
Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review

CS 273A: Machine Learning 
Fall 2021 

Lecture 18: Final Review

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine


All slides in this course adapted from Alex Ihler & Sameer Singh



Roy Fox | CS 273A | Fall 2021 | Lecture 18: Final Review

Logistics

• Final report due next Thursday, Dec 9

• Course evaluations due end-of-week (before Monday)

project

evaluations
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Exam Logistics
• Format:


‣ Time: Tuesday, December 7, 10:30am–12:30


‣ Location: ICS 174 (in person)


‣ Should be doable in 90–100 minutes


• You can use:


‣ Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it


‣ A basic arithmetic calculator; no phones, no computers


‣ Blank paper sheets for your calculations


‣ Brainpower and good vibes
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Exam suggestions
• Large majority of the questions are on topics taught after midterm


• Look at past exams


‣ Train yourself by reading some solutions, evaluate yourself on held-out exams


• Organize / join study groups (e.g. on Ed)


• During the exam:


‣ Start with questions you find easy


‣ Don't get bogged down by exact calculations


‣ Leave expressions unsolved and come back to them later


‣ Turn in your calculation sheet(s)


- They won't be graded, but can be used for regrading
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply


‣ Deep architectures are subject of much current research


input 
features

layer 2layer 1

⋯

layer 3 ⋯

r1 = w[0].T @ x + b[0]   # linear response 
h1 = sig(r1)             # activation function 

r2 = w[1].T @ h1 + b[1]  # linear response 
h2 = sig(r2)             # activation function 

                         # ...
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Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:


‣ Inputs  shallow layers  deeper layers  outputs


‣ Alternative: recurrent NNs (information loops back)


• Multiple outputs  efficiency:


‣ Shared parameters, less data, less computation


• Multi-class classification: 


‣ One-hot labels 


‣ Multilogistic regression (softmax): 

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs
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• MLPs are function compositions of single layers


‣ Apply chain rule:


• Backpropagation = chain rule + dynamic programming to avoid repetitions

Gradient computation

g(⋯)

h(⋯)

⋯ ℒ(⋯)f(g, h)

inputs

hidden layer

outputs

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ
∂fℒ

example:  
 reuse  from the forward pass

f(g, h) = σ(g + h) ⟹ ∂g f = f(1 − f )
⟹ f
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Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin


• 


‣ such that all data points predicted with enough margin:


‣  (  constraints)


• Example of Quadratic Program (QP)


‣ Quadratic objective, linear constraints

w* = arg max
w

2
∥w∥ = arg min

w
∥w∥

⟹ s.t. y( j)(w ⋅ x( j) + b) ≥ 1 m
{w ⋅ x( j) + b ≥ + 1 if y( j) = + 1

w ⋅ x( j) + b ≤ − 1 if y( j) = − 1

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Soft margin: dual form

• Primal problem: 


‣ s.t. ;     


• Dual problem: 


‣ Optimally: ; to handle : add constant feature 


‣ Support vector = points on or inside margin = 


‣ Gram matrix =  = similarity of every pair of instances

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ( j)

y( j)(w ⋅ x( j) + b) ≥ 1 − ϵ( j) ϵ( j) ≥ 0

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)x( j) ⋅ x(k)) s.t. ∑
j

λjy( j) = 0

w* = ∑
j

λjy( j)x( j) b x0 = 1

λj > 0

Kjk = x( j) ⋅ x(k)
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Kernel SVMs
• Define kernel 


• Solve dual QP: 


• Learned parameters =  (  parameters)


‣ But also need to store all support vectors (having )


• Prediction: 


 

K : (x, x′ ) ↦ ℝ

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)K(x( j), x(k))) s.t. ∑
j

λjy( j) = 0

λ m

λj > 0

̂y(x) = sign(w ⋅ Φ(x))

= sign ∑
j

λjy( j)Φ(x( j)) ⋅ Φ(x) = sign ∑
j

λjy( j)K(x( j), x)
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Bagging
• Bagging = bootstrap aggregating:


‣ Resample  datasets  of size 


‣ Train  models  on each dataset


‣ Regression: output 


‣ Classification: output 


• Similar to cross-validation (for different purpose), but outputs average model


‣ Also, datasets are resampled (with replacement), not a partition

K 𝒟1, …, 𝒟K b

K θ1, …, θK

fθ : x ↦ 1
K ∑

k

fθk
(x)

fθ : x ↦ majority{fθk
(x)}



Roy Fox | CS 273A | Fall 2021 | Lecture 13: Ensemble Methods

Ensemble methods

• Ensemble = “committee” of models: 


‣ Decisions made by average / majority vote: 


‣ May be weighted: better model = higher weight: 


• Stacking = use ensemble as inputs (as in MLP): 


‣  trained on held out data = validation of which model should be trusted


‣  linear  weighted committee, with learned weights

̂yk(x) = fθk
(x)

̂y(x) = 1
K ∑

k

̂yk(x)

̂y(x) = ∑
k

αk ̂yk(x)

̂y(x) = fθ( ̂y1(x), …, ̂yK(x))

fθ

fθ ⟹
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Mixture of Experts (MoE)

• Experts = models can “specialize”, good only for some instances


‣ Let weights depend on : 


• Can we predict which model will perform well?


‣ Learn a predictor 


- E.g., multilogistic regression (softmax) 


• Loss, experts, weights differentiable  end-to-end gradient-based learning

x ̂y(x) = ∑
k

αk(x) ̂yk(x)

αϕ(k |x)

αϕ(k |x) =
exp(ϕk ⋅ x)

∑k′ 
exp(ϕk′ 

⋅ x)

⟹

0 0.5 1 1.5 2 2.5 3
-0.5

0
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1
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mixture of 3 
linear predictors
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Random Forests
• Bagging over decision trees: which feature at root?


‣ Much data  max info gain stable across data samples


‣ Little diversity among models  little gained from ensemble


• Random Forests = subsample features


‣ Each tree only allowed to use a subset of features


‣ Still low, but higher bias


‣ Average over trees for lower variance


• Works very well in practice  go-to algorithm for small ML tasks

⟹

⟹

⟹
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Gradient Boosting example: MSE loss

• Ensemble: ; MSE loss: 


‣ To minimize: have  try to predict 


‣ Then update 


̂yK = ∑
k

fk(x) ℒ(y, ̂yk) = 1
2 (y − ̂yk−1 − fk(x))2

fk(x) y − ̂yk−1

̂yk = ̂yk−1 + fk(x)

data 
prediction

residual 
weak model

increasingly accurate 
increasingly complex
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AdaBoost
• AdaBoost = adaptive boosting:


‣ Initialize 


‣ Train classifier  on training data with weights 


‣ Compute weighted error rate 


‣ Compute 


‣ Update weights  (increase weight for misclassified points)


• Predict 

w( j)
0 = 1

m

fk wk−1

ϵk =
∑j w( j)

k−1δ[y( j) ≠ fk(x( j))]

∑j w( j)
k−1

αk = 1
2 ln

1 − ϵk

ϵk

w( j)
k = w( j)

k−1e
−y( j)αk fk(x( j))

̂y(x) = sign∑
k

αk fk(x)
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-Meansk
• Simple clustering algorithm


• Repeat:


‣ Update the clustering = assignment of data points to clusters


‣ Update the cluster's representation to match the assigned points


• Notation:


‣  = data point in the dataset


‣  = number of clusters


‣  = representation of cluster 

xi

k

μc c

xi

μc
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-Meansk
• Iterate until convergence:


‣ For each , find the closest cluster:  


‣ Set each cluster centroid  to the mean of assigned points:  


xi ∈ 𝒟 zi = arg min
c

∥xi − μc∥2

μc μc = 1
mc ∑

i:zi=c

xi

μ1

μ2

μ2

μ1
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Hierarchical agglomerative clustering
• Another simple clustering algorithm


• Define distance (dissimilarity) between clusters 


• Initialize: every data point is its own cluster


• Repeat:


‣ Compute distance between each pair of clusters


‣ Merge two closest clusters


• Output: tree of merge operations (“dendrogram”)


• Complexity: in  iterations, merge distances and sort   

d(Ci, Cj)

m − 1 ⟹ O(m2 log m)
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From dendrogram to clusters
• Given the hierarchy of clusters, choose a frontier of subtrees = clusters


‣ For a given , or a given level of dissimilarityk

   

   

      

     

data dendrogram
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Distance measures

• 


• 


•



• 


• Important property: iterative computation


 

dmin(Ci, Cj) = min
x∈Ci,y∈Cj

∥x − y∥2

dmax(Ci, Cj) = max
x∈Ci,y∈Cj

∥x − y∥2

davg(Ci, Cj) = 1
|Ci | ⋅ |Cj | ∑

x∈Ci,y∈Cj

∥x − y∥2

dmeans(Ci, Cj) = ∥μi − μj∥2

d(Ci ∪ Cj, Ck) = f(d(Ci, Ck), d(Cj, Ck))

produces minimum spanning tree

avoids elongated clusters
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Gaussian Mixture Models (GMMs)
• Each cluster is modeled by a Gaussian 


‣  allows non-isotropic clusters  weighted Euclidean distance


• Mixture = distribution over Gaussians is given by a probability vector 


• Generative model = we can sample :


‣ Sample 


‣ Sample 


‣ Probability of this : 

p(x |c) = 𝒩(x; μc, Σc)

Σc ⟹

p(c)

p(x)

z ∼ p(c)

x ∼ p(x |c = z)

x ∑
c

p(c = z)p(x |c = z) = ∑
c

p(c, x) = p(x)

we don't output , it is “latent” = hidden 
 can be any of them

z
⟹
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Training GMMs

• Compare to -Means:


‣ Assign data points to clusters 


‣ Update each cluster's parameters 


• A “soft” version of -Means: Expectation–Maximization (EM) algorithm


‣ Find a “soft” assignment 


‣ Update model parameters , 


• The EM algorithm is extremely general, GMMs are a very special case

k

zi

μc

k

p(c |x)

p(c) p(x |c)
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Expectation–Maximization: E-step

• Initialize model parameters , , 


• E-step (Expectation): [why “expectation”? comes from the general EM algorithm]


‣ For each data point , use Bayes' rule to compute:


 


‣ High weight to clusters that are likely a-priori, or in which  is relatively probable


πc = p(c) μc Σc

xi

ric = p(c |xi) =
p(c)p(xi |c)

∑c̄ p(c̄)p(xi | c̄)
=

πc𝒩(xi; μc, Σc)

∑c̄ πc̄𝒩(xi; μc̄, Σc̄)

xi

area: π1
area: π2r1 = 0.7

r1 = 0.3
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Expectation–Maximization: M-step
• Given assignment probabilities 


• M-step (Maximization):


‣ For each cluster , fit the best Gaussian to the weighted assignment


 


 


 

ric

c

mc = ∑
i

ric

πc =
mc

m μc = 1
mc ∑

i

ricxi

Σc = 1
mc ∑

i

ric(xi − μc)(xi − μc)⊺

what is ?∑
c

mc m
total weight assigned to cluster c

fraction of weight assigned to cluster c

weighted mean of data in cluster c

weighted covariance of data in cluster c
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Dimensionality reduction: linear features

• Example: summarize two real features   one real feature 


‣ If  preserves much information about , should be able to find 


• Linear embedding:


‣ 


‣  should be the closest point to  along 


- 


x = [x1, x2] → z

z x x ≈ f(z)

x ≈ zv

zv x v

z = arg min ∥x − zv∥2 ⟹ z =
x⊺v
v⊺v
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600

650

700

750

800

850

900

950

1000

x1
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v

projection of  on x v
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Singular Value Decomposition (SVD)
• Alternative method for finding covariance eigenvectors


‣ Has many other uses


• Singular Value Decomposition (SVD): 


‣  and  (left- and right singular vectors) are orthogonal: , 


‣  (singular values) is rectangular-diagonal


‣ 


•  matrix gives coefficients to reconstruct data: 


‣ We can truncate this after top  singular values (square root of eigenvalues)

X = UDV⊺

U V U⊺U = I V⊺V = I

D

Σ = X⊺X = VD⊺U⊺UDV⊺ = V(D⊺D)V⊺

UD xi = Ui,1D1,1v1 + Ui,2D2,2v2 + ⋯

k

 X
m × n

 U1:k
m × k

≈ ⋅ ⋅ D1:k
k × k

 V⊺
1:k

k × n

 X
m × n

 U
m × m

= ⋅ ⋅ D
m × n

 V⊺

n × n
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Nonlinear latent spaces
• Latent-space representation = represent  as 


‣ Usually more succinct, less noisy


‣ Preserves most (interesting) information on   can reconstruct 


‣ Auto-encoder = encode , decode 


• Linear latent-space representation:


‣ Encode: ; Decode: 


• Nonlinear: e.g., encoder + decoder are neural networks


‣ Restrict  to be shorter than   requires succinctness

xi zi

xi ⟹ ̂xi ≈ xi

x → z z → ̂x

Z = XV≤k = (UDV⊺V)≤k = U≤kD≤k X ≈ ZV⊺
≤k

z x ⟹

encoder decoderx z ̂x
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Why active learning?

• Expensive labels  prefer to label instances relevant to the decision


• Selecting relevant points may be hard too  automate with active learning


• Objective: learn good model while minimizing #queries for labels

⟹

⟹

full labeled data 
(unavailable)

SVM on random sample 
of labeled data

SVM on selected sample 
of labeled data

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning
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Active learning settings
• Pool-Based Sampling


‣ Learner selects instances in dataset  to label


• Stream-Based Selective Sampling


‣ Learner gets stream of instances , decides which to label


• Membership Query Synthesis


‣ Learner generates instance 


‣ Doesn't have to occur naturally =  may be low


-  May be harder for teacher to label (“is this synthesized image a dog or a cat?”)

x ∈ 𝒟

x1, x2, …

x

p(x)

⟹

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning
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Multi-Armed Bandits (MABs)

• Basic setting: single instance , multiple actions 


‣ Each time we take action  we see a noisy reward 


• Can we maximize the expected reward ?


‣ We can use the mean as an estimate 


• Challenge: is the best mean so far the best action?


‣ Or is there another that's better than it appeared so far?

x a1, …, ak

ai rt ∼ pi

max
i

𝔼r∼pi
[r]

μi = 𝔼r∼pi
[r] ≈ 1

mi ∑
t∈Ti

rt

One-armed bandit

Multi-armed bandit
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Optimism under uncertainty
• Tradeoff: explore less used actions, but don't be late to start exploiting what's known


‣ Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit


• By the central limit theorem, the mean reward of each arm  quickly 


• Be optimistic by slowly-growing number of standard deviations: 


‣ Confidence bound: likely ; unknown constant in the variance  let  grow


‣ But not too fast, or we fail to exploit what we do know


• Regret: , provably optimal

̂μi → 𝒩 (μi, O ( 1
mi ))

a = arg max
i

̂μi + 2 ln T
mi

μi ≤ ̂μi + cσi ⟹ c

ρ(T) = O(log T)
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Markov Decision Process (MDP)

• Model of environment


‣  = set of states


‣  = set of actions


‣  = probability that , if  and 

S

A

p(s′ |s, a) st+1 = s′ st = s at = a agent

environment
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Trajectories

• The agent's behavior iteratively uses (rolls out) the policy


• Trajectory: 


• MDP + policy induce distribution over trajectories


ξ = (s1, a1, s2, a2, …, sT+1)

pπ(ξ) = p(s1)π(a1 |s1)p(s2 |s1, a1)⋯π(aT |sT)p(sT+1 |sT, aT)

= p(s1)
T

∏
t=1

π(at |st)p(st+1 |st, at) agent

environment
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Learning from Demonstrations (LfD)
• Teacher provides demonstration trajectories 


• Learner trains a policy  to minimize a loss 


• For example, negative log-likelihood (NLL):

 

𝒟 = {ξ(1), …, ξ(m)}

πθ ℒ(θ)

arg min
θ

ℒθ(ξ) = arg min
θ

(−log pθ(ξ))

= arg max
θ (log p(s1) +

T

∑
t=1

log πθ(at |st) + log p(st+1 |st, at))
= arg max

θ

T

∑
t=1

log πθ(at |st)

model-free 
= no need to know the environment dynamics p
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Gathering experience

• Machine learning works when training distribution = test distribution


‣ We train on  but test on 


‣ Problem: we don't know  until after training


• Dataset Aggregation (DAgger):


‣ Roll out learner trajectories 


‣ Ask teacher to label reached states  with correct actions 


‣ Add to dataset, train new , repeat

pπ* pπθ

πθ

ξ ∼ pπθ

st at

πθ

as in active learning
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Returns

• Return = total reward = 


‣ Summarize reward sequence  as single number to be maximized


• Discount factor 


‣ Higher weight to short-term rewards (and costs) than long-term


‣ Good mathematical properties:


- Assures convergence, simplifies algorithms, reduces variance


• Vaguely economically motivated (inflation)

R = ∑
t

γtr(st, at)

rt = r(st, at)

γ ∈ [0,1]
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Optimal policy
• If we know we will use  in the future, what should we do now?


‣ Greedy policy: 


‣ In stochastic notation:  for the greedy action


• If we have a guess for the action-value function 


‣ Then  is a value function of a better policy


• This gives us a policy improvement step


‣ Can be put together with policy evaluation 

π

π*(st) = arg max
at

Qπ(st, at)

π*(at |st) = 1

Q(s, a)

V(s) = max
a

Q(s, a)

Q(s, a) → r + γV(s′ )
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Putting it all together: Deep Q Learning (DQN)

policy evaluation

policy improvement

differentiable value 
function approximation

greedy policy

exploration 
e.g. -greedyϵ


