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Logistics

• Assignment 5 due Tuesday, Nov 30

• Final report due next Thursday, Dec 2

• Review: next Thursday, Dec 2


• Final: Tuesday, Dec 7, 10:30am–12:30

assignments

project

final exam
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Latent-space models
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Why reduce dimensionality?
• Data is often high-dimensional = many features


‣ Images (even at 28x28 pixels)


‣ Text (even a “bag of words”)


‣ Stock prices (e.g. S&P500)


• Issues with high-dimensionality:


‣ Computational complexity of analyzing the data


‣ Model complexity (more parameters)


‣ Sparse data = cannot cover all combinations of features


‣ Correlated features can be independently noisy


‣ Hard to visualize
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Dimensionality reduction
• With many features, some tend to change together


‣ Can be summarized together


‣ Others may have little or irrelevant change


• Example: S&P500  “Tech stocks up 2x, manufacturing up 1.5x, …”


• Embed instances in lower-dimensional space 


‣ Keep dimensions of “interesting” variability of data


‣ Discard dimensions of noise or unimportant variability; or no variability at all


‣ Keep “similar” data close  may preserve cluster structure, other insights

→

f : ℝn ↦ ℝd

⟹
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Linear features

• Example: summarize two real features   one real feature 


‣ If  preserves much information about , should be able to find 


• Linear embedding:


‣ 


‣  should be the closest point to  along 


- 


x = [x1, x2] → z

z x x ≈ f(z)

x ≈ zv

zv x v

z = arg min ∥x − zv∥2 ⟹ z =
x⊺v
v⊺v
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Principal Component Analysis (PCA)
• How to find a good ?


‣ Assume  has mean 0; otherwise, subtract the mean 


‣ Idea: find the direction  of maximum “spread” (variance) of the data


‣ Project  on : 


    is eigenvector of  of largest eigenvalue


‣ = minimum MSE of the residual 


v

X X̃ = X − μ

v

X̃ v z = X̃v

max
v:∥v∥=1 ∑

i

(zi)2 = z⊺z = v⊺X̃⊺X̃v ⟹ v X̃⊺X̃

X̃ − zv⊺ = X̃ − X̃vv⊺

empirical covariance
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Source

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579#140579
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Geometry of a Gaussian
• Data covariance: 


• Gaussian fit: 


• Value contour for : 


• It's always possible to write  in terms of its eigenvectors , eigenvalues :


‣   


‣ In the eigenvector basis: , with 

Σ = 1
m X̃⊺X̃ X̃ = X − μ

p(x) ∼ 𝒩(μ, Σ)

p(x) Δ2 = (x − μ)⊺Σ−1(x − μ) = const

Σ U λ

Σ = UΛU⊺ =
n

∑
i=1

λiuiu
⊺
i ⟹ Σ−1 =

n

∑
i=1

1
λi

uiu
⊺
i

Δ2 =
n

∑
i=1

y2
i

λi
yi = u⊺

i (x − μ)
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PCA representation

• Subtract data mean from data points


• (Optional) Scale each dimension by its variance


‣ Don't just focus on large-scale features (e.g., +1 mileage  +1yr ownership)


‣ Focus on correlation between features


• Compute empirical covariance matrix 


• Take  largest eigenvectors of 

≪

Σ = 1
m ∑

i

x̃ix̃
⊺
i

k Σ = UΛU⊺
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Singular Value Decomposition (SVD)
• Alternative method for finding covariance eigenvectors


‣ Has many other uses


• Singular Value Decomposition (SVD): 


‣  and  (left- and right singular vectors) are orthogonal: , 


‣  (singular values) is rectangular-diagonal


‣ 


•  matrix gives coefficients to reconstruct data: 


‣ We can truncate this after top  singular values (square root of eigenvalues)

X = UDV⊺

U V U⊺U = I V⊺V = I

D

Σ = X⊺X = VD⊺U⊺UDV⊺ = V(D⊺D)V⊺

UD xi = Ui,1D1,1v1 + Ui,2D2,2v2 + ⋯

k

 X
m × n

 U1:k
m × k

≈ ⋅ ⋅ D1:k
k × k

 V⊺
1:k

k × n

 X
m × n

 U
m × m

= ⋅ ⋅ D
m × n

 V⊺

n × n



Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Latent-space representations: uses
• Remove unneeded features


‣ Features that add very little information (e.g. low variability, high noise)


‣ Features that are similar to others (e.g. almost linearly dependent)


‣ Reduce dimensionality for downstream application


- Supervised learning: fewer parameters, need less data


- Compression: less bandwidth


• Can also add features


‣ Summarize multiple features into few cleaner / higher-level ones
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PCA: applications

• Eigen-faces


‣ Represent image data (e.g. faces) using PCA


• Latent-Semantic Analysis (“Topic Models”)


‣ Represent text data (e.g. bag of words) using PCA


• Collaborative Filtering for Recommendation Systems


‣ Represent sentiment data (e.g. ratings) using PCA
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Eigen-faces
• “Eigen-X” = represent X using its principal components


• Viola Jones dataset:  images 


‣ Can represent vector as image


‣ Project data on 


principal components


24 × 24 ∈ ℝ576

k

 X
m × n

 U
m × k

≈ ⋅ ⋅ D
k × k

 V⊺

k × n

⋮ ⋮
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Eigen-faces
• “Eigen-X” = represent X using its principal components


• Viola Jones dataset:  images 


‣ Can represent vector as image


‣ Project data on 


principal components


24 × 24 ∈ ℝ576

k

 X
m × n

 U
m × k

≈ ⋅ ⋅ D
k × k

 V⊺

k × n

mean v1 v2 v3 v4

xi k = 5 k = 10 k = 50

⋯

somewhat 
interpretable
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Eigen-faces
• “Eigen-X” = represent X using its principal components


• Viola Jones dataset:  images 


‣ Can represent vector as image


‣ Visualize basis vectors 


as 


24 × 24 ∈ ℝ576

vi

μ ± αvi

 X
m × n

 U
m × k

≈ ⋅ ⋅ D
k × k

 V⊺

k × n

mean
+αv1−αv1

−αv2

−αv3

+αv2

+αv3
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Eigen-faces
• “Eigen-X” = represent X using its principal components


• Viola Jones dataset:  images 


‣ Can represent vector as image


‣ Visualize data by projecting


onto 2 principal components


24 × 24 ∈ ℝ576

v1

v2

 X
m × n

 U
m × k

≈ ⋅ ⋅ D
k × k

 V⊺

k × n
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Nonlinear latent spaces
• Latent-space representation = represent  as 


‣ Usually more succinct, less noisy


‣ Preserves most (interesting) information on   can reconstruct 


‣ Auto-encoder = encode , decode 


• Linear latent-space representation:


‣ Encode: ; Decode: 


• Nonlinear: e.g., encoder + decoder are neural networks


‣ Restrict  to be shorter than   requires succinctness

xi zi

xi ⟹ ̂xi ≈ xi

x → z z → ̂x

Z = XV≤k = (UDV⊺V)≤k = U≤kD≤k X ≈ ZV⊺
≤k

z x ⟹

encoder decoderx z ̂x
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Variational Auto-Encoders (VAE)
• Probabilistic model:


‣ Simple prior over latent space  (e.g. Gaussian)


‣ Decoder = generator , tries to match data distribution 


‣ Encoder = inference , tries to match posterior 


‣ Can control generation of 


through  in 


p(z)

pθ(x |z) pθ(x) ≈ 𝒟

qϕ(z |x) qϕ(z |x) ≈
p(z)pθ(x |z)

pθ(x)

x

z pθ(x |z)
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Motivation
• Supervised learning: classification


‣ Pro: training data  very informative


‣ Con: expert labels  may be expensive to get for big data


• Unsupervised learning: clustering


‣ Pro: training data  may be easier to get


‣ Con: discovered clusters may not match intended classes


• Semi-supervised learning: best of both worlds? 


‣ Few labels  class identity; much unlabeled data  class borders

𝒟 = {(x( j), y( j))}

y( j)

𝒟 = {x( j)}

⟹ ⟹
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Example: semi-supervised SVM
• Problem: only few instances are labeled


‣ Do unlabeled instances violate the margin constraints ?


- We don't know ...


• Let's assume labels are correct  


‣ Constraint becomes    outside margin on either side


• Constraints no longer linear


‣ Can solve with Integer Programming


or other approximation methods

y( j)(w ⋅ x( j) + b) ≥ 1

y( j)

⟹ y( j) = sign(w ⋅ x( j) + b)

|w ⋅ x( j) + b | ≥ 1 ⟺ x( j)

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Who selects which instances to label?
• Random = semi-supervised learning


‣ Labeled points , unlabeled points from marginal distribution 


‣ Equivalently: select instances , select uniformly which to label 


• Teacher = exact learning, curriculum learning


‣ Teacher identifies where learner is wrong, provides corrective labels


‣ Some learners benefit from gradual increase in complexity (e.g. boosting)


• Learner = active learning


‣ Automate the process of selecting good points to label

∼ p(x, y) ∼ p(x)

∼ p(x) ∼ p(y |x)
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Why active learning?

• Expensive labels  prefer to label instances relevant to the decision


• Selecting relevant points may be hard too  automate with active learning


• Objective: learn good model while minimizing #queries for labels

⟹

⟹

full labeled data 
(unavailable)

SVM on random sample 
of labeled data

SVM on selected sample 
of labeled data

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning
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Active learning settings
• Pool-Based Sampling


‣ Learner selects instances in dataset  to label


• Stream-Based Selective Sampling


‣ Learner gets stream of instances , decides which to label


• Membership Query Synthesis


‣ Learner generates instance 


‣ Doesn't have to occur naturally =  may be low


-  May be harder for teacher to label (“is this synthesized image a dog or a cat?”)

x ∈ 𝒟

x1, x2, …

x

p(x)

⟹

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning
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Simple example: find decision threshold

• When building decision tree on continuous features


‣ Where to put the threshold on a given feature?


• If all data points are labeled and sorted  binary search


‣ Split data in half until you find switch point of 


• Active learning = ask for labels


‣ Same strategy: query mid point, if  /   determines left / right half


‣ #queries = 

⟹

−1 → + 1

−1 +1 ⟹

log m
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How to select relevant data points?
• Least Confidence


‣ Query point about which learner is most uncertain of the label


‣ Requires learner to know its uncertainty, e.g. a probabilistic model 


• Margin Sampling


‣ Multi-class  least confident doesn't mean least likely to get confused


- Example:  = [0.3, 0.4, 0.3] vs. [0.45, 0.5, 0.05]


‣ Query point about which two classes are most similar (near margin between them)


• Entropy Sampling


‣ Query point that has most entropy = maximum information gain by revealing true label

pθ(y |x)

⟹

pθ(y |x)
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Online learning
• In multi-class classification, we often assume 0–1 loss 


• More generally, we can have different costs 


• Online learning:


‣ Stream of instances, need to make predictions / decisions / actions online


‣ We don't know the reward = -cost until we actually select 


‣ We'll never know the reward of other actions


• Objective:


‣ Make better and better decisions (compared to what? later...)

ℒ(y, ̂y) = δ[y ≠ ̂y]

ℒ(y, ̂y) = d(y, ̂y)

̂y
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Multi-Armed Bandits (MABs)

• Basic setting: single instance , multiple actions 


‣ Each time we take action  we see a noisy reward 


• Can we maximize the expected reward ?


‣ We can use the mean as an estimate 


• Challenge: is the best mean so far the best action?


‣ Or is there another that's better than it appeared so far?

x a1, …, ak

ai rt ∼ pi

max
i

𝔼r∼pi
[r]

μi = 𝔼r∼pi
[r] ≈ 1

mi ∑
t∈Ti

rt

One-armed bandit

Multi-armed bandit
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Exploration vs. exploitation
• Exploitation = choose actions that seems good (so far)


• Exploration = see if we're missing out on even better ones


• Naïve solution: learn  by trying every action enough times


‣ Suppose we can't wait that long: we care about rewards while we learn


• Regret = how much worse our return is than an optimal action


 


‣ Can we get the regret to grow sub-linearly with ?  average goes to 0: 

r

ρ(T) = Tμa* −
T−1

∑
t=0

rt

T ⟹ ρ(T)
T → 0
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Let's play!

• http://iosband.github.io/2015/07/28/Beat-the-bandit.html

http://iosband.github.io/2015/07/28/Beat-the-bandit.html
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Simple exploration: -greedyϵ

• With probability :


‣ Select action uniformly at random


• Otherwise (w.p. ):


‣ Select best (on average) action so far


• Problem 1: all non-greedy actions selected with same probability


• Problem 2: must have , or we keep accumulating regret


‣ But at what rate should  vanish?

ϵ

1 − ϵ

ϵ → 0

ϵ
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Optimism under uncertainty
• Tradeoff: explore less used actions, but don't be late to start exploiting what's known


‣ Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit


• By the central limit theorem, the mean reward of each arm  quickly 


• Be optimistic by slowly-growing number of standard deviations: 


‣ Confidence bound: likely ; unknown constant in the variance  let  grow


‣ But not too fast, or we fail to exploit what we do know


• Regret: , provably optimal

̂μi → 𝒩 (μi, O ( 1
mi ))

a = arg max
i

̂μi + 2 ln T
mi

μi ≤ ̂μi + cσi ⟹ c

ρ(T) = O(log T)
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Thompson sampling
• Consider a model of the reward distribution 


• Suppose we start with some prior 


‣ Taking action , see reward   update posterior 


• Thompson sampling:


‣ Sample  from the posterior


‣ Take the optimal action 


‣ Update the belief (different methods for doing this)


‣ Repeat

pθi
(r |ai)

q(θ)

at rt ⟹ q(θ |{(a≤t, r≤t)})

θ ∼ q

a* = max
i

𝔼r∼pθi
[r]
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Other online learning settings
• What is the reward for action ?


‣ MAB: random variable with distribution 


‣ Adversarial bandits: adversary selects  for every action


- The adversary knows our algorithm! And past action selection! But not future actions


• Learner must be stochastic (= unpredictable) in choosing actions


- Amazingly, there are learners with regret guarantees


• Contextual bandits: we also get instance , make decision 


‣ Can we generalize to unseen instances?

ai

pi(r)

ri

x π(a |x)
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Agent–environment interface
• Agent


‣ Decides on next action


‣ Receives next reward


‣ Receives next observation


• Environment


‣ Executes the action  changes its state


‣ Generates next observation


‣ Supervisor: reveals the reward

→
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Sequential decision making
• Reinforcement learning = learning to make sequential decisions


• Challenges:


‣ Online learning: reward is only given for actions taken (not for other actions)


‣ Active learning: future “instances” determined by what the learner does


‣ Sequential decisions: which of the decisions gets credit for a good reward?


• Examples:


‣ Fly drone • play Go • trade stocks • control power station • control walking robot


• Rewards: track trajectory • win game • make $ • produce power (safely!)
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Long-term planning

• Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)


‣ Fly drone: slow down to avoid crash?


‣ Games: slowly build strength? block opponent? all out attack?


‣ Stock trading: sell now or wait for growth?


‣ Infrastructure control: reduce output to prevent blackout?


‣ Life: invest in college, obey laws, get started early on course project


• Forward thinking and planning are hallmarks of intelligence
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Intelligent agents
• Agent outputs action 


‣ Function of the context: 


- Perhaps stochastic: 


• What is the context needed for decisions?


‣ Ignore all inputs? (open-loop control = sequence of actions)


‣ Current observation ?


‣ Previous action ? reward ?


‣ All observations so far ?

at

at = f(xt)

π(at |xt)

ot

at−1 rt−1

o≤t
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Agent context xt
• Observable history: everything the agent saw so far


‣ 


• The context  used for the agent's policy  can be:


‣ Reactive policy:  (optimal under full observability: )


‣ Using previous action:   can be useful if policy is stochastic


‣ Using previous reward:   extra information about the environment


‣ Window of past observations:   better see dynamics


‣ Generally: any summary (= memory) of observable history 

ht = (o1, a1, r1, o2, …, at−1, rt−1, ot)

xt π(at |xt)

xt = ot ot = st

xt = (at−1, ot) ⟹

xt = (rt−1, ot) ⟹

xt = (ot−3, ot−2, ot−1, ot) ⟹

xt = f(ht)
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Example: Atari

• Rules are unknown


‣ What makes the score increase?


• Dynamics are unknown


‣ How do actions change pixels?

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Example: Table Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0

https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0
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Logistics

• Assignment 5 due Tuesday, Nov 30

• Final report due next Thursday, Dec 2

• Review: next Thursday, Dec 2


• Final: Tuesday, Dec 7, 10:30am–12:30
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