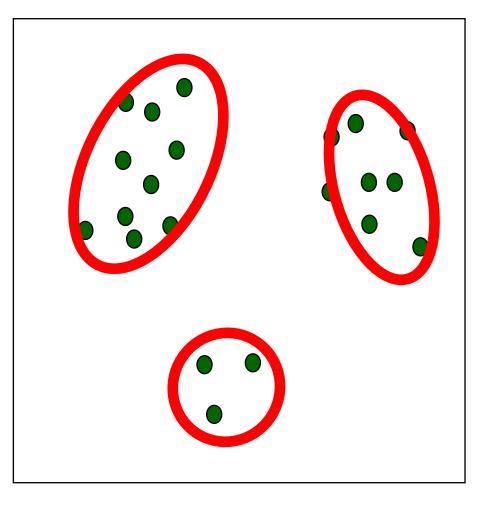
Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

### AdaBoost

### *k*-Means

# **Unsupervised** learning

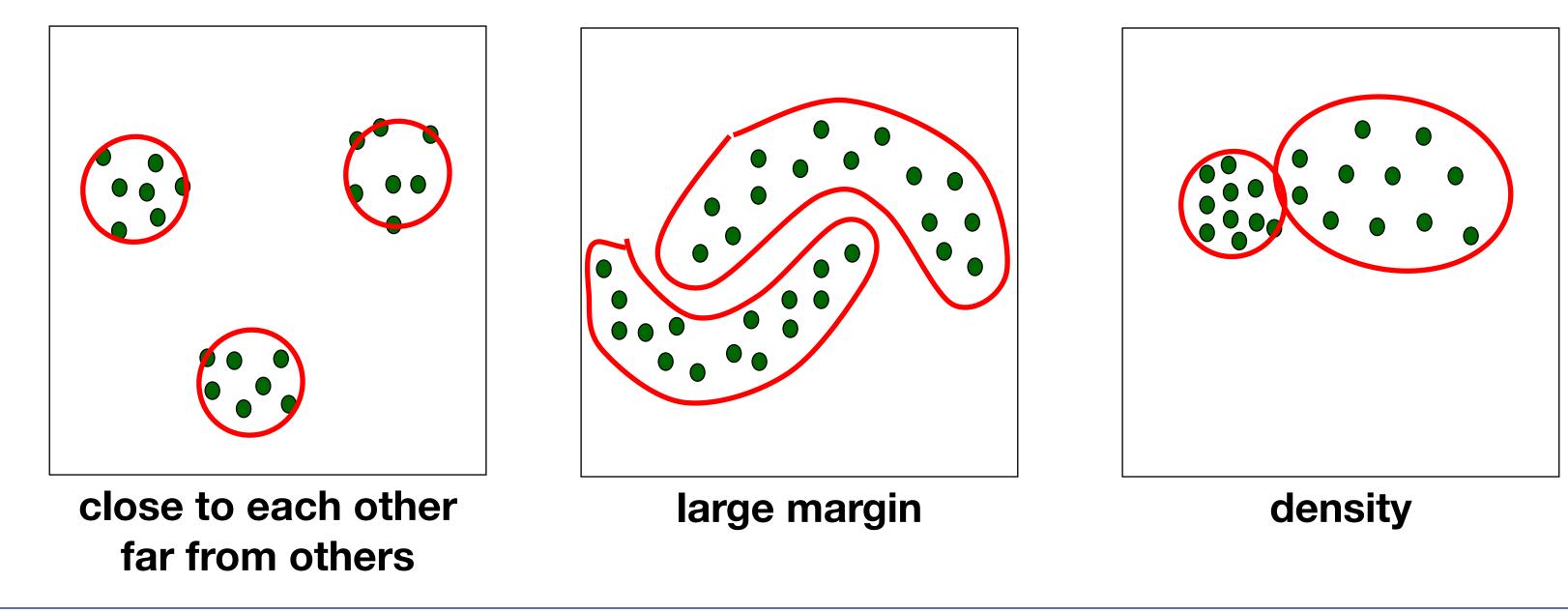
- Supervised learning: learn decision  $f: x \mapsto y$  from  $\mathcal{D} = \{(x^{(j)}, y^{(j)})\}$
- Unsupervised learning: discover patterns in x from  $\mathcal{D} = \{x^{(j)}\}$ 
  - Explain some features in terms of others
  - Impute missing values
  - Estimate data density (for data generation or anomaly detection)
  - Generate succinct representation (via feature selection or generation)
- Example: clustering



## Represent data point as member of one of few sets (clusters) with some property

# Clustering

- Group data points into few sets
  - Clustering function:  $f: x \mapsto c$
  - Similar to classification, except true labels never seen (latent)
- Examples:

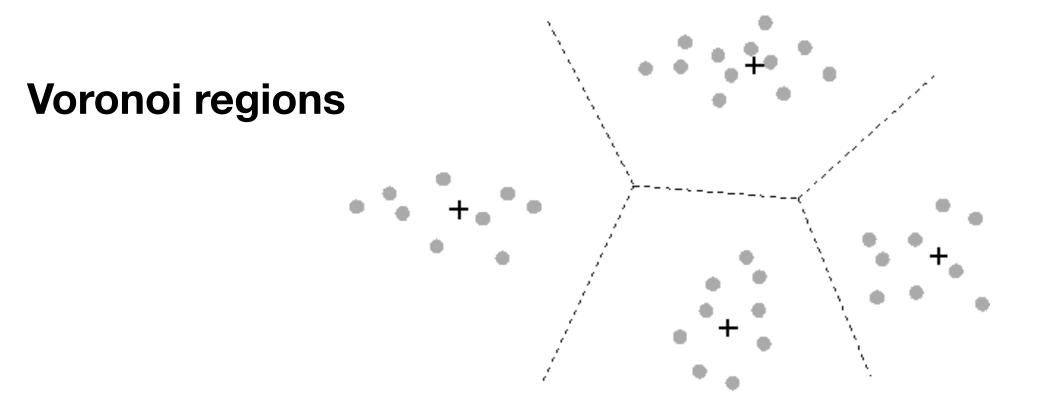


# Clustering & compression

- - We need an encoder  $f: x \mapsto c$  and decoder  $g: c \mapsto \hat{x}$

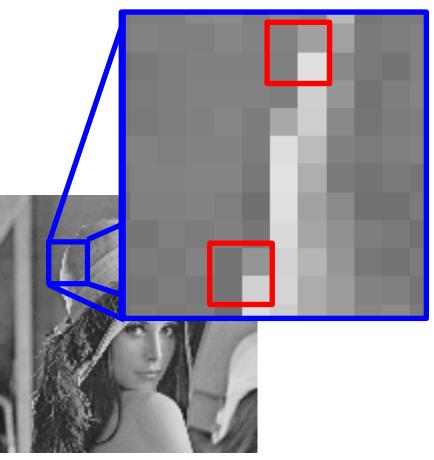
*x* —

- Codebook = dictionary of the possible codewords = values of C
- Vector quantization = encoding vector to the nearest dictionary vector



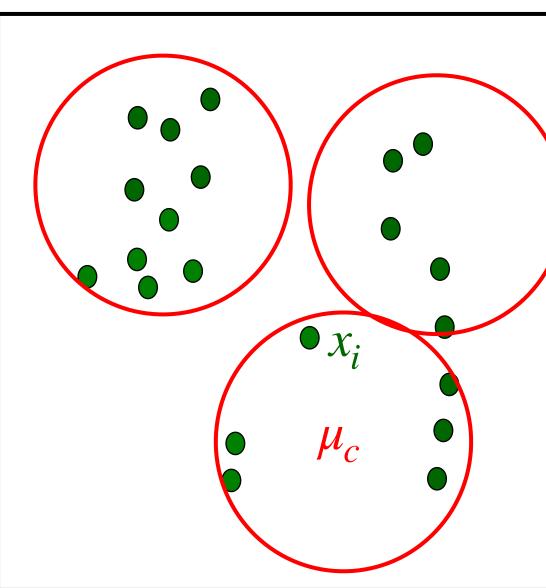
## g $\rightarrow \hat{x}$

• Suppose we must communicate x using only finite symbols (bit string, word)



## k-Means

- Simple clustering algorithm
- Repeat:
  - Update the clustering = assignment of data points to clusters
  - Update the cluster's representation to match the assigned points
- Notation:
  - $x_i = \text{data point in the dataset}$
  - k = number of clusters
  - $\mu_c$  = representation of cluster *c*

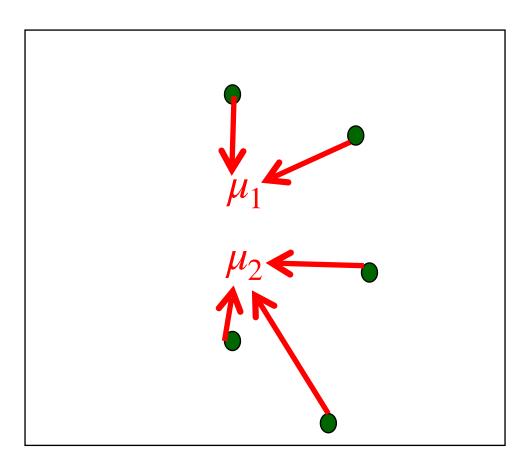




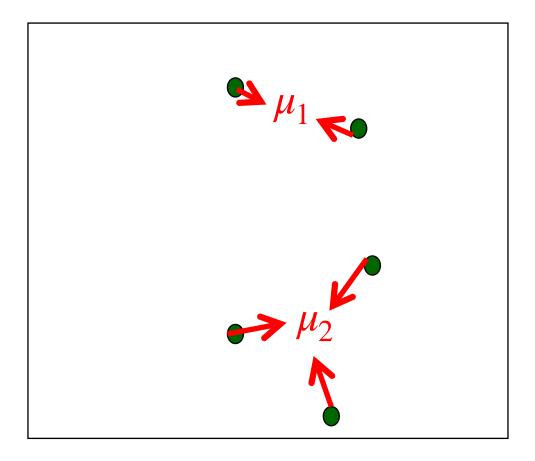
## *k*-Means

- Iterate until convergence:
  - For each  $x_i \in \mathcal{D}$ , find the closest cluster of  $x_i \in \mathcal{D}$ .

Set each cluster centroid  $\mu_c$  to the mean of assigned points:  $\mu_c = \frac{1}{m_c} \sum_{i:z_i=c} x_i$ 



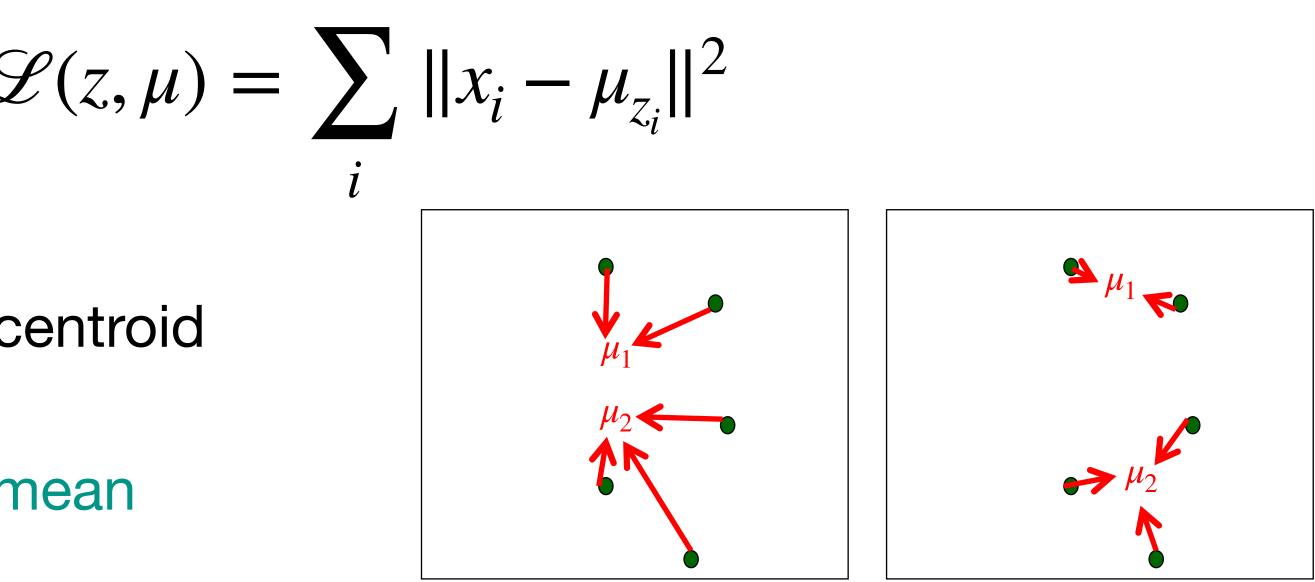
uster: 
$$z_i = \arg\min_c ||x_i - \mu_c||^2$$





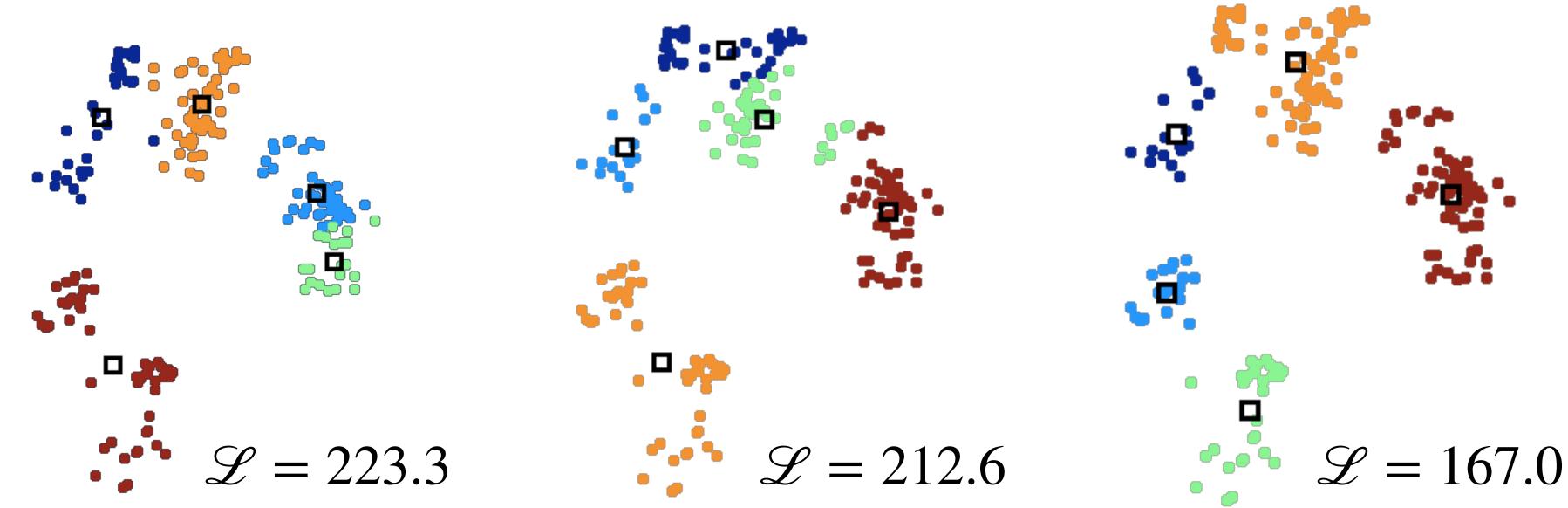
*k*-Means optimizes the MSE loss:  $\mathscr{L}(z,\mu) = \sum ||x_i - \mu_{z_i}||^2$ 

- Optimize with respect to z: closest centroid
- Optimize with respect to  $\mu$ : cluster mean
- Coordinate descent = each step descends on subset of parameters
- k-Means is guaranteed to converge:
  - 0, and decreasing every step ► *£* >
  - But convergence may not be to global optimum



# Sensitivity to initialization

- The loss landscape has many local optima
- Different initializations of  $\mu$  lead to different results
  - Randomly try various initializations
  - Use  $\mathscr{L}$  ("training loss") to select best initialization



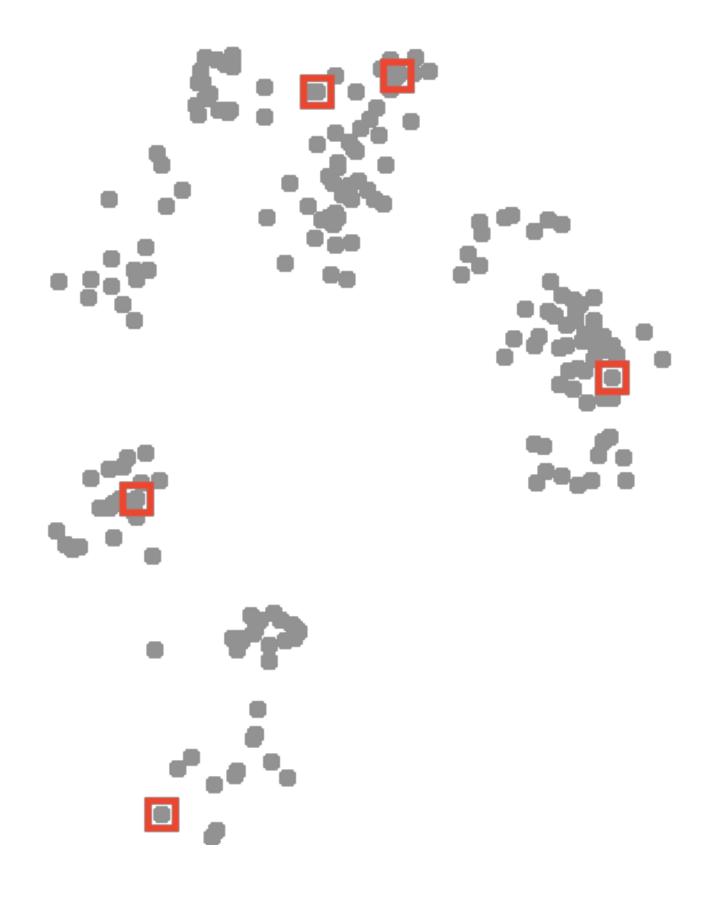
Not a problem in the supervised version:  $\mu$  given  $\implies$  1-Nearest Neighbor



# Initialization methods

### Random

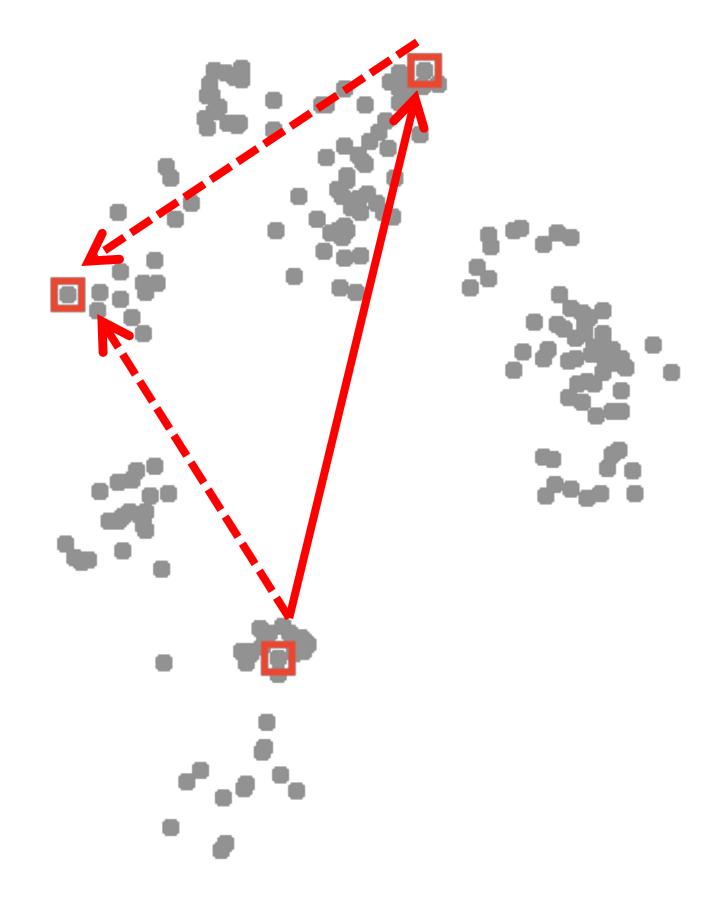
- Initialize each centroid to a random data point
- Ensures centroids are near some data
- Issue: may initialize several centroids close together



# Initialization methods

### • Random

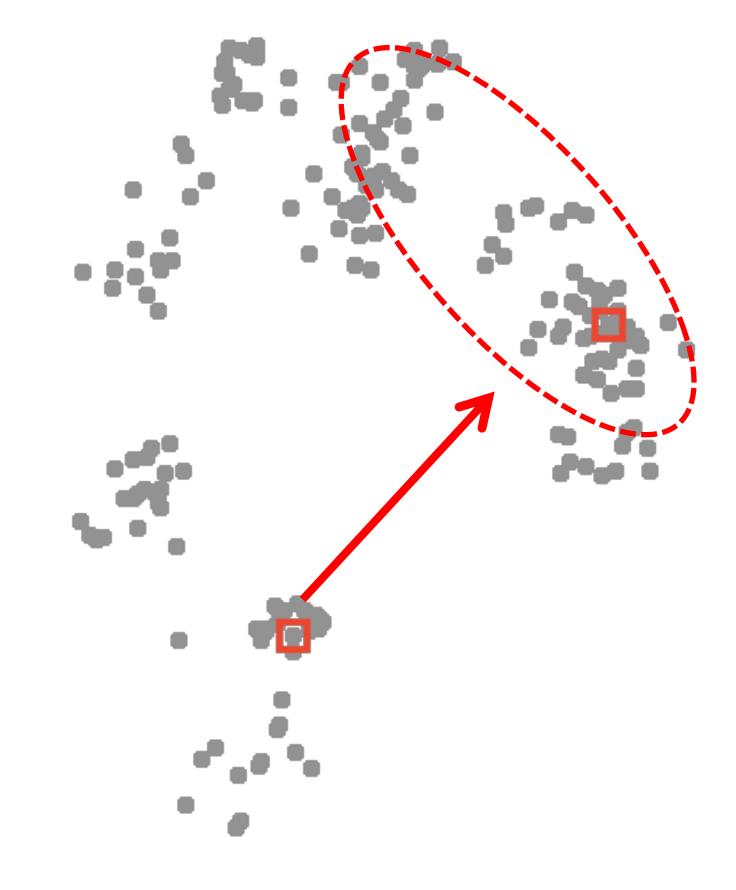
- Initialize each centroid to a random data point
- Ensures centroids are near some data
- Issue: may initialize several centroids close together
- Distance-based
  - Initialize first centroid to a random data point
  - Initialize each next centroid to the point farthest from other centroids
  - Issue: may choose outliers



# Initialization methods

### Random

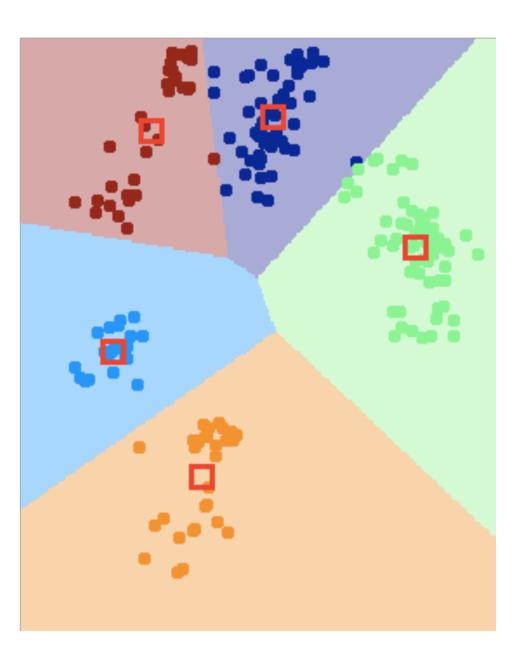
- Initialize each centroid to a random data point
- Ensures centroids are near some data
- Issue: may initialize several centroids close together
- **Distance-based** 
  - Initialize first centroid to a random data point
  - Initialize each next centroid to the point farthest from other centroids
  - Issue: may choose outliers
- Randomized distance-based ("k-means++")
  - Randomize over far points
  - Distribution of next initial centroid:  $p(x) \propto (d(x, \mu))^2$
  - Likely to put a cluster far away, in a region with lots of data



## **Out-of-sample clustering**

- How can we use clustering to assign new data points?
- In k-Means: choose nearest centroid
  - 1-NN with learned centroids



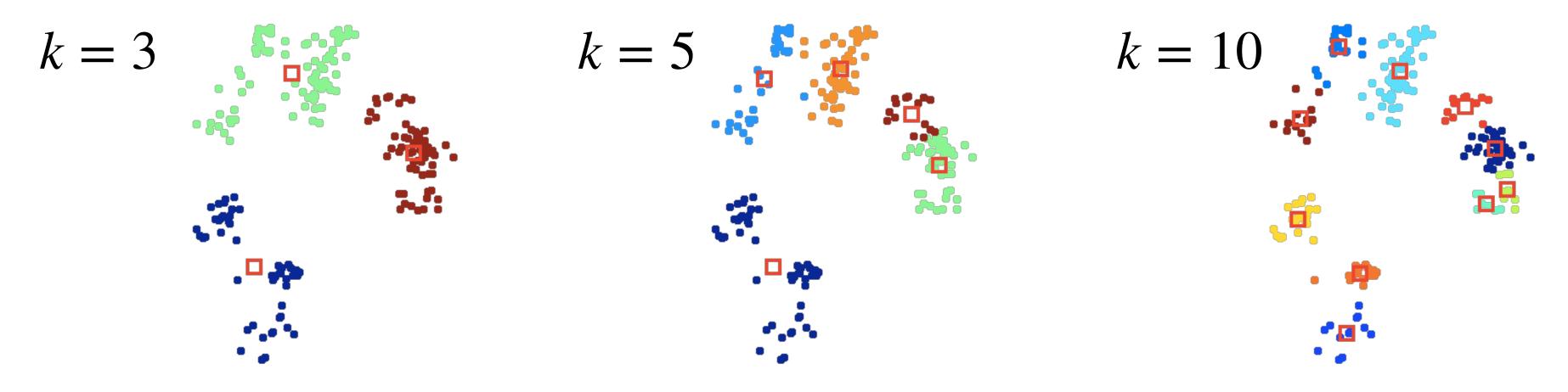


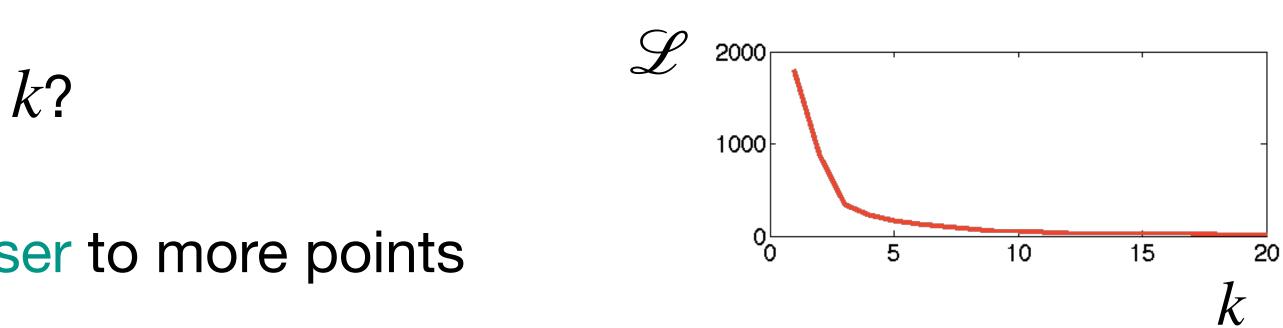
# Choosing k

- How to choose the number of clusters k?
- More clusters  $\implies$  can make them closer to more points

$$\implies \text{Loss } \mathscr{L}(z,\mu) = \sum_{i} ||x_i - \mu_{z_i}||^2 ge$$

• Larger  $k \Longrightarrow$  larger model complexity





enerally decreases with k (validation loss too...)

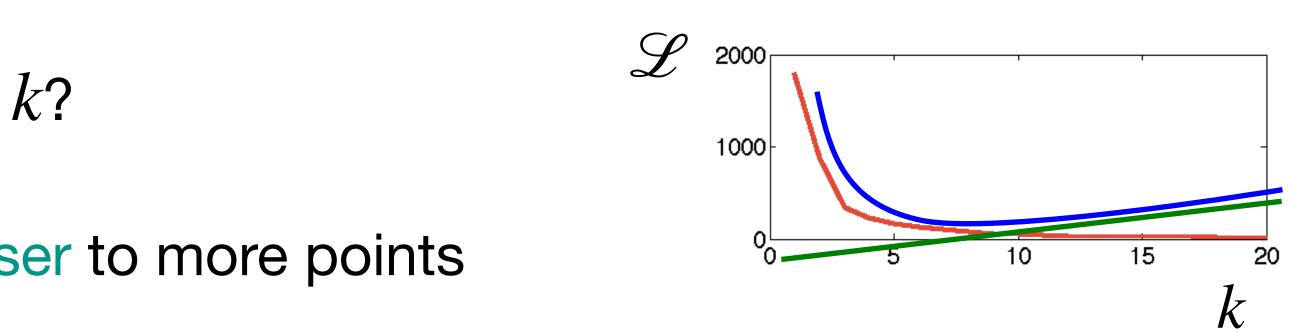
# Choosing k

- How to choose the number of clusters k?
- More clusters  $\implies$  can make them closer to more points

$$\Longrightarrow \text{Loss } \mathscr{L}(z,\mu) = \sum_{i} ||x_i - \mu_{z_i}||^2 \text{gen}$$

- Larger  $k \Longrightarrow$  larger model complexity
- One solution: penalize complexity; loss = MSE + regularizer
  - More clusters may increase loss if they don't help much

Example: simplified BIC  $\mathscr{L}(z,\mu) = \log z$ 



enerally decreases with k (validation loss too...)

$$\left(\frac{1}{md}\sum_{i}\|x_{i}-\mu_{z_{i}}\|^{2}\right)+k\frac{\log m}{m}$$

# Recap: k-means

- Clusters represented as centroids in feature space
- Initialize centroids; repeat:
  - Assign each data point to its closest centroid
- Coordinate descent on MSE loss
- Prone to local optima; initialization important
- Can use to assign out-of-sample data

Move centroids minimize mean squared error (i.e. means of assigned points)

• Choosing k =#clusters: model selection; penalize for complexity (BIC, etc.)

## **Today's lecture**

## **Gradient boosting**



## Agglomerative clustering

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

### AdaBoost

### *k*-Means

# Hierarchical agglomerative clustering

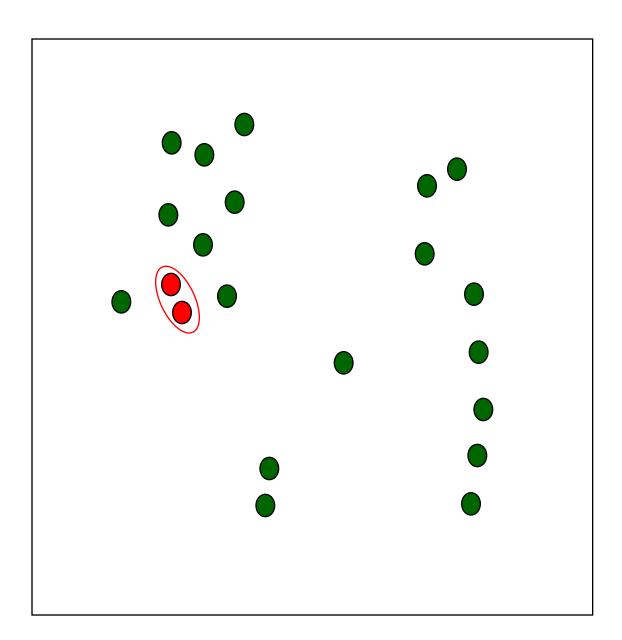
- Another simple clustering algorithm
- Define distance (dissimilarity) between clusters  $d(C_i, C_i)$
- Initialize: every data point is its own cluster
- Repeat:
  - Compute distance between each pair of clusters
  - Merge two closest clusters
- Output: tree of merge operations ("dendrogram")

• Complexity: in m - 1 iterations, merge distances and sort  $\implies O(m^2 \log m)$ 

## **Iteration 1**

• Build clustering hierarchically, bottom up ("agglomerative")

## data



## dendrogram

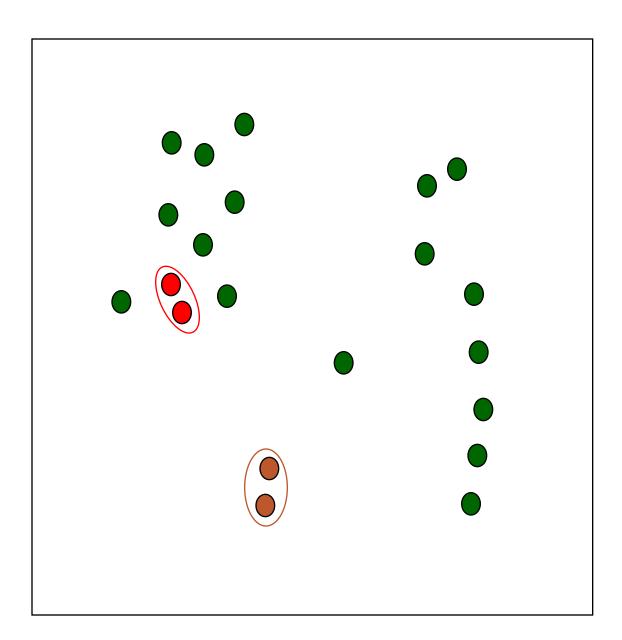


height of join indicates dissimilarity

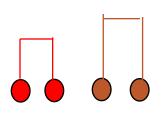
## **Iteration 2**

• Build clustering hierarchically, bottom up ("agglomerative")

## data



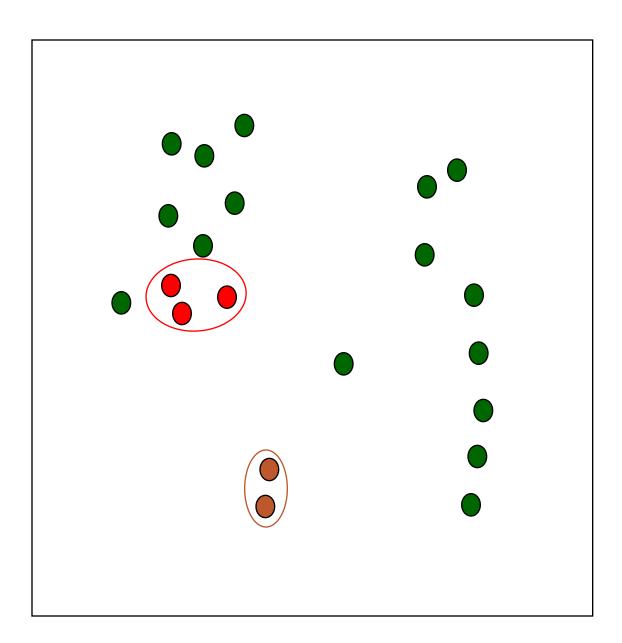
## dendrogram



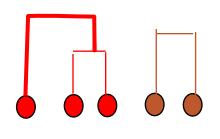
## **Iteration 3**

• Build clustering hierarchically, bottom up ("agglomerative")

## data



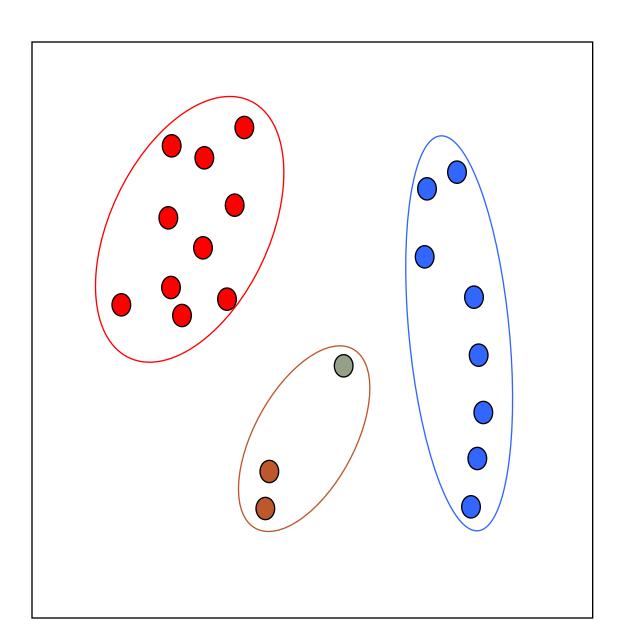
## dendrogram



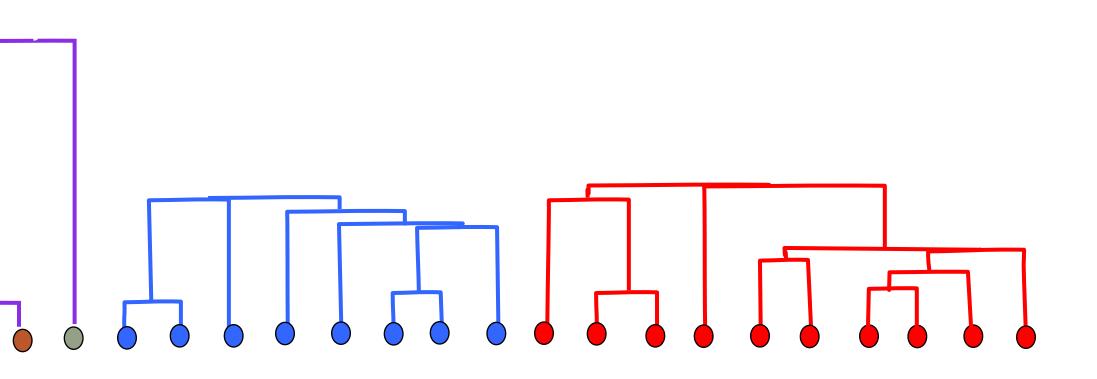
## **Iteration** *m* – 3

• Build clustering hierarchically, bottom up ("agglomerative")

## data



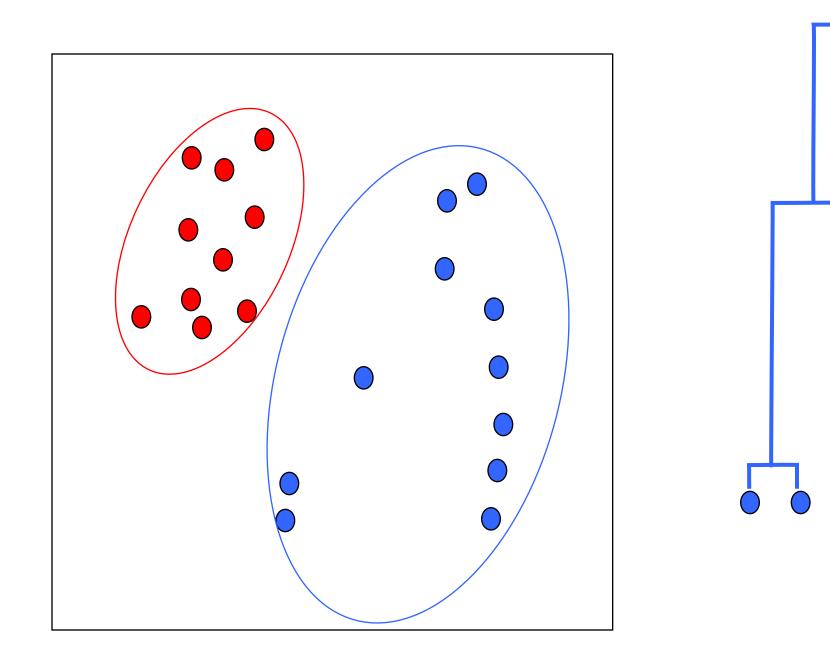
## dendrogram



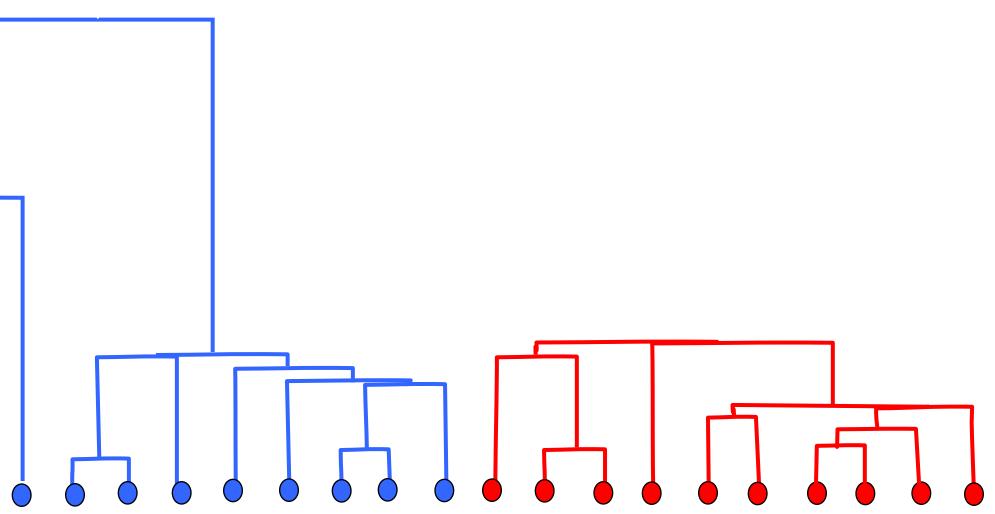
## **Iteration** *m* – 2

• Build clustering hierarchically, bottom up ("agglomerative")

### data



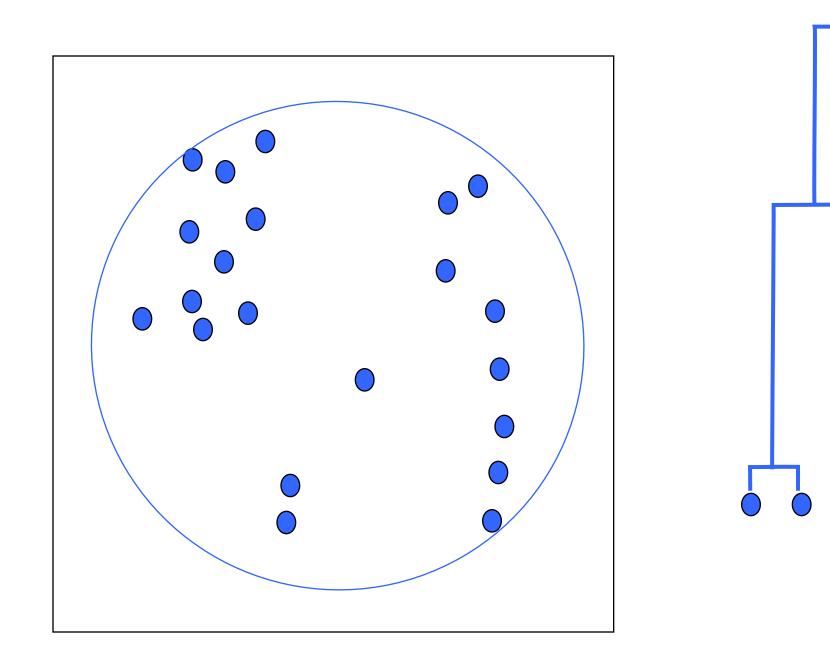
### dendrogram



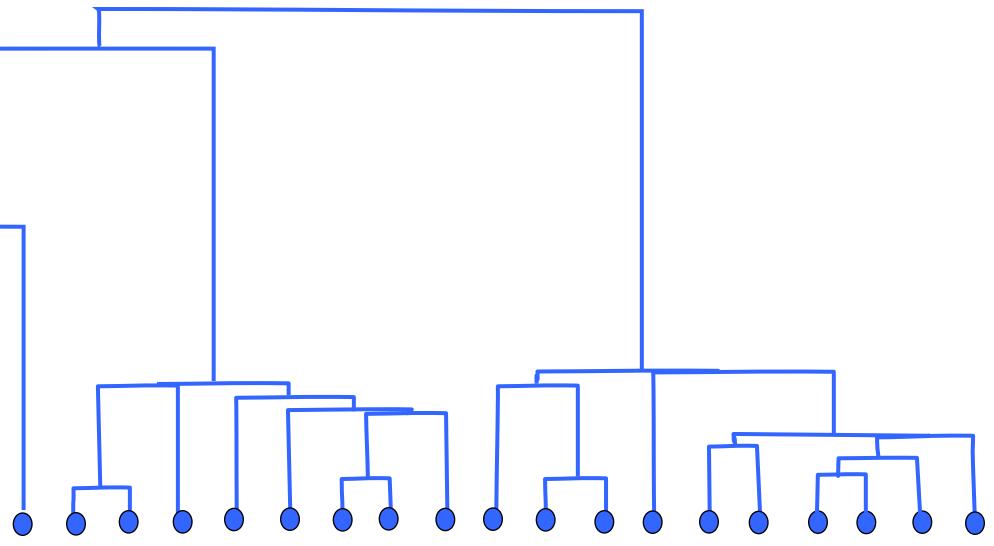
## Iteration m-1

• Build clustering hierarchically, bottom up ("agglomerative")

### data



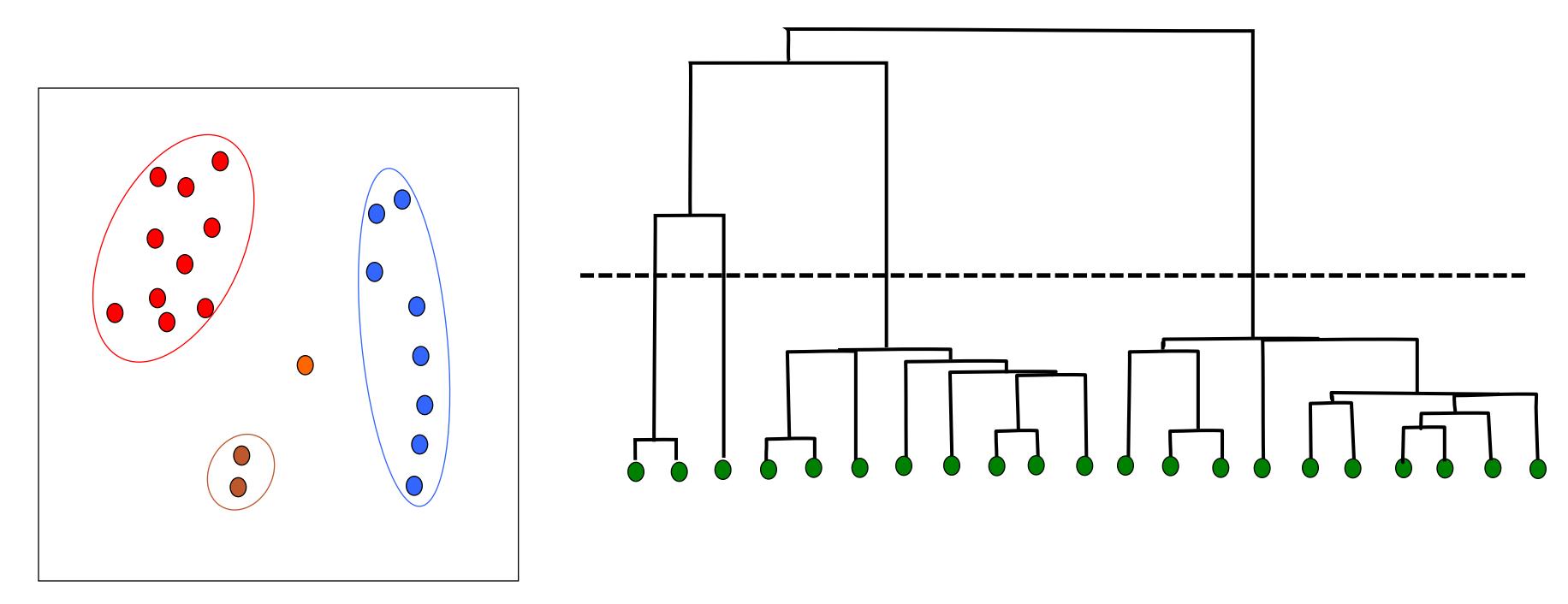
### dendrogram



# From dendrogram to clusters

• Given the hierarchy of clusters, choose a frontier of subtrees = clusters

## data



• For a given k, or a given level of dissimilarity

## dendrogram

## **Distance measures**

• 
$$d_{\min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y||^2$$

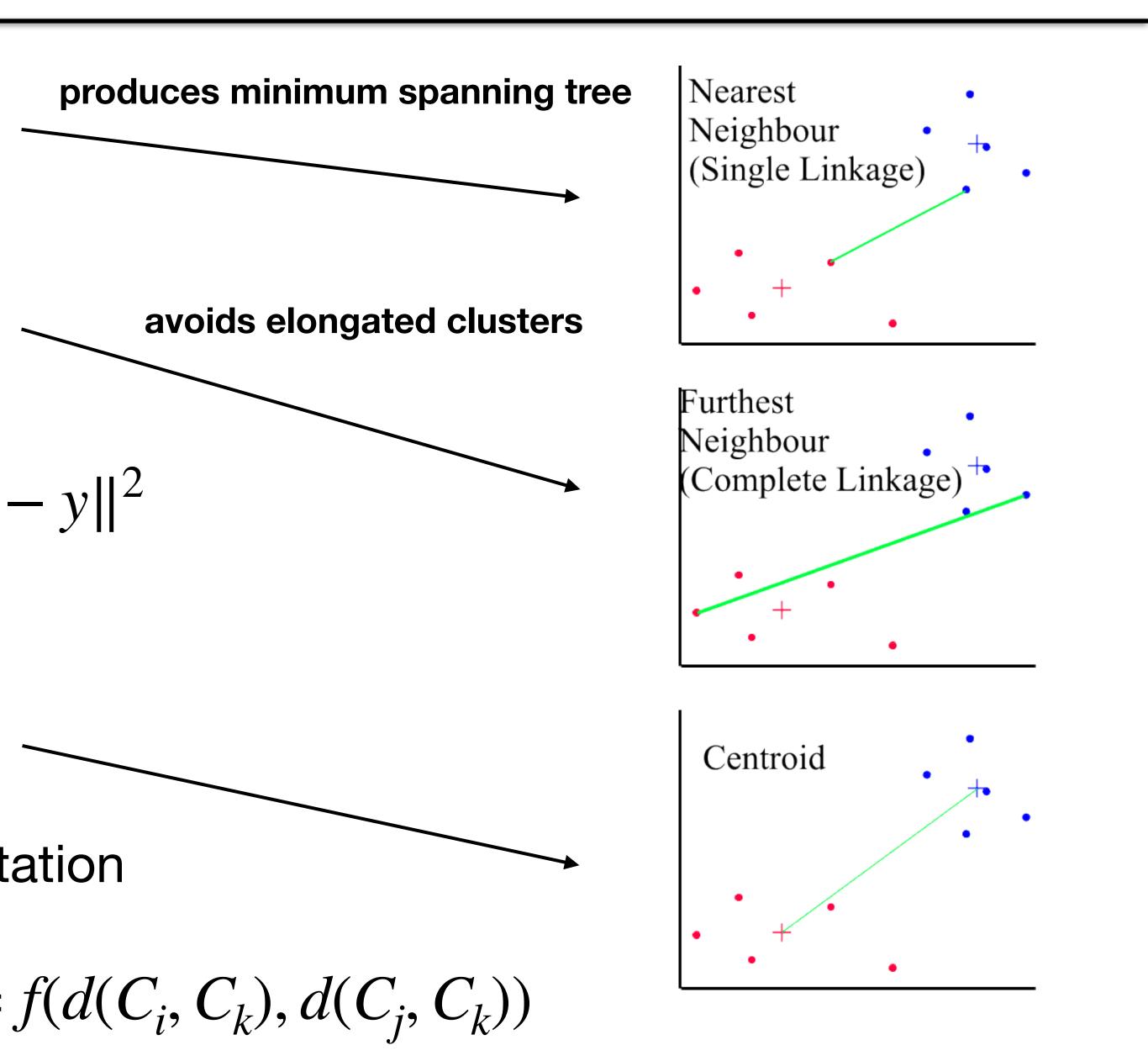
• 
$$d_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

• 
$$d_{avg}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i, y \in C_j} ||x|$$

• 
$$d_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

Important property: iterative computation

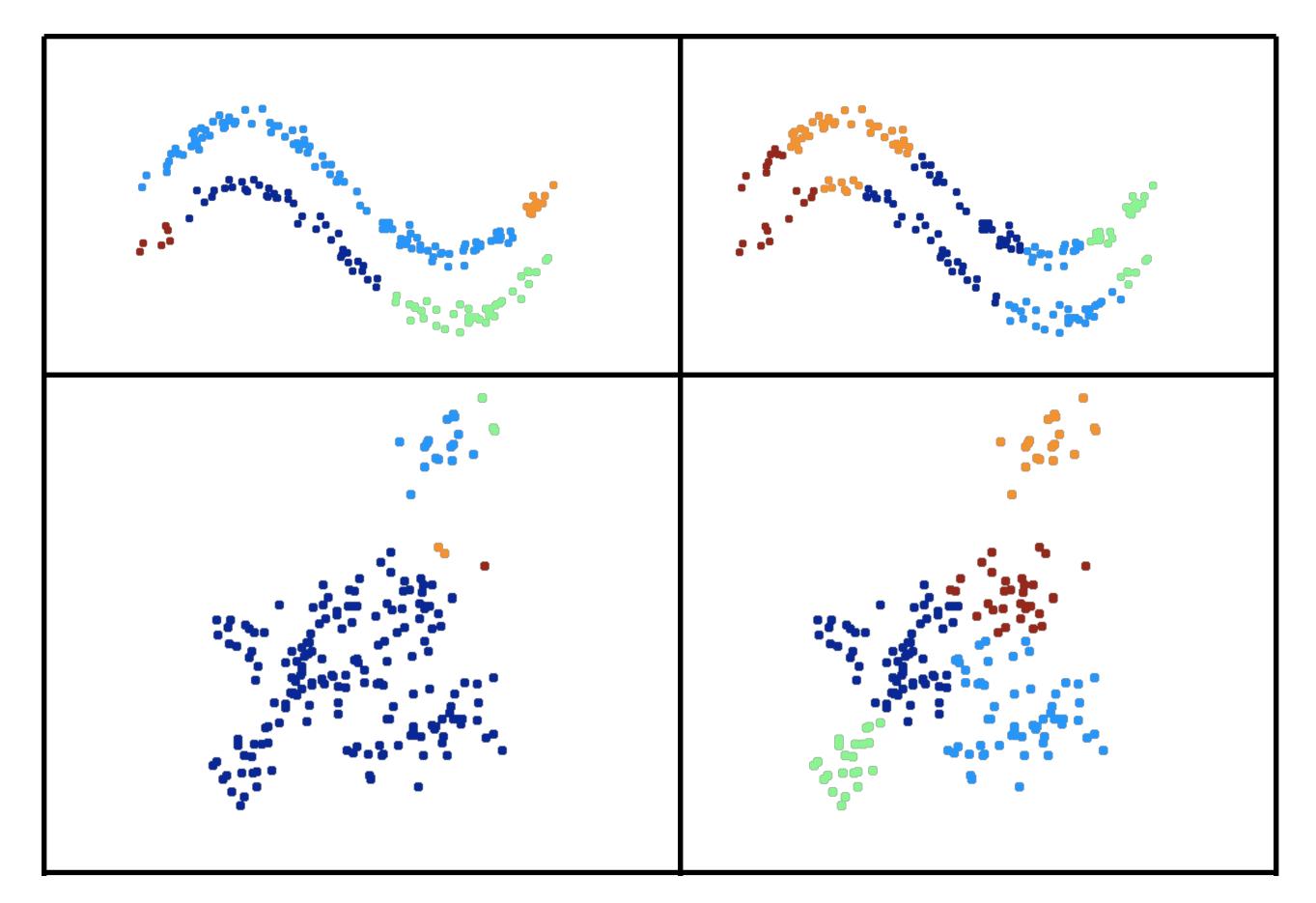
$$d(C_i \cup C_j, C_k) =$$



## **Distance measures**

Dissimilarity measure affects the clustering qualitatively

single linkage (min)



### complete linkage (max)

# **Recap:** agglomerative clustering

- Hierarchical clustering: build "dendrogram"
  - Bottom-up: agglomerative clustering
- Successively merge closest pair of clusters
  - Dendrogram = tree of merges & distances
  - Complexity =  $O(m^2 \log m)$

## Clusters quality depend on choice of a distance / dissimilarity measure









Project abstract due today on Canvas

## • Assignment 5 due Tuesday, Nov 23