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Logistics

e Due: Tue, Oct 5 (Pacific)

- * Assignment 1 will be up soon

* Project guidelines will resemble last year's
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Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors
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Supervised learning
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Supervised learning
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Supervised learning

40 -

* (Given some x, what is a good y? X

> Directly representf: x — y

Roy Fox | CS 273A | Fall 2021 | Lecture 2: Nearest Neighbors



Supervised learning
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* (Given some x, what is a good y? X

> Directly representf: x — y

> Average k nearest neighbors
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Supervised learning
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* (Given some x, what is a good y? X

> Directly representf: x — y

» Average k nearest neighbors (k too large: missing trend; k too small: catching noise)
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What is machine learning?
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Today's lecture

Supervised learning

Overfitting and complexity

k-Nearest Neighbors
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Nearest-Neighbor regression
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e f(x) =y, such that x¥) € 9D is the closest data point to x
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Nearest-Neighbor regression
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» Decision function f : x — y is piecewise constant (for 1D x)

» Data induces f implicitly; f is never stored explicitly, but can be computed
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Alternative: linear regression
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» Decision function f: x — yis linear, f(x) = 6, + 0,x

. fis stored by its parameters 0 = [6’0 6’1]
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Measuring error
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Classification

decision boundary

X1

* Using colors as our “third dimension”, we can visualize in 2D

» Particularly clear for classification, where y is discrete
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Measuring error
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Decision boundary Is piecewise linear

X1

. For every two data points x, x\) of different classes y\ # yV)

> The hyperplane orthogonal to their midpoint is where d(x, xV) = d(x, x")

> The decision boundary consists of some of these hyperplanes
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Voronol tessellation
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X1

 Each data point has a region in which it is the nearest neighbor
> This region is a polygon

* The decision boundary consists of the edges that cross classes
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Today's lecture

Supervised learning

Nearest Neighbors

k-Nearest Neighbors
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Overfitting and complexity
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e Simple linear model
* Fits the training data, but with errors

* Interpolation seems reasonable
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Overfitting and complexity
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* High-order polynomial model
* Fits the training data perfectly

* |nterpolation”? more like confabulation, amirite?
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Overfitting and complexity
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 New test data will also have prediction errors

 Good generalization = test errors will be similar to training errors
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Overfitting and complexity
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* A complex model may fit the training data well — low training error
 But it may generalize poorly to test data — high test error

* This is called overfitting the training data
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How overfitting affects prediction error
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 Low model complexity = underfitting

> High test error = high training error + low generalization error

 High model complexity — overfitting

> High test error = low training error + high generalization error
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Validation
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» How can we choose the model complexity? with learning!

» Model selection = choose our model class

> Score function: low test error = training error + generalization error
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Model learning
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Model selection

training time

validate

N

evaluate

execution time
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Recap: overfitting and complexity

» Test error = training error + generalization error

 Model complexity may lead to overfitting
> Fit the training data very well, but generalize poorly
 Model simplicity may lead to underfitting

> Do as poorly on the test data as on the training data
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Today's lecture

Supervised learning

Nearest Neighbors

Overfitting and complexity
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k-Nearest Neighbor (KNN)

 Find the k nearest neighbors to x in the dataset

» Given x, rank the data points by their distance from x, d(x, x(j))

Usually, Euclidean distance d(x,x(j)) = \/ Z (xl. — xi(j))z
i

» Select the k data points which are have smallest distance to x

 What is the prediction?
> Regression: average y(j) for the k closest training examples

» Classification: take a majority vote among y(j) for the k closest training examples

- No ties in 2-class problems when k is odd
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KNN decision boundary

e For classification, the decision boundary is piecewise linear

* Increasing k “simplifies” the decision boundary

» Majority voting means less emphasis on individual points
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KNN decision boundary

e For classification, the decision boundary is piecewise linear

* Increasing k “simplifies” the decision boundary

» Majority voting means less emphasis on individual points
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Error rates and k
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* A complex model fits training data but generalizes poorly
e k = 1: perfect memorization of examples = complex
« k = m: predict majority class over entire dataset = simple

 \We can select k with validation
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KNN classifier: further considerations

* Decision boundary smoothness
» Increases with k, as we average over more neighbors
» Decreases with training size m, as more points support the boundary

» Generally, optimal k should increase with m

» Extensions of k-Nearest Neighbors

> Do features have the same scale? importance?

Weighted distance: d(x, x’) = \/ Z wi(x; — X{)Z
i

- Non-Euclidean distances may be more appropriate for type of data

» Fast search techniques (indexing) to find k closest points in high-dimensional space

>

Weighted average / voting based on distance: y = Z w(d(x,x(j )))y )
J
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Recap: k-Nearest Neighbors

* Piecewise linear decision boundary

> Just for analysis — the algorithm doesn't compute the boundary

e With k > 1:

> Regression — (weighted) average
> Classification — (weighted) vote

o Overfitting and complexity:
» Model “complexity” goes down as k grows

» Use validation data to estimate test error rates and select k
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Logistics

e Due: Tue, Oct 5 (Pacific)

- * Assignment 1 will be up soon

* Project guidelines will resemble last year's
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