U CI University of
California, Irvine

CS 273A: Machine Learning
Fall 2021

Lecture 18: Final Review

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex |hler & Sameer Singh 25 20  -ls  -10 05

Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review



Logistics

* Final report due next Thursday, Dec 9

_  Course evaluations due end-of-week (before Monday)
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Exam Logistics

e Format:
> Time: Tuesday, December 7, 10:30am-12:30
> Location: ICS 174 (in person)

» Should be doable in 90-100 minutes

 YOU can use:
> Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
> A basic arithmetic calculator; no phones, no computers
» Blank paper sheets for your calculations

> Brainpower and good vibes
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Exam suggestions

Large majority of the questions are on topics taught after midterm

Look at past exams

> Train yourself by reading some solutions, evaluate yourself on held-out exams
Organize / join study groups (e.g. on Ed)

During the exam:

> Start with questions you find easy

> Don't get bogged down by exact calculations

> Leave expressions unsolved and come back to them later

> Turn in your calculation sheet(s)

- They won't be graded, but can be used for regrading
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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Deep Neural Networks (DNNs)

e |ayers of perceptrons can be stacked deeply

> Deep architectures are subject of much current research
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Feed-forward (FF) networks

* Information flow in feed-forward (FF) networks: hidden layer

> Inputs — shallow layers — deeper layers — outputs _ ‘
Inputs A outputs

> Alternative: recurrent NNs (information loops back) , ‘
 Multiple outputs = efficiency: ‘V’f'.“?y/'
| TS
S\ /"
» Shared parameters, less data, less computation \ W

e Multi-class classification: '

> One-hotlabelsy=10 0 1 0 -.-] I

information

exp(h,.)
2 - exp(h;z)

., Multilogistic regression (softmax): y,. =
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Gradient computation

» MLPs are function compositions of single layers

> Apply chain rule:
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example: f(g,h) = 6(g +h) = d,f = f(1 - f)
= reuse f from the forward pass y

 Backpropagation = chain rule + dynamic programming to avoid repetitions
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Maximizing the margin

o Constrained optimization: get all data points correctly + maximize the margin

. WF¥ =arg max — = arg min ||w||
2wl "

woxP+b>41 ify? =41

> such that all data points predicted with enough margin: {

w-axWepb< -1 ifyl) = -1

> = s.t. YO w - xY + b) > 1 (m constraints)

 Example of Quadratic Program (QP)

» Quadratic objective, linear constraints
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Soft margin: dual form

. . -
Primal problem: w*, b* = arg minmin —||w||* + R Y eV
g 2
w,b € -

° 0<A<R

Dual problem: max Z /lj—% 2 /Ij/lky(j)y(k)x(j) . x ) s.t. Z AyWPD =0
] k

>

Optimally: w* = Z /ij(j)x(j); to handle b: add constant feature x, = 1
J

» Support vector = points on or inside margin = /IJ- > 0

» Gram matrix = Kjk = xW) . x0 - similarity of every pair of instances
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Kernel SVMs

e Define kernel K : (x,x") |

0<A<R =
J

. Solve dual QP: max Z (/lj—% Z /ljxlky(j)y(k)K(x(j),x(k))> s.t. Z /ljy(j) =0
k

o |earned parameters = A (m parameters)

» But also need to store all support vectors (having /1]- > ()

e Prediction: y(x) = sign(w - P(x))

= sign Z /ljy(j)CD(x(j)) - D(x) | = s1gn Z /ljy(j)K(x(j),x)
J J

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods



Bagging
 Bagging = bootstrap aggregating:
> Resample K datasets 9, ..., D, of size b

> Train K models 0, ..., 0, on each dataset

. , 1
Regression: output f, : x e Z fgk(X)
k

>

- Classification: output f, : X = majority{fy (x) }

e Similar to cross-validation (for different purpose), but outputs average model

> Also, datasets are resampled (with replacement), not a partition
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Ensemble methods
. Ensemble = “committee” of models: y,(x) = fek(x)

>

Decisions made by average / majority vote: y(x) = % Z Vi (x)
k

>

May be weighted: better model = higher weight: y(x) = Z .y, (x)
k

» Stacking = use ensemble as inputs (as in MLP): y(x) = fo(V{(X), ..., Yg(x))
~ f,trained on held out data = validation of which model should be trusted

» [y linear = weighted committee, with learned weights
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Mixture of Experts (MoE)

o Experts = models can “specialize”, good only for some instances

mixture of 3

Let weights depend on x: y(X) — Z ak(X)j\/k(X) . linear predictors
' |

>

e Can we predict which model will perform well?

> Learn a predictor a (k| x)

exp(¢y - x)
zk/ eXp(¢k’ ' )C)

E.g., multilogistic regression (softmax) a¢(k\x) =

» Loss, experts, weights differentiable =— end-to-end gradient-based learning
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Random Forests

 Bagging over decision trees: which feature at root?
> Much data = max info gain stable across data samples

> Little diversity among models — little gained from ensemble

e Random Forests = subsample features
> Each tree only allowed to use a subset of features
> Still low, but higher bias

> Average over trees for lower variance

 Works very well in practice = go-to algorithm for small ML tasks
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Gradient Boosting example: MSE loss

> To minimize: have f,(x) try to predict y — y,_;

> Then update y, = y, | + f.(x)

data
prediction

residual

weak model .
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Increasingly accurate
Increasingly complex
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AdaBoost

 AdaBoost = adaptive boosting:

e ' 1
» |nitialize W(]) = —
0 m

~ Train classifier f, on training data with weights w,_,

2wy # ()]
~ Compute weighted error rate €;, = .
5w,

l — ¢,

1
> COmpUte Olk — 5 ln -
k

. Update weights wlgj) — wlg)le_y(j 2 /i*”) (increase weight for misclassified points)

 Predict $(x) = sign Z ()
k
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k-Means

e Simple clustering algorithm
 Repeat:
> Update the clustering = assignment of data points to clusters

» Update the cluster's representation to match the assigned points

e Notation:

> X; = data point in the dataset

» k = number of clusters

> U = representation of cluster ¢

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering



k-Means

 |terate until convergence:

., Foreach x; € 9, find the closest cluster: z; = arg min ||x; — ﬂcHz

C

Set each cluster centroid y. to the mean of assigned points: j,. = mi Z X

>
l:Zl’:C

LN
Ml,s.

Hy€—s /
"\ )
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Hierarchical agglomerative clustering

* Another simple clustering algorithm

» Define distance (dissimilarity) between clusters d(C;, C;)

* |nitialize: every data point is its own cluster
* Repeat:
> Compute distance between each pair of clusters

> Merge two closest clusters

* Qutput: tree of merge operations (“dendrogram?)

. Complexity: in m — 1 iterations, merge distances and sort => O(m? log m)

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models



From dendrogram to clusters

* Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data dendrogram

' B S ) N
0 1 —— = T |
o

> For a given k, or a given level of dissimilarity
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Distance measures

mm( C) —  min Hx yHZ . produces minimum spanning tree
xeC,yel; R
* dmax( C) — Ihax HX y Hz avoids elongated clusters
XEC yEC \
_ 1 o2
GO = e 2 Ikl
xeC,yel;

c dmeans(ci9 C) = H//ti — Hz

j Hi \
* Important property: iterative computation

d(Cz U C}" Ck) =f(d(ci9 Ck)9 d(C}a Ck))

Nearest
Neighbour

| T
(Single Linkage)

Em thest
eighbour

[Complete Lmkfige)

Centroid
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Gaussian Mixture Models (GMMs)

» Each cluster is modeled by a Gaussian p(x|c) = A/ (x; u,., 2.)

> 2. allows non-isotropic clusters = weighted Euclidean distance

» Mixture = distribution over Gaussians is given by a probability vector p(c)

« Generative model = we can sample p(x):

» Sample z ~ p(c)

we don't output z, it is “latent” = hidden
/ —> can be any of them

» Sample x ~ p(x|c = 2)

I

 Probability of this x: Z plc=2pkx|c=2) = 2 p(c,x) = p(x)
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Training GMMs

« Compare to k-Means:

> Assign data points to clusters z;
» Update each cluster's parameters u..
« A “soft” version of k-Means: Expectation—Maximization (EM) algorithm

> Find a “soft” assignment p(c | x)

» Update model parameters p(c), p(x| c)

 The EM algorithm is extremely general, GMMs are a very special case
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Expectation-Maximization: E-step

e Initialize model parameters 7. = p(c), 1., 2.
e E-step (Expectation): [why “expectation”? comes from the general EM algorithm]

> For each data point x;, use Bayes' rule to compute:

o= np(c|x) = plople)  m N pe, 2
e = F - Zép(ﬁ)p(xi\(?) B Zgﬂé'/’/(xi;ﬂé’zé)

> High weight to clusters that are likely a-priori, or in which X; is relatively probable

area: 7,

area: 7, r 2 0.7 { N —
\ v
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Expectation-Maximization: M-step

 Given assignment probabilities r;,
e M-step (Maximization):

> For each cluster ¢, fit the best Gaussian to the weighted assignment

total weight assigned to cluster ¢ 2

Tem,. = 2 what is Z m.? m

18
] C

fraction of weight assigned to cluster c

~~—~ me _ L
% ; Mo = m 2 ,ricxi
C l V\

o\
Ze = o 2Tl = G = H)T

weighted covariance of data in cluster c

weighted mean of data in cluster ¢
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Dimensionality reduction: linear features

» Example: summarize two real features x = |x, x,| — one real feature z

~ If 7 preserves much information about x, should be able to find x =~ f(z)

e Linear embedding:
X2

> X R ZV

> zv should be the closest point to x along v B T

. 5 xTy .| e
_z=argmm|x—zv||F = z=— _ - Py
VTV 2 ) P
AN -’
projection of x on Vv . e a
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Singular Value Decomposition (SVD)

» Alternative method for finding covariance eigenvectors

> Has many other uses

o Singular Value Decomposition (SVD): X = UDV1 mxn mxm | | mxn| | nxn

» U and V (left- and right singular vectors) are orthogonal: UTU = [, VIV =]

> D (singular values) is rectangular-diagonal
Ul:k . Dl:k . VlT;k
m X n mxk| [KXk kXn

&

. ¥ = XX = VDTUTUDV' = V(DTD)VT

« UD matrix gives coefficients to reconstruct data: x; = Ui,1D1,1v1 + Ui,zDz,zvz + ...

» We can truncate this after top k singular values (square root of eigenvalues)
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Nonlinear latent spaces

» Latent-space representation = represent x; as z;
> Usually more succinct, less noisy

> Preserves most (interesting) information on x; = can reconstruct x; & x;

> Auto-encoder = encode x — z, decode 7 — X X —*.—* .—» X

* Linear latent-space representation:

» Encode: Z =XV, = (UDV'V) . = Uy Dyy; Decode: X & ZV,

output

 Nonlinear: e.g., encoder + decoder are neural networks

Tdecode
hidden

Tencode

> Restrict 7 to be shorter than x = requires succinctness input -
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Why active learning?

full labeled data SVM on random sample SVM on selected sample
(unavailable) of labeled data of labeled data
3 | | | 3 | ] | | | |
2 — o — 2 — A . -
A, | ) s
1 F . . 1 ,_.A. R $e° ;
. °‘.° A, A —.
O — .:‘..' 2 _ O - :*.. AA.: .A .A‘.:: .:: —
IR o °.°. AA,' i
-1 — ..A. N '1 — ") o’ 7
A o A
-2 - -2 . . -
_3 | ] | _3 | | ] ] |
-4 2 4 -4 -2 0 2 4

Source: https://www.datacamp.com/community/tutorials/active-learning

e Expensive labels = prefer to label instances relevant to the decision

o Selecting relevant points may be hard too = automate with active learning

* Obijective: learn good model while minimizing #queries for labels
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https://www.datacamp.com/community/tutorials/active-learning

Active learning settings

Select

Observe most Query -
ﬁ , ) ﬁ -
instances  informative  INStance

)

* Pool-Based Sampling

instances
. . Learner Oracle
» Learner selects instances in dataset x € & to label
Observe an dr;';?:" Query —
* Stream-Based Selective Sampling — . — =

Learner Discard\‘ Oracle

instance

> Learner gets stream of instances X, x,, ..., decides which to label

—
. . G Q
» Membership Query Synthesis s a =L
instance ' instance
Learner Oracle
> Learner generates |nStance x Source: https://www.datacamp.com/community/tutorials/active-learning

> Doesn't have to occur naturally = p(x) may be low

- —= May be harder for teacher to label (“is this synthesized image a dog or a cat?”)
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https://www.datacamp.com/community/tutorials/active-learning

Multi-Armed Bandits (MABs)

One-armed bandit

 Basic setting: single instance x, multiple actions ay, ..., a;

> Each time we take action a; we see a noisy reward r, ~ p;

. Can we maximize the expected reward max I- er.[l”]?

We can use the mean as an estimate y; = ‘er.[l”] ~
l

>

e Challenge: is the best mean so far the best action?

> Or is there another that's better than it appeared so far?
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Optimism under uncertainty

* Tradeoff: explore less used actions, but don't be late to start exploiting what's known

> Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit

By the central limit theorem, the mean reward of each arm ji. quickly — A (ﬂia O (i>>

ni;

. Be optimistic by slowly-growing number of standard deviations: a = arg max /21' + \/21HT
i

» Confidence bound: likely u; < ji. + co; unknown constant in the variance = let ¢ grow

> But not too fast, or we fail to exploit what we do know

» Regret: p(T) = O(log T'), provably optimal
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Markov Decision Process (MDP)

» Model of environment environment
» S = set of states

» A = set of actions

~ p(s'| s, a) = probability that s,, | = s',if s, = sand a, = a -
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Trajectories

 The agent's behavior iteratively uses (rolls out) the policy

environment
o Trajectory: & = (81, dy, S5, Ayy + ooy ST 1)

« MDP + policy induce distribution over trajectories

p,(¢) = p(spa(ay | s))p(s, | sy, ay)---wlar| sp)p(spyq | 57, ar)

I
=p(sp) | | mals)pis 1 sna) R
=1
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Learning from Demonstrations (LfD)

» Teacher provides demonstration trajectories @ = {1, ..., ™)}

e Learner trains a policy 7z, to minimize a loss Z£'(0)

* For example, negative log-likelihnood (NLL):

arg min Z,(&) = arg min(~log py(£)

T
= argmax | logp(s)) + ), log 7(a,|s)) + logp(sis |5 @)
=1
model-free

1 .~ =no need to know the environment dynamics p
= arg max Z log my(a, | s,)
0

=1
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Gathering experience

 Machine learning works when training distribution = test distribution

> We trainon p, .. butteston p

> Problem: we don't know 7, until after training
o Dataset Aggregation (DAgger):

~ Roll out learner trajectories { ~ p,

- as in active learning

> Ask teacher to label reached states s, with correct actions a,

> Add to dataset, train new 7, repeat
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Returns

Return = total reward = R = Z y'r(s, a,)

[

>~ Summarize reward sequence 1, = r(s,, d,) as single number to be maximized

e Discount factor y € [0,1]

> Higher weight to short-term rewards (and costs) than long-term

> Good mathematical properties:
- Assures convergence, simplifies algorithms, reduces variance

* \Vaguely economically motivated (inflation)
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Optimal policy
e |[f we know we will use 7z in the future, what should we do now?

Greedy policy: £*(s,) = arg max Q_(s,, a,)
d,

>

> In stochastic notation: z*(a, | s,) = 1 for the greedy action

» |f we have a guess for the action-value function Q(s, a)

. Then V(s) = max Q(s, a) is a value function of a better policy
d

* This gives us a policy improvement step

>~ Can be put together with policy evaluation Q(s,a) — r + yV(s’)
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Putting it all together: Deep Q Learning (DQN)

differentiable value
function approximation

policy evaluation

exploration
e.g. €-greedy

greedy policy
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