CS 273A: Machine Learning Fall 2021 Lecture 17: Reinforcement Learning

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

project

final exam

- Review: Thursday

• Assignment 5 due today

• Final report due Thursday

• Final: next Tuesday, Dec 7, 10:30am–12:30

Today's lecture

Online learning

Imitation learning

Reinforcement learning

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Sequential decision making

Online learning

- More generally, we can have different costs $\mathscr{L}(y, \hat{y}) = d(y, \hat{y})$
- Online learning:
 - Stream of instances, need to make predictions / decisions / actions online
 - We don't know the reward = -cost until we actually select \hat{y}
 - We'll never know the reward of other actions
- Objective:
 - Make better and better decisions (compared to what? later...)

• In multi-class classification, we often assume 0–1 loss $\mathscr{L}(y, \hat{y}) = \delta[y \neq \hat{y}]$

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions a_1, \ldots, a_k
 - Each time we take action a_i we see a noisy reward $r_t \sim p_i$
- Can we maximize the expected reward $\max_i \mathbb{E}_{r \sim p_i}[r]$?
 - We can use the mean as an estimate
- Challenge: is the best mean so far the best action?
 - Or is there another that's better than it appeared so far?

$$e \mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{m_i} \sum_{t \in T_i} r_t$$

Multi-armed bandit

Exploration vs. exploitation

- Exploitation = choose actions that seems good (so far)
- Exploration = see if we're missing out on even better ones
- Naïve solution: learn r by trying every action enough times
 - Suppose we can't wait that long: we care about rewards while we learn
- Regret = how much worse our return is than an optimal action

 $\rho(I) =$

$$T\mu_{a^*} - \sum_{t=0}^{T-1} r_t$$

• Can we get the regret to grow sub-linearly with $T? \implies$ average goes to 0: $\frac{\rho(T)}{T} \rightarrow 0$

• http://iosband.github.io/2015/07/28/Beat-the-bandit.html

Simple exploration: ϵ -greedy

- With probability *E*:
 - Select action uniformly at random
- Otherwise (w.p. 1ϵ):
 - Select best (on average) action so far
- Problem 1: all non-greedy actions selected with same probability
- Problem 2: must have $\epsilon \to 0$, or we keep accumulating regret
 - But at what rate should ϵ vanish?

Optimism under uncertainty

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
 - Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean rew
- Be optimistic by slowly-growing number of standard deviations: $a = \arg \max_{i} \hat{\mu}_{i} + \sqrt{\frac{2 \ln T}{m_{i}}}$
 - Confidence bound: likely $\mu_i \leq \hat{\mu}_i + c\sigma_i$; unknown constant in the variance \implies let c grow
 - But not too fast, or we fail to exploit what we do know
- Regret: $\rho(T) = O(\log T)$, provably optimal

vard of each arm
$$\hat{\mu}_i$$
 quickly $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{m_i}\right)\right)$

Thompson sampling

- Consider a model of the reward distribution $p_{\theta_i}(r \mid a_i)$
- Suppose we start with some prior $q(\theta)$
 - Taking action a_t , see reward $r_t \implies$ update posterior $q(\theta | \{(a_{< t}, r_{< t})\})$
- Thompson sampling:
 - Sample $\theta \sim q$ from the posterior

• Take the optimal action $a^* = \max_{r \sim p_{\theta i}} [r]$

- Update the belief (different methods for doing this)
- Repeat

Other online learning settings

- What is the reward for action a_i ?
 - MAB: random variable with distribution $p_i(r)$
 - Adversarial bandits: adversary selects r_i for every action
 - The adversary knows our algorithm! And past action selection! But not future actions
 - Learner must be stochastic (= unpredictable) in choosing actions
 - Amazingly, there are learners with regret guarantees
- Contextual bandits: we also get instance x, make decision $\pi(a \mid x)$
 - Can we generalize to unseen instances?

Today's lecture

Online learning

Imitation learning

Reinforcement learning

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Sequential decision making

Sequential decision making

- Make a decision $f: x_1 \mapsto y_1$
- Based on y_1 , face a new decision $f: x_2 \mapsto y_2$
 - Sequential: x_2 may depend on (x_1, y_1)
- After t steps (t for time), decide $f: x_t \mapsto y_t$
 - Sequential: x_t may depend on the history $(x_1, y_1, x_2, \dots, y_{t-1})$
- Notation change: $\pi : s \mapsto a$
 - π for policy; s for state; a for action

System state

Markov Chain

• Markov property: the future is independent of the past, given the present

$$p(s_{t+1}, s_{t+2}, \dots | s_1, s_2, \dots, s_t) = p(s_{t+1}, s_{t+2}, \dots | s_t)$$

State = all relevant information from history
 for future!

• s_t is a sufficient statistic of $h = (s_1, s_1)$

statistic of
$$h = (s_1, \dots, s_t)$$
 for s_{t+1}, s_{t+2}, \dots
 s_{t-1} s_t s_{t+1}

System = agent + environment

Markov Decision Process (MDP)

- Model of environment
 - S = set of states
 - A = set of actions
 - $p(s' | s, a) = \text{probability that } s_{t+1} = s', \text{ if } s_t = s \text{ and } a_t = a$

The Student MDP

Agent policy

- "Model" of agent decision-making
 - policy $\pi(a \mid s)$ = probability of taking action $a_t = a$ in state $s_t = s_t$
 - In MDP, action a_t only depends on current state s_t :
 - Markov property = S_t is all that matters in history
 - Causality = cannot depend on the future
 - Should the policy depend on time?
 - Sometimes; can add t as feature: S_t

$$\pi_t: s_t \mapsto a_t$$

$$\rightarrow (t, s_t)$$

Trajectories

- The agent's behavior iteratively uses (rolls out) the policy
- Trajectory: $\xi = (s_1, a_1, s_2, a_2, \dots, s_T)$
- MDP + policy induce distribution over trajectories

$$p_{\pi}(\xi) = p(s_1)\pi(a_1 | s_1)p(s_2 | s_1, a_1)\cdots\pi(a_T | s_T)p(s_{T+1} | s_T, a_T)$$

= $p(s_1)\prod_{t=1}^T \pi(a_t | s_t)p(s_{t+1} | s_t, a_t)$

$$(-1)^{(+1)}$$

The Student MDP

 $p(K_0, Facebook, FB, Quit, K_0, Study, K_1, Study, K_2, Pub, K_1, Sleep, F)$ $= 1 \cdot \pi(Facebook | K_0) \cdot 1 \cdot \pi(Quit | FB) \cdot 1 \cdot \pi(Study | K_0) \cdot 1 \cdot \pi(Study | K_1) \cdot 1 \cdot \pi(Pub | K_2) \cdot p(K_1 | K_2, Pub) \cdot \pi(Sleep | K_1) \cdot 1$

Today's lecture

Online learning

Imitation learning

Reinforcement learning

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Sequential decision making

Learning from Demonstrations (LfD)

Learning from Demonstrations (LfD)

- Teacher provides demonstration tra
- Learner trains a policy π_{θ} to minimize a loss $\mathscr{L}(\theta)$
- For example, negative log-likelihood (NLL):

$$\arg \min_{\theta} \mathscr{L}_{\theta}(\xi) = \arg \min_{\theta} (-\log p_{\theta}(\xi))$$

$$= \arg \max_{\theta} \left(\log p(s_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t} | s_{t}) + \log p(s_{t+1} | s_{t}, a_{t}) \right)$$

$$= \arg \max_{\theta} \sum_{t=1}^{T} \log \pi_{\theta}(a_{t} | s_{t})$$

$$= \operatorname{no need to know the environment dynamics}$$

ajectories
$$\mathcal{D} = \{\xi^{(1)}, \dots, \xi^{(m)}\}$$

Behavior Cloning (BC)

- Behavior Cloning: \bullet
 - Break down trajectories $\{\xi^{(1)}, ..., \xi^{(m)}\}$ into steps $\{(s_1^{(1)}, a_1^{(1)}), ..., (s_{T_m}^{(m)}, a_{T_m}^{(m)})\}$
 - Train π_{θ} : $s \mapsto a$ using supervised learning
- Benefits:
 - Simple, flexible can use any learning algorithm
 - Model-free never need to know the environment
- Drawbacks:
 - Only as good as the demonstrator
 - Only good in demonstrated states how do we evaluate?

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Inaccuracy in BC

observations actions

- If the policy approximates the teacher $\pi_{\theta}(a_t | s_t) \approx \pi^*(a_t | s_t)$
- But errors accumulate over time
 - May reach states not seen in the training dataset

• We could evaluate on held out teacher data, but really interested in using π_{θ}

• The trajectory distribution will also approximate teacher behavior $p_{\pi_{\alpha}}(\xi) \approx p_{\pi^*}(\xi)$

Gathering experience

- Machine learning works when training distribution = test distribution
 - We train on p_{π^*} but test on p_{π_0}
 - Problem: we don't know π_{θ} until after training
- Dataset Aggregation (DAgger):
 - Roll out learner trajectories $\xi \sim p_{\pi_{\theta}}$
 - Ask teacher to label reached states S_t with correct actions a_t
 - Add to dataset, train new π_{θ} , repeat

as in active learning

Today's lecture

Online learning

Imitation learning

Reinforcement learning

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Sequential decision making

Learning from rewards

- Providing demonstrations is hard
 - Particularly for learner-generated trajectories
- Can the teacher just score learner actions?
 - Reward: $r(s, a) \in \mathbb{R}$
- High reward is positive reinforcement for this behavior (in this state)
 - Much closer to how natural agents learn

• Designing and programming r often easier than programming / demonstrating π

Reinforcement Learning (RL)

Example: Atari

- Rules are unknown
 - What makes the score increase?
- Dynamics are unknown
 - How do actions change pixels?
- Reward = score increase is known
 - Try to maximize total reward

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Actions have long-term consequences

- Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
 - Fly drone: slow down to avoid crash?
 - Games: slowly build strength? block opponent? all out attack?
 - Stock trading: sell now or wait for growth?
 - Infrastructure control: reduce power output to prevent blackout?
 - Life: invest in college, obey laws, get started early on course project
- Forward thinking and planning are hallmarks of intelligence

- Discount factor $\gamma \in [0,1]$
 - Higher weight to short-term rewards (and costs) than long-term
 - Good mathematical properties:
 - Assures convergence, simplifies algorithms, reduces variance
 - Vaguely economically motivated (inflation)

$$r(s_t, a_t)$$

• Summarize reward sequence $r_t = r(s_t, a_t)$ as single number to be maximized

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Policy evaluation

• What future return can the agent expect in state S_{t} by using policy π ?

$$V_{\pi}(s_{t}) = \mathbb{E}\left[\sum_{t' \geq t} \gamma^{t'-t} r(s_{t'}, a_{t'}) \middle| s_{t}\right]$$
$$= \mathbb{E}_{(a_{t}|s_{t}) \sim \pi} \left[\begin{array}{c} \text{first reward} \\ r(s_{t}, a_{t}) + \gamma \mathbb{E}_{(s_{t+1}|s_{t})} \\ \text{first action} \end{array} \right]$$
$$= \mathbb{E}_{(a_{t}|s_{t}) \sim \pi} [r(s_{t}, a_{t}) + \gamma \mathbb{E}_{(s_{t+1}|s_{t}, a_{t})}]$$

Action-value function

$$Q_{\pi}(s_{t}, a_{t}) = \mathbb{E}\left[\left|\sum_{t' \ge t} \gamma^{t'-t} r(s_{t'}, a_{t'})\right| s_{t}, a_{t}\right] = r(s_{t}, a_{t}) + \gamma \mathbb{E}_{(s_{t+1}|s_{t}, a_{t}) \sim p}[V_{\pi}(s_{t+1})]$$

- If we have a guess for the value function V_{π}
 - And we interact with the environment to get experience (s_t, a_t, r_t, s_{t+1})
 - Then $r(s_t, a_t) + \gamma V_{\pi}(s_{t+1})$ is (in expectation) a good guess for $Q_{\pi}(s_t, a_t)$
 - Policy evaluation: on experience (s,

• What future return can the agent expect by taking a_t in s_t (and π in future)?

$$a, r, s'$$
), update $Q(s, a)$ toward $r + \gamma V(s')$

Optimal policy

- If we know we will use π in the future, what should we do now?
 - Greedy policy: $\pi^*(s_t) = \arg \max Q_{\pi}(s_t, a_t)$ a_t
 - In stochastic notation: $\pi^*(a_t | s_t) = 1$ for the greedy action
- If we have a guess for the action-value function Q(s, a)
 - , Then $V(s) = \max Q(s, a)$ is a value function of a better policy a
- This gives us a policy improvement step
 - Can be put together with policy evaluation $Q(s, a) \rightarrow r + \gamma V(s')$

Putting it all together: Deep Q Learning (DQN)

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

DQN pseudocode

Algorithm 1 DQN

initialize θ for Q_{θ} , set $\theta \leftarrow \theta$ for each step do if new episode, reset to s_0 observe current state s_t take ϵ -greedy action a_t based on $Q_{\theta}(s_t, \cdot)$ exploration $\pi(a_t|s_t) = \begin{cases} 1 - \frac{|\mathcal{A}| - 1}{|\mathcal{A}|} \epsilon & a_t = \operatorname{argmax}_a Q_{\theta}(s_t, a) \\ \frac{1}{|\mathcal{A}|} \epsilon & \text{otherwise} \end{cases}$ get reward r_t and observe next state s_{t+1} for each (s, a, r, s') in minibatch sampled from \mathcal{D} do $y \leftarrow \begin{cases} r \quad \text{policy improvement} & \text{if episode terminated at } s' \\ r + \gamma \max_{a'} Q_{\bar{\theta}}(s', a') & \text{otherwise} \\ \text{compute gradient } \nabla_{\theta}(y - Q_{\theta}(s, a))^2 \end{cases} \text{policy evaluation}$ take minibatch gradient step every K steps, set $\theta \leftarrow \theta$

add (s_t, a_t, r_t, s_{t+1}) to replay buffer \mathcal{D} agent creates its own "training set"

the target y isn't fixed as in supervised learning it keeps changing as the agent improves θ is a slowly updated target network, to stabilize y

Example: Table Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0

project

final exam

- Review: Thursday

• Assignment 5 due today

• Final report due Thursday

• Final: next Tuesday, Dec 7, 10:30am–12:30