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Logistics

_  Assignment 5 due lTuesday, Nov 23
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Today's lecture

Agglomerative clustering

Gaussian Mixture Models

Latent-space models
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k-Means

 |terate until convergence:

., Foreach x; € 9, find the closest cluster: z; = arg min ||x; — ﬂcHz
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Set each cluster centroid y. to the mean of assigned points: j,. = mi Z X
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Out-of-sample clustering

 How can we use clustering to assign new data points?

e In k-Means: choose nearest centroid

> 1-NIN with learned centroids
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Choosing &

« How to choose the number of clusters k? k

* More clusters = can make them closer to more points o5 10

>

—> Loss L(g, u) = Z || x; — /“‘z,-HZ generally decreases with k (validation loss t0o0...)

l

» Larger k = larger model complexity
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Choosing k

« How to choose the number of clusters k?

 More clusters =— can make them closer to more points

>

—> Loss L(g, u) = Z || x; — //tZin generally decreases with k (validation loss t0o0...)

l

» Larger k = larger model complexity

* One solution: penalize complexity; loss = MSE + regularizer

> More clusters may increase loss if they don't help much

logm

Example: simplified BIC Z(z,4) =log | — Y [lx; — . |I* | + &

l

> m
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Recap: k-means

Clusters represented as centroids In feature space

Initialize centroids; repeat:
> Assign each data point to its closest centroid

> Move centroids minimize mean squared error (i.e. means of assigned points)
Coordinate descent on MSE loss
Prone to local optima; initialization important

Can use to assign out-of-sample data

Choosing k = #clusters: model selection; penalize for complexity (BIC, etc.)
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Today's lecture

k-Means

Gaussian Mixture Models

Latent-space models
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Hierarchical agglomerative clustering

* Another simple clustering algorithm

» Define distance (dissimilarity) between clusters d(C;, C;)

* |nitialize: every data point is its own cluster
* Repeat:
> Compute distance between each pair of clusters

> Merge two closest clusters

* Qutput: tree of merge operations (“dendrogram?)

. Complexity: in m — 1 iterations, merge distances and sort => O(m? log m)
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lteration 1

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
0o .o
° ¢ . height of join
indicates dissimilarity
TR Y
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O
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lteration 2

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
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lteration 3

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
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lteration m — 3

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
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lteration m — 2

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram

{j00r1033§86r18ﬂ5l
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lteration m — 1

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram

{j00f1033§86r16ﬂ6l
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From dendrogram to clusters

* Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data dendrogram

' B S ) N
0 1 —— = T |
o

> For a given k, or a given level of dissimilarity
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Distance measures

mm( C) —  min Hx yHZ . produces minimum spanning tree
xeC,yel; R
* dmax( C) — Ihax HX y Hz avoids elongated clusters
XEC yEC \
_ 1 o2
GO = e 2 Ikl
xeC,yel;

c dmeans(ci9 C) = H//ti — Hz

j Hi \
* Important property: iterative computation

d(Cz U C}" Ck) =f(d(ci9 Ck)9 d(C}a Ck))

Nearest
Neighbour

| T
(Single Linkage)

Em thest
eighbour

[Complete Lmkfige)

Centroid
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Distance measures

* Dissimilarity measure affects the clustering qualitatively

single linkage (min) complete linkage (max)
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Recap: agglomerative clustering

e Hierarchical clustering: build “dendrogram”

> Bottom-up: agglomerative clustering

e Successively merge closest pair of clusters
> Dendrogram = tree of merges & distances
> Complexity = O(m* log m)

* Clusters quality depend on choice of a distance / dissimilarity measure
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Today's lecture

Agglomerative clustering

Latent-space models
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Mixture Models

» k-Means assigns each instance to one cluster

> Could it be assigned to another cluster equally well? Almost equally?

~ Hard assignment f : x — c loses information on:

- Which clusters are “close seconds”

- Uncertainty = how sure are we of the assignment

Hq

Ho

H3

« Mixture Model = prior over clusters p(c) + distribution in each cluster p(x | ¢)

» — Posterior p(c | x) = probabilistic (soft) assignment of x to ¢
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Gaussian Mixture Models (GMMs)

» Each cluster is modeled by a Gaussian p(x|c) = A/ (x; u,., 2.)

> 2. allows non-isotropic clusters = weighted Euclidean distance

» Mixture = distribution over Gaussians is given by a probability vector p(c)

« Generative model = we can sample p(x):

» Sample z ~ p(c)

we don't output z, it is “latent” = hidden
/ —> can be any of them

» Sample x ~ p(x|c = 2)

I

 Probability of this x: Z plc=2pkx|c=2) = 2 p(c,x) = p(x)
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Multivariate Gaussian distributions
W@ T) = @0 # T Fexp (—10r = =0 — )

» For data points {x;}, maximum log-likelihood estimator of p, 2:

V, ) log V(xzpu2) ==Y (== =0

Vs Y log /(s 1, 2) = =5 Y (G — ) — )T = %) =0
matrix calculus identity:

1 _
— 2=;Z(xi—//t)(xi—//t)T Vealog| 2| =2
l
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Training GMMs

o k-Means:

> Assign data points to clusters z;
» Update each cluster's parameters u..
« A “soft” version of k-Means: Expectation—Maximization (EM) algorithm

> Find a “soft” assignment p(c | x)

» Update model parameters p(c), p(x| c)

 The EM algorithm is extremely general, GMMs are a very special case
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Expectation-Maximization: E-step

e Initialize model parameters 7. = p(c), 1., 2.
e E-step (Expectation): [why “expectation”? comes from the general EM algorithm]

> For each data point x;, use Bayes' rule to compute:

o= np(c|x) = plople)  m N pe, 2
e = F - Zép(ﬁ)p(xi\(?) B Zgﬂé'/’/(xi;ﬂé’zé)

> High weight to clusters that are likely a-priori, or in which X; is relatively probable

area: 7,

area: 7, r 2 0.7 { N —
\ v
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Expectation-Maximization: M-step

 Given assignment probabilities r;,
e M-step (Maximization):

> For each cluster ¢, fit the best Gaussian to the weighted assignment

total weight assigned to cluster ¢ 2

Tem,. = 2 what is Z m.? m

18
] C

fraction of weight assigned to cluster c

~~—~ me _ L
% ; Mo = m 2 ,ricxi
C l V\

o\
Ze = o 2Tl = G = H)T

weighted covariance of data in cluster c

weighted mean of data in cluster ¢
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From P. Smyth
ICML 2001
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From P. Smyth
ICML 2001
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Demo

e https://lukapopijac.github.io/gaussian-mixture-model/
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https://lukapopijac.github.io/gaussian-mixture-model/

Expectation—-Maximization: considerations

* Each iteration of EM is guaranteed to increase the data log likelihood

logp(2) = ) logp(x) = ) log ¥ m.N(x;i i Z,)

we won't show this
but proof is very insightful!

> Convergence guaranteed — descends NLL
- But could be local optima = initialization important

e Qut-of-sample data: can find soft assignment = probabilistic prediction

» Choosing #clusters: regularized training log-likelihood (as in k-Means)

> Or: validate log-likelihood on held out data; many clusters =— overfitting!
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Recap

 Gaussian Mixture Models (GMMs)

> Expressive class of generative models p(x)

> EXxplain variation with latent clusters + cluster distribution

> Given cluster (= mode), feature values are Gaussian
» Expectation—-Maximization (EM)

» Compute soft assignment probabilities, “responsibility” r;.

> Update model parameters: mixture z., cluster mean and covariance y,., 2.
> Ascent on log-likelihood: convergent, but local optima

* Selecting the number of clusters

> Regularized training log-likelihood, or validation log-likelihood
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Today's lecture

Agglomerative clustering

Gaussian Mixture Models
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Why reduce dimensionality?

 Data is often high-dimensional = many features

Hngar axtanskn

> Images (even at 28x28 pixels)

> Text (even a “bag of words”)

» Stock prices (e.g. S&P500)

Wrisl rolafion

* Issues with high-dimensionality:

» Computational complexity of analyzing the data

» Model complexity (more parameters)
» Sparse data = cannot cover all combinations of features

> Correlated features can be independently noisy

» Hard to visualize
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Dimensionality reduction

 With many features, some tend to change together
> Can be summarized together

> Others may have little or irrelevant change

 Example: S&P500 — “Tech stocks up 2x, manufacturing up 1.5x, ...”

d

n

— |

» Embed instances in lower-dimensional space f : |

> Keep dimensions of “interesting” variability of data

> Discard dimensions of noise or unimportant variability; or no variability at all

> Keep “similar” data close = may preserve cluster structure, other insights
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Linear features

» Example: summarize two real features x = |x, x,| — one real feature z

~ If 7 preserves much information about x, should be able to find x =~ f(z)

e Linear embedding:
X2

> X X ZV

> zv should be the closest point to x along v B T

. ) xTy - e
_z=argmm|x—zv||F = z=— _ - P
VTV 2 ) P
AN -~
projection of x on v . *
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Principal Component Analysis (PCA)

e How to find a good v?

X2 800

» Assume X has mean 0; otherwise, subtract the mean X=X-— 7

> |dea: find the direction v of maximum “spread” (variance) of the data

» Project Xon v:z = Xv
J < empirical covariance

max Z (Zi)2 = 7Tz = vTXTXv = v is eigenvector of XTX of largest eigenvalue

vi||v]|=1

» = minimum MSE of the residual X — vl = X — vaT o A |

= = = . Source
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579

Geometry of a Gaussian

~J

. Data covariance: ¥ = —XTX X=X—u

m

e Gaussian fit: p(x) ~ N (u, 2)
« Value contour for p(x): A* = (x — u)TZ " (x — u) = const

o [t's always possible to write 2 in terms of its eigenvectors U, eigenvalues A:

n n i A 112\/
2 =UAU"= Z Al = >l = 2 TuiuiT B
l:l l=1 P Y1
n y2 b
; : l . 1/2
_Inthe eigenvector basis: A? = — with y, = ul.T(x — I) :

=1
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PCA representation

e Subtract data mean from data points
* (Optional) Scale each dimension by its variance

> Don't just focus on large-scale features (e.g., +1 mileage << +1yr ownership)

» Focus on correlation between features

.y . . 1 - ~
) Compute empirical covariance matrix 2 = — E xl-xlT

l

 Take k largest eigenvectors of 2 = UAUT
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Singular Value Decomposition (SVD)

» Alternative method for finding covariance eigenvectors

> Has many other uses

o Singular Value Decomposition (SVD): X = UDV1

» U and V (left- and right singular vectors) are orthogonal: UTU = [, VIV =]

> D (singular values) is rectangular-diagonal

&

mXn m X k k Xk kXn

. ¥ = XX = VDTUTUDV' = V(DTD)VT

« UD matrix gives coefficients to reconstruct data: x; = Ui’1D1,1v1 + Ui,zDz,zvz + ...

» We can truncate this after top k singular values (square root of eigenvalues)
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Latent-space representations: uses

 Remove unneeded features
> Features that add very little information (e.g. low variability, high noise)
> Features that are similar to others (e.g. almost linearly dependent)

> Reduce dimensionality for downstream application

- Supervised learning: fewer parameters, need less data

- Compression: less bandwidth

e Can also add features

» Summarize multiple features into few cleaner / higher-level ones
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PCA: applications

 Eigen-faces
> Represent image data (e.g. faces) using PCA
e |atent-Space Analysis (topic models)

> Represent text data (e.g. bag of words) using PCA

» Collaborative Filtering for Recommendation Systems

> Represent sentiment data (e.g. ratings) using PCA
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Eigen-faces

* “"Eigen-X" = represent X using its principal components

%

mX n m X k k X k kXn

576

 Viola Jones dataset: 24 X 24 images € |

> Can represent vector as image

F
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Eigen-faces

* “"Eigen-X" = represent X using its principal components

U

mXn m X k k X k kXn

376

 Viola Jones dataset: 24 X 24 images € |

somewhat
> (Can represent vector as |mage .nterpretaMe

L U l -

mean
m l 1 j
principal components . U U .

» Project data on k
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Eigen-faces

 “Eigen-X" = represent X using its principal components

%

mXn mXk k X k kXn

376

 Viola Jones dataset: 24 X 24 images € |

> (Can represent vector as image

mean
—QaV, +aV,
—QaV, +av,
> Visualize basis vectors v; %

as U £ av; —av; +av; .‘
u%h ¢
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Eigen-faces

* “"Eigen-X" = represent X using its principal components

%

mXn mXk k X k kXn

376

 Viola Jones dataset: 24 X 24 images € |

> (Can represent vector as image Vi i s

‘ - Y '
-
/)

> Visualize data by projecting

onto 2 principal components
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Nonlinear latent spaces

» Latent-space representation = represent x; as z;
> Usually more succinct, less noisy

> Preserves most (interesting) information on x; = can reconstruct x; & x;

> Auto-encoder = encode x — z, decode 7 — X X —*.—* .—» X

* Linear latent-space representation:

» Encode: Z =XV, = (UDV'V) . = Uy Dyy; Decode: X & ZV,

output

 Nonlinear: e.g., encoder + decoder are neural networks

Tdecode
hidden

Tencode

> Restrict 7 to be shorter than x = requires succinctness input -
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Variational Auto-Encoders (VAE)

output -

1decode

 Probabilistic model: den

Iencode

input -

>~ Simple prior over latent space p(z) (e.g. Gaussian)

» Decoder = generator py(x | z), tries to match data distribution py(x) ~ &

p(2)py(x|z)

, Encoder = inference q¢(z | x), tries to match posterior q¢(z | x) &
Po(x)

AT
EEEEsisislele
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BISISTe
BEEE

reprsfes /e
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Logistics

_  Assignment 5 due lTuesday, Nov 23
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