CS 273A: Machine Learning Fall 2021 Lecture 18: Final Review

Roy Fox

Department of Computer Science **Bren School of Information and Computer Sciences** University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Logistics

evaluations

• Final report due next Thursday, Dec 9

Course evaluations due end-of-week (before Monday)

Exam Logistics

- Format:
 - Time: Tuesday, December 7, 10:30am–12:30
 - Location: ICS 174 (in person)
 - Should be doable in 90–100 minutes
- You can use:

 - A basic arithmetic calculator; no phones, no computers
 - Blank paper sheets for your calculations
 - Brainpower and good vibes

Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it

Exam suggestions

- Large majority of the questions are on topics taught after midterm \bullet
- Look at past exams ullet
 - Train yourself by reading some solutions, evaluate yourself on held-out exams
- Organize / join study groups (e.g. on Ed)
- During the exam:
 - Start with questions you find easy
 - Don't get bogged down by exact calculations
 - Leave expressions unsolved and come back to them later
 - Turn in your calculation sheet(s)
 - They won't be graded, but can be used for regrading

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Deep Neural Networks (DNNs)

- Layers of perceptrons can be stacked deeply
 - Deep architectures are subject of much current research

input layer 1 layer 2 layer 3 features • • •

• • •

Feed-forward (FF) networks

- Information flow in feed-forward (FF) networks:
 - Inputs \rightarrow shallow layers \rightarrow deeper layers \rightarrow outputs
 - Alternative: recurrent NNs (information loops back)
- Multiple outputs \implies efficiency:
 - Shared parameters, less data, less computation
- Multi-class classification:
 - One-hot labels $y = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots \end{bmatrix}$
 - , Multilogistic regression (softmax): $\hat{y}_c = -$

 $\exp(h_c)$

Gradient computation

- - Apply chain rule:

Backpropagation = chain rule + dynamic programming to avoid repetitions

Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin

•
$$w^* = \arg\max_{w} \frac{2}{\|w\|} = \arg\min_{w} \|w\|$$

► such that all data points predicted with enough margin: $\begin{cases} w \cdot x^{(j)} + b \ge +1 & \text{if } y^{(j)} = +1 \\ w \cdot x^{(j)} + b \le -1 & \text{if } y^{(j)} = -1 \end{cases}$

► ⇒ s.t.
$$y^{(j)}(w \cdot x^{(j)} + b) \ge 1$$
 (m

- Example of Quadratic Program (QP)
 - Quadratic objective, linear constraints

constraints)

Soft margin: dual form

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{e} \frac{1}{2} ||w||^2 + R \sum_{j} e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_{j} \lambda_j y^{(j)} = 0$

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_e \frac{1}{2} ||w||^2 + R \sum_j e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_j \left(\lambda_j - \frac{1}{2} \sum_k \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right)$ s.t. $\sum_j \lambda_j y^{(j)} = 0$

• Optimally:
$$w^* = \sum_{j} \lambda_j y^{(j)} x^{(j)}$$
; to hand

Support vector = points on or inside ma

• Gram matrix =
$$K_{jk} = x^{(j)} \cdot x^{(k)} = \text{simila}$$

lle b: add constant feature $x_0 = 1$

$$\operatorname{argin} = \lambda_j > 0$$

arity of every pair of instances

Kernel SVMs

• Define kernel $K : (x, x') \mapsto \mathbb{R}$

• Solve dual QP: $\max_{0 \le \lambda \le R} \sum_{i} \left(\lambda_{j} - \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} \right)$

- Learned parameters = λ (*m* parameters)
 - But also need to store all support vectors (having $\lambda_i > 0$)
- Prediction: $\hat{y}(x) = \operatorname{sign}(w \cdot \Phi(x))$

$$= \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x)\right) = \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K(x^{(j)}, x)\right)$$

$$(j)y^{(k)}K(x^{(j)}, x^{(k)})$$
 s.t. $\sum_{j} \lambda_{j} y^{(j)} = 0$

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Bagging

- Bagging = bootstrap aggregating:
 - Resample *K* datasets $\mathscr{D}_1, \ldots, \mathscr{D}_K$ of size *b*
 - Train K models $\theta_1, \ldots, \theta_K$ on each dataset

Regression: output $f_{\theta} : x \mapsto \frac{1}{K} \sum f_{\theta_k}(x)$

- Classification: output $f_{\theta} : x \mapsto \text{majority}\{f_{\theta_{\mu}}(x)\}$
- Similar to cross-validation (for different purpose), but outputs average model
 - Also, datasets are resampled (with replacement), not a partition

Ensemble methods

- Ensemble = "committee" of models: $\hat{v}_{L}(x) = f_{\Omega}(x)$
 - Decisions made by average / majori

May be weighted: better model = high

- - f_{A} trained on held out data = validation of which model should be trusted
 - f_{θ} linear \implies weighted committee, with learned weights

S:
$$y_k(x) = f_{\theta_k}(x)$$

ity vote: $\hat{y}(x) = \frac{1}{K} \sum_k \hat{y}_k(x)$

gher weight:
$$\hat{y}(x) = \sum_{k} \alpha_k \hat{y}_k(x)$$

• Stacking = use ensemble as inputs (as in MLP): $\hat{y}(x) = f_{\theta}(\hat{y}_1(x), \dots, \hat{y}_K(x))$

Mixture of Experts (MoE)

- Experts = models can "specialize", good only for some instances
 - Let weights depend on *x*: $\hat{y}(x) = \sum \alpha_k(x)\hat{y}_k(x)$
- Can we predict which model will perform well?
 - Learn a predictor $\alpha_{\phi}(k \mid x)$
 - E.g., multilogistic regression (softmax

$$\mathbf{x}) \ \alpha_{\phi}(k \,|\, x) = \frac{\exp(\phi_k \cdot x)}{\sum_{k'} \exp(\phi_{k'} \cdot x)}$$

Loss, experts, weights differentiable \implies end-to-end gradient-based learning

Random Forests

- Bagging over decision trees: which feature at root?
 - Much data \implies max info gain stable across data samples
 - Little diversity among models \implies little gained from ensemble
- Random Forests = subsample features
 - Each tree only allowed to use a subset of features
 - Still low, but higher bias
 - Average over trees for lower variance
- Works very well in practice \implies go-to algorithm for small ML tasks

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Gradient Boosting example: MSE loss

Ensemble:
$$\hat{y}_{K} = \sum_{k} f_{k}(x)$$
; MSE loss: $\mathscr{L}(y, \hat{y}_{k}) = \frac{1}{2}(y - \hat{y}_{k-1} - f_{k}(x))^{2}$

• To minimize: have $f_k(x)$ try to predict

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

$$x t y - \hat{y}_{k-1}$$

AdaBoost

• AdaBoost = adaptive boosting:

• Initialize
$$w_0^{(j)} = \frac{1}{m}$$

• Train classifier f_k on training data with weights w_{k-1}

Compute weighted error rate $\epsilon_k = \frac{\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]}{\sum_i w_{k-1}^{(j)}}$

• Compute
$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

• Update weights $w_k^{(j)} = w_{k-1}^{(j)} e^{-y^{(j)}\alpha_k f_k(x^{(j)})}$ (increase weight for misclassified points)

Predict
$$\hat{y}(x) = \text{sign} \sum_{k} \alpha_k f_k(x)$$

k-Means

- Simple clustering algorithm
- Repeat:
 - Update the clustering = assignment of data points to clusters
 - Update the cluster's representation to match the assigned points
- Notation:
 - $x_i = \text{data point in the dataset}$
 - k = number of clusters
 - μ_c = representation of cluster *c*

k-Means

- Iterate until convergence:
 - For each $x_i \in \mathcal{D}$, find the closest cluster of $x_i \in \mathcal{D}$.

Set each cluster centroid μ_c to the mean of assigned points: $\mu_c = \frac{1}{m_c} \sum_{i:z_i=c} x_i$

uster:
$$z_i = \arg\min_c ||x_i - \mu_c||^2$$

Hierarchical agglomerative clustering

- Another simple clustering algorithm
- Define distance (dissimilarity) between clusters $d(C_i, C_i)$
- Initialize: every data point is its own cluster
- Repeat:
 - Compute distance between each pair of clusters
 - Merge two closest clusters
- Output: tree of merge operations ("dendrogram")

• Complexity: in m - 1 iterations, merge distances and sort $\implies O(m^2 \log m)$

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

From dendrogram to clusters

• Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data

• For a given k, or a given level of dissimilarity

dendrogram

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Distance measures

•
$$d_{\min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y||^2$$

•
$$d_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

•
$$d_{avg}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i, y \in C_j} ||x|$$

•
$$d_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

Important property: iterative computation

$$d(C_i \cup C_j, C_k) =$$

Gaussian Mixture Models (GMMs)

- Each cluster is modeled by a Gaussian $p(x \mid c) = \mathcal{N}(x; \mu_c, \Sigma_c)$
 - Σ_c allows non-isotropic clusters \implies weighted Euclidean distance
- Mixture = distribution over Gaussians is given by a probability vector p(c)
- Generative model = we can sample
 - Sample $z \sim p(c)$
 - Sample $x \sim p(x \mid c = z)$

Probability of this *x*: $\sum p(c = z)p(x = z)p$

$$p(x)$$
:

we don't output z, it is "latent" = hidden \implies can be any of them

$$x \mid c = z) = \sum_{c} p(c, x) = p(x)$$

Training GMMs

- Compare to k-Means:
 - Assign data points to clusters z_i
 - Update each cluster's parameters μ_c
- A "soft" version of k-Means: Expectation–Maximization (EM) algorithm
 - Find a "soft" assignment p(c | x)
 - Update model parameters p(c), p(x | c)
- The EM algorithm is extremely general, GMMs are a very special case

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Expectation–Maximization: E-step

- Initialize model parameters $\pi_c = p($
- E-step (Expectation): [why "expectation"? comes from the general EM algorithm]
 - For each data point x_i , use Bayes' rule to compute:

$$r_{ic} = p(c \mid x_i) = \frac{p(c)p(x_i \mid c)}{\sum_{\bar{c}} p(\bar{c})p(x_i \mid \bar{c})} = \frac{\pi_c \mathcal{N}(x_i; \mu_c, \Sigma_c)}{\sum_{\bar{c}} \pi_{\bar{c}} \mathcal{N}(x_i; \mu_{\bar{c}}, \Sigma_{\bar{c}})}$$

(c),
$$\mu_c$$
, Σ_c

• High weight to clusters that are likely a-priori, or in which x_i is relatively probable

Expectation–Maximization: M-step

- Given assignment probabilities r_{ic}
- M-step (Maximization):
 - For each cluster c, fit the best Gaussian to the weighted assignment

$$\Sigma_c = \frac{1}{m_c} \sum_i m_i$$

Dimensionality reduction: linear features

- - If z preserves much information about x, should be able to find $x \approx f(z)$
- Linear embedding:

•
$$x \approx zv$$

• zv should be the closest point to x along v

$$z = \arg \min ||x - zv||^2 \implies z = \frac{x}{1}$$

• Example: summarize two real features $x = [x_1, x_2] \rightarrow$ one real feature z

Singular Value Decomposition (SVD)

- Alternative method for finding covariance eigenvectors
 - Has many other uses
- Singular Value Decomposition (SVD):
 - U and V (left- and right singular vectors) are orthogonal: $U^{\dagger}U = I$, $V^{\dagger}V = I$
 - D (singular values) is rectangular-diago
 - $\Sigma = X^{\mathsf{T}}X = VD^{\mathsf{T}}U^{\mathsf{T}}UDV^{\mathsf{T}} = V(D^{\mathsf{T}}D)$
- - We can truncate this after top k singular values (square root of eigenvalues)

$$X = UDV^{\mathsf{T}} \qquad \begin{bmatrix} X \\ m \times n \end{bmatrix} = \begin{bmatrix} U \\ m \times m \end{bmatrix} \cdot \begin{bmatrix} D \\ m \times n \end{bmatrix} \cdot \begin{bmatrix} V^{\mathsf{T}} \\ n \times n \end{bmatrix}$$

$$\sum_{\substack{X \\ m \times n}} \approx \begin{bmatrix} U_{1:k} \\ m \times k \end{bmatrix} \cdot \begin{bmatrix} D_{1:k} \\ k \times k \end{bmatrix} \cdot \begin{bmatrix} V_{1:k} \\ k \times n \end{bmatrix}$$

• UD matrix gives coefficients to reconstruct data: $x_i = U_{i,1}D_{1,1}v_1 + U_{i,2}D_{2,2}v_2 + \cdots$

Nonlinear latent spaces

- Latent-space representation = represent x_i as z_i
 - Usually more succinct, less noisy
 - Preserves most (interesting) information on $x_i \implies$ can reconstruct $\hat{x}_i \approx x_i$
 - Auto-encoder = encode $x \rightarrow z$, decode $z \rightarrow \hat{x}$
- Linear latent-space representation:
 - Encode: $Z = XV_{<k} = (UDV^{\mathsf{T}}V)_{<k} =$
- Nonlinear: e.g., encoder + decoder are neural networks
 - Restrict z to be shorter than $x \implies$ requires succinctness

$$U_{\leq k}D_{\leq k}$$
; Decode: $X \approx ZV_{\leq k}^{\mathsf{T}}$

Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Why active learning?

- Expensive labels \implies prefer to label instances relevant to the decision \bullet
- Selecting relevant points may be hard too \implies automate with active learning
- Objective: learn good model while minimizing #queries for labels

Active learning settings

- Pool-Based Sampling
 - Learner selects instances in dataset $x \in \mathcal{D}$ to label
- Stream-Based Selective Sampling
 - Learner gets stream of instances x_1, x_2, \ldots , decides which to label
- Membership Query Synthesis
 - earner generates instance x
 - Doesn't have to occur naturally = p(x) may be low

 $- \implies$ May be harder for teacher to label ("is this synthesized image a dog or a cat?")

Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions a_1, \ldots, a_k
 - Each time we take action a_i we see a noisy reward $r_t \sim p_i$
- Can we maximize the expected reward $\max_i \mathbb{E}_{r \sim p_i}[r]$?
 - We can use the mean as an estimate
- Challenge: is the best mean so far the best action?
 - Or is there another that's better than it appeared so far?

$$e \mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{m_i} \sum_{t \in T_i} r_t$$

Multi-armed bandit

Optimism under uncertainty

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
 - Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean rew
- Be optimistic by slowly-growing number of standard deviations: $a = \arg \max_{i} \hat{\mu}_{i} + \sqrt{\frac{2 \ln T}{m_{i}}}$
 - Confidence bound: likely $\mu_i \leq \hat{\mu}_i + c\sigma_i$; unknown constant in the variance \implies let c grow
 - But not too fast, or we fail to exploit what we do know
- Regret: $\rho(T) = O(\log T)$, provably optimal

vard of each arm
$$\hat{\mu}_i$$
 quickly $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{m_i}\right)\right)$

Markov Decision Process (MDP)

- Model of environment
 - S = set of states
 - A = set of actions
 - $p(s' | s, a) = \text{probability that } s_{t+1} = s', \text{ if } s_t = s \text{ and } a_t = a$

Trajectories

- The agent's behavior iteratively uses (rolls out) the policy
- Trajectory: $\xi = (s_1, a_1, s_2, a_2, \dots, s_T)$
- MDP + policy induce distribution over trajectories

$$p_{\pi}(\xi) = p(s_1)\pi(a_1 | s_1)p(s_2 | s_1, a_1)\cdots\pi(a_T | s_T)p(s_{T+1} | s_T, a_T)$$

= $p(s_1)\prod_{t=1}^T \pi(a_t | s_t)p(s_{t+1} | s_t, a_t)$

$$(-1)^{(+1)}$$

Learning from Demonstrations (LfD)

- Teacher provides demonstration tra
- Learner trains a policy π_{θ} to minimize a loss $\mathscr{L}(\theta)$
- For example, negative log-likelihood (NLL):

$$\arg \min_{\theta} \mathscr{L}_{\theta}(\xi) = \arg \min_{\theta} (-\log p_{\theta}(\xi))$$

$$= \arg \max_{\theta} \left(\log p(s_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t} | s_{t}) + \log p(s_{t+1} | s_{t}, a_{t}) \right)$$

$$= \arg \max_{\theta} \sum_{t=1}^{T} \log \pi_{\theta}(a_{t} | s_{t})$$

$$= \operatorname{no need to know the environment dynamics}$$

ajectories
$$\mathcal{D} = \{\xi^{(1)}, \dots, \xi^{(m)}\}$$

Gathering experience

- Machine learning works when training distribution = test distribution
 - We train on p_{π^*} but test on p_{π_0}
 - Problem: we don't know π_{θ} until after training
- Dataset Aggregation (DAgger):
 - Roll out learner trajectories $\xi \sim p_{\pi_{\theta}}$
 - Ask teacher to label reached states S_t with correct actions a_t
 - Add to dataset, train new π_{θ} , repeat

as in active learning

- Discount factor $\gamma \in [0,1]$
 - Higher weight to short-term rewards (and costs) than long-term
 - Good mathematical properties:
 - Assures convergence, simplifies algorithms, reduces variance
 - Vaguely economically motivated (inflation)

$$r(s_t, a_t)$$

• Summarize reward sequence $r_t = r(s_t, a_t)$ as single number to be maximized

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Optimal policy

- If we know we will use π in the future, what should we do now?
 - Greedy policy: $\pi^*(s_t) = \arg \max Q_{\pi}(s_t, a_t)$ a_t
 - In stochastic notation: $\pi^*(a_t | s_t) = 1$ for the greedy action
- If we have a guess for the action-value function Q(s, a)
 - , Then $V(s) = \max Q(s, a)$ is a value function of a better policy \mathcal{A}
- This gives us a policy improvement step
 - Can be put together with policy evaluation $Q(s, a) \rightarrow r + \gamma V(s')$

Putting it all together: Deep Q Learning (DQN)

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning