
Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review

CS 273A: Machine Learning
Fall 2021

Lecture 18: Final Review

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review

Logistics

• Final report due next Thursday, Dec 9

• Course evaluations due end-of-week (before Monday)

project

evaluations

Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review

Exam Logistics
• Format:

‣ Time: Tuesday, December 7, 10:30am–12:30

‣ Location: ICS 174 (in person)

‣ Should be doable in 90–100 minutes

• You can use:

‣ Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it

‣ A basic arithmetic calculator; no phones, no computers

‣ Blank paper sheets for your calculations

‣ Brainpower and good vibes

Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review

Exam suggestions
• Large majority of the questions are on topics taught after midterm

• Look at past exams

‣ Train yourself by reading some solutions, evaluate yourself on held-out exams

• Organize / join study groups (e.g. on Ed)

• During the exam:

‣ Start with questions you find easy

‣ Don't get bogged down by exact calculations

‣ Leave expressions unsolved and come back to them later

‣ Turn in your calculation sheet(s)

- They won't be graded, but can be used for regrading

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Multi-Layer Perceptron (MLP)

x1

1

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

F1

T

F3

T

F2

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

σ
w1

w2

w3

Σ
F(x) = σ(w⊺Φ(x)) = σ(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

σ

σ

σ

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply

‣ Deep architectures are subject of much current research

input
features

layer 2layer 1

⋯

layer 3 ⋯

r1 = w[0].T @ x + b[0] # linear response
h1 = sig(r1) # activation function

r2 = w[1].T @ h1 + b[1] # linear response
h2 = sig(r2) # activation function

 # ...

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:

‣ Inputs shallow layers deeper layers outputs

‣ Alternative: recurrent NNs (information loops back)

• Multiple outputs efficiency:

‣ Shared parameters, less data, less computation

• Multi-class classification:

‣ One-hot labels

‣ Multilogistic regression (softmax):

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

• MLPs are function compositions of single layers

‣ Apply chain rule:

• Backpropagation = chain rule + dynamic programming to avoid repetitions

Gradient computation

g(⋯)

h(⋯)

⋯ ℒ(⋯)f(g, h)

inputs

hidden layer

outputs

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ
∂fℒ

example:
 reuse from the forward pass

f(g, h) = σ(g + h) ⟹ ∂g f = f(1 − f)
⟹ f

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin

•

‣ such that all data points predicted with enough margin:

‣ (constraints)

• Example of Quadratic Program (QP)

‣ Quadratic objective, linear constraints

w* = arg max
w

2
∥w∥ = arg min

w
∥w∥

⟹ s.t. y(j)(w ⋅ x(j) + b) ≥ 1 m
{w ⋅ x(j) + b ≥ + 1 if y(j) = + 1

w ⋅ x(j) + b ≤ − 1 if y(j) = − 1

w ⋅ x + b = + 1

w ⋅ x + b = − 1

Roy Fox | CS 273A | Fall 2021 | Lecture 12: Support Vector Machines

Soft margin: dual form

• Primal problem:

‣ s.t. ;

• Dual problem:

‣ Optimally: ; to handle : add constant feature

‣ Support vector = points on or inside margin =

‣ Gram matrix = = similarity of every pair of instances

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ(j)

y(j)(w ⋅ x(j) + b) ≥ 1 − ϵ(j) ϵ(j) ≥ 0

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)x(j) ⋅ x(k)) s.t. ∑
j

λjy(j) = 0

w* = ∑
j

λjy(j)x(j) b x0 = 1

λj > 0

Kjk = x(j) ⋅ x(k)

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Kernel SVMs
• Define kernel

• Solve dual QP:

• Learned parameters = (parameters)

‣ But also need to store all support vectors (having)

• Prediction:

K : (x, x′) ↦ ℝ

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)K(x(j), x(k))) s.t. ∑
j

λjy(j) = 0

λ m

λj > 0

̂y(x) = sign(w ⋅ Φ(x))

= sign ∑
j

λjy(j)Φ(x(j)) ⋅ Φ(x) = sign ∑
j

λjy(j)K(x(j), x)

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Bagging
• Bagging = bootstrap aggregating:

‣ Resample datasets of size

‣ Train models on each dataset

‣ Regression: output

‣ Classification: output

• Similar to cross-validation (for different purpose), but outputs average model

‣ Also, datasets are resampled (with replacement), not a partition

K 𝒟1, …, 𝒟K b

K θ1, …, θK

fθ : x ↦ 1
K ∑

k

fθk
(x)

fθ : x ↦ majority{fθk
(x)}

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Ensemble methods

• Ensemble = “committee” of models:

‣ Decisions made by average / majority vote:

‣ May be weighted: better model = higher weight:

• Stacking = use ensemble as inputs (as in MLP):

‣ trained on held out data = validation of which model should be trusted

‣ linear weighted committee, with learned weights

̂yk(x) = fθk
(x)

̂y(x) = 1
K ∑

k

̂yk(x)

̂y(x) = ∑
k

αk ̂yk(x)

̂y(x) = fθ(̂y1(x), …, ̂yK(x))

fθ

fθ ⟹

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Mixture of Experts (MoE)

• Experts = models can “specialize”, good only for some instances

‣ Let weights depend on :

• Can we predict which model will perform well?

‣ Learn a predictor

- E.g., multilogistic regression (softmax)

• Loss, experts, weights differentiable end-to-end gradient-based learning

x ̂y(x) = ∑
k

αk(x) ̂yk(x)

αϕ(k |x)

αϕ(k |x) =
exp(ϕk ⋅ x)

∑k′
exp(ϕk′

⋅ x)

⟹

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mixture of 3
linear predictors

Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Random Forests
• Bagging over decision trees: which feature at root?

‣ Much data max info gain stable across data samples

‣ Little diversity among models little gained from ensemble

• Random Forests = subsample features

‣ Each tree only allowed to use a subset of features

‣ Still low, but higher bias

‣ Average over trees for lower variance

• Works very well in practice go-to algorithm for small ML tasks

⟹

⟹

⟹

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

Gradient Boosting example: MSE loss

• Ensemble: ; MSE loss:

‣ To minimize: have try to predict

‣ Then update

̂yK = ∑
k

fk(x) ℒ(y, ̂yk) = 1
2 (y − ̂yk−1 − fk(x))2

fk(x) y − ̂yk−1

̂yk = ̂yk−1 + fk(x)

data
prediction

residual
weak model

increasingly accurate
increasingly complex

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

AdaBoost
• AdaBoost = adaptive boosting:

‣ Initialize

‣ Train classifier on training data with weights

‣ Compute weighted error rate

‣ Compute

‣ Update weights (increase weight for misclassified points)

• Predict

w(j)
0 = 1

m

fk wk−1

ϵk =
∑j w(j)

k−1δ[y(j) ≠ fk(x(j))]

∑j w(j)
k−1

αk = 1
2 ln

1 − ϵk

ϵk

w(j)
k = w(j)

k−1e
−y(j)αk fk(x(j))

̂y(x) = sign∑
k

αk fk(x)

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

-Meansk
• Simple clustering algorithm

• Repeat:

‣ Update the clustering = assignment of data points to clusters

‣ Update the cluster's representation to match the assigned points

• Notation:

‣ = data point in the dataset

‣ = number of clusters

‣ = representation of cluster

xi

k

μc c

xi

μc

Roy Fox | CS 273A | Fall 2021 | Lecture 14: Clustering

-Meansk
• Iterate until convergence:

‣ For each , find the closest cluster:

‣ Set each cluster centroid to the mean of assigned points:

xi ∈ 𝒟 zi = arg min
c

∥xi − μc∥2

μc μc = 1
mc ∑

i:zi=c

xi

μ1

μ2

μ2

μ1

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Hierarchical agglomerative clustering
• Another simple clustering algorithm

• Define distance (dissimilarity) between clusters

• Initialize: every data point is its own cluster

• Repeat:

‣ Compute distance between each pair of clusters

‣ Merge two closest clusters

• Output: tree of merge operations (“dendrogram”)

• Complexity: in iterations, merge distances and sort

d(Ci, Cj)

m − 1 ⟹ O(m2 log m)

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

From dendrogram to clusters
• Given the hierarchy of clusters, choose a frontier of subtrees = clusters

‣ For a given , or a given level of dissimilarityk

data dendrogram

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Distance measures

•

•

•

•

• Important property: iterative computation

dmin(Ci, Cj) = min
x∈Ci,y∈Cj

∥x − y∥2

dmax(Ci, Cj) = max
x∈Ci,y∈Cj

∥x − y∥2

davg(Ci, Cj) = 1
|Ci | ⋅ |Cj | ∑

x∈Ci,y∈Cj

∥x − y∥2

dmeans(Ci, Cj) = ∥μi − μj∥2

d(Ci ∪ Cj, Ck) = f(d(Ci, Ck), d(Cj, Ck))

produces minimum spanning tree

avoids elongated clusters

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Gaussian Mixture Models (GMMs)
• Each cluster is modeled by a Gaussian

‣ allows non-isotropic clusters weighted Euclidean distance

• Mixture = distribution over Gaussians is given by a probability vector

• Generative model = we can sample :

‣ Sample

‣ Sample

‣ Probability of this :

p(x |c) = 𝒩(x; μc, Σc)

Σc ⟹

p(c)

p(x)

z ∼ p(c)

x ∼ p(x |c = z)

x ∑
c

p(c = z)p(x |c = z) = ∑
c

p(c, x) = p(x)

we don't output , it is “latent” = hidden
 can be any of them

z
⟹

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Training GMMs

• Compare to -Means:

‣ Assign data points to clusters

‣ Update each cluster's parameters

• A “soft” version of -Means: Expectation–Maximization (EM) algorithm

‣ Find a “soft” assignment

‣ Update model parameters ,

• The EM algorithm is extremely general, GMMs are a very special case

k

zi

μc

k

p(c |x)

p(c) p(x |c)

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Expectation–Maximization: E-step

• Initialize model parameters , ,

• E-step (Expectation): [why “expectation”? comes from the general EM algorithm]

‣ For each data point , use Bayes' rule to compute:

‣ High weight to clusters that are likely a-priori, or in which is relatively probable

πc = p(c) μc Σc

xi

ric = p(c |xi) =
p(c)p(xi |c)

∑c̄ p(c̄)p(xi | c̄)
=

πc𝒩(xi; μc, Σc)

∑c̄ πc̄𝒩(xi; μc̄, Σc̄)

xi

area: π1
area: π2r1 = 0.7

r1 = 0.3

Roy Fox | CS 273A | Fall 2021 | Lecture 15: Latent-Space Models

Expectation–Maximization: M-step
• Given assignment probabilities

• M-step (Maximization):

‣ For each cluster , fit the best Gaussian to the weighted assignment

ric

c

mc = ∑
i

ric

πc =
mc

m μc = 1
mc ∑

i

ricxi

Σc = 1
mc ∑

i

ric(xi − μc)(xi − μc)⊺

what is ?∑
c

mc m
total weight assigned to cluster c

fraction of weight assigned to cluster c

weighted mean of data in cluster c

weighted covariance of data in cluster c

Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Dimensionality reduction: linear features

• Example: summarize two real features one real feature

‣ If preserves much information about , should be able to find

• Linear embedding:

‣

‣ should be the closest point to along

-

x = [x1, x2] → z

z x x ≈ f(z)

x ≈ zv

zv x v

z = arg min ∥x − zv∥2 ⟹ z =
x⊺v
v⊺v

550 600 650 700 750 800 850 900 950 1000
550

600

650

700

750

800

850

900

950

1000

x1

x2

550 600 650 700 750 800 850 900 950 1000
550

600

650

700

750

800

850

900

950

1000

x1

x2
v

projection of on x v

Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Singular Value Decomposition (SVD)
• Alternative method for finding covariance eigenvectors

‣ Has many other uses

• Singular Value Decomposition (SVD):

‣ and (left- and right singular vectors) are orthogonal: ,

‣ (singular values) is rectangular-diagonal

‣

• matrix gives coefficients to reconstruct data:

‣ We can truncate this after top singular values (square root of eigenvalues)

X = UDV⊺

U V U⊺U = I V⊺V = I

D

Σ = X⊺X = VD⊺U⊺UDV⊺ = V(D⊺D)V⊺

UD xi = Ui,1D1,1v1 + Ui,2D2,2v2 + ⋯

k

 X
m × n

 U1:k
m × k

≈ ⋅ ⋅ D1:k
k × k

 V⊺
1:k

k × n

 X
m × n

 U
m × m

= ⋅ ⋅ D
m × n

 V⊺

n × n

Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Nonlinear latent spaces
• Latent-space representation = represent as

‣ Usually more succinct, less noisy

‣ Preserves most (interesting) information on can reconstruct

‣ Auto-encoder = encode , decode

• Linear latent-space representation:

‣ Encode: ; Decode:

• Nonlinear: e.g., encoder + decoder are neural networks

‣ Restrict to be shorter than requires succinctness

xi zi

xi ⟹ ̂xi ≈ xi

x → z z → ̂x

Z = XV≤k = (UDV⊺V)≤k = U≤kD≤k X ≈ ZV⊺
≤k

z x ⟹

encoder decoderx z ̂x

Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Why active learning?

• Expensive labels prefer to label instances relevant to the decision

• Selecting relevant points may be hard too automate with active learning

• Objective: learn good model while minimizing #queries for labels

⟹

⟹

full labeled data
(unavailable)

SVM on random sample
of labeled data

SVM on selected sample
of labeled data

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning

Roy Fox | CS 273A | Fall 2021 | Lecture 16: Active and Online Learning

Active learning settings
• Pool-Based Sampling

‣ Learner selects instances in dataset to label

• Stream-Based Selective Sampling

‣ Learner gets stream of instances , decides which to label

• Membership Query Synthesis

‣ Learner generates instance

‣ Doesn't have to occur naturally = may be low

- May be harder for teacher to label (“is this synthesized image a dog or a cat?”)

x ∈ 𝒟

x1, x2, …

x

p(x)

⟹

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Multi-Armed Bandits (MABs)

• Basic setting: single instance , multiple actions

‣ Each time we take action we see a noisy reward

• Can we maximize the expected reward ?

‣ We can use the mean as an estimate

• Challenge: is the best mean so far the best action?

‣ Or is there another that's better than it appeared so far?

x a1, …, ak

ai rt ∼ pi

max
i

𝔼r∼pi
[r]

μi = 𝔼r∼pi
[r] ≈ 1

mi ∑
t∈Ti

rt

One-armed bandit

Multi-armed bandit

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Optimism under uncertainty
• Tradeoff: explore less used actions, but don't be late to start exploiting what's known

‣ Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit

• By the central limit theorem, the mean reward of each arm quickly

• Be optimistic by slowly-growing number of standard deviations:

‣ Confidence bound: likely ; unknown constant in the variance let grow

‣ But not too fast, or we fail to exploit what we do know

• Regret: , provably optimal

̂μi → 𝒩 (μi, O (1
mi))

a = arg max
i

̂μi + 2 ln T
mi

μi ≤ ̂μi + cσi ⟹ c

ρ(T) = O(log T)

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Markov Decision Process (MDP)

• Model of environment

‣ = set of states

‣ = set of actions

‣ = probability that , if and

S

A

p(s′ |s, a) st+1 = s′ st = s at = a agent

environment

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Trajectories

• The agent's behavior iteratively uses (rolls out) the policy

• Trajectory:

• MDP + policy induce distribution over trajectories

ξ = (s1, a1, s2, a2, …, sT+1)

pπ(ξ) = p(s1)π(a1 |s1)p(s2 |s1, a1)⋯π(aT |sT)p(sT+1 |sT, aT)

= p(s1)
T

∏
t=1

π(at |st)p(st+1 |st, at) agent

environment

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Learning from Demonstrations (LfD)
• Teacher provides demonstration trajectories

• Learner trains a policy to minimize a loss

• For example, negative log-likelihood (NLL):

𝒟 = {ξ(1), …, ξ(m)}

πθ ℒ(θ)

arg min
θ

ℒθ(ξ) = arg min
θ

(−log pθ(ξ))

= arg max
θ (log p(s1) +

T

∑
t=1

log πθ(at |st) + log p(st+1 |st, at))
= arg max

θ

T

∑
t=1

log πθ(at |st)

model-free
= no need to know the environment dynamics p

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Gathering experience

• Machine learning works when training distribution = test distribution

‣ We train on but test on

‣ Problem: we don't know until after training

• Dataset Aggregation (DAgger):

‣ Roll out learner trajectories

‣ Ask teacher to label reached states with correct actions

‣ Add to dataset, train new , repeat

pπ* pπθ

πθ

ξ ∼ pπθ

st at

πθ

as in active learning

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Returns

• Return = total reward =

‣ Summarize reward sequence as single number to be maximized

• Discount factor

‣ Higher weight to short-term rewards (and costs) than long-term

‣ Good mathematical properties:

- Assures convergence, simplifies algorithms, reduces variance

• Vaguely economically motivated (inflation)

R = ∑
t

γtr(st, at)

rt = r(st, at)

γ ∈ [0,1]

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Optimal policy
• If we know we will use in the future, what should we do now?

‣ Greedy policy:

‣ In stochastic notation: for the greedy action

• If we have a guess for the action-value function

‣ Then is a value function of a better policy

• This gives us a policy improvement step

‣ Can be put together with policy evaluation

π

π*(st) = arg max
at

Qπ(st, at)

π*(at |st) = 1

Q(s, a)

V(s) = max
a

Q(s, a)

Q(s, a) → r + γV(s′)

Roy Fox | CS 273A | Fall 2021 | Lecture 17: Reinforcement Learning

Putting it all together: Deep Q Learning (DQN)

policy evaluation

policy improvement

differentiable value
function approximation

greedy policy

exploration
e.g. -greedyϵ

