

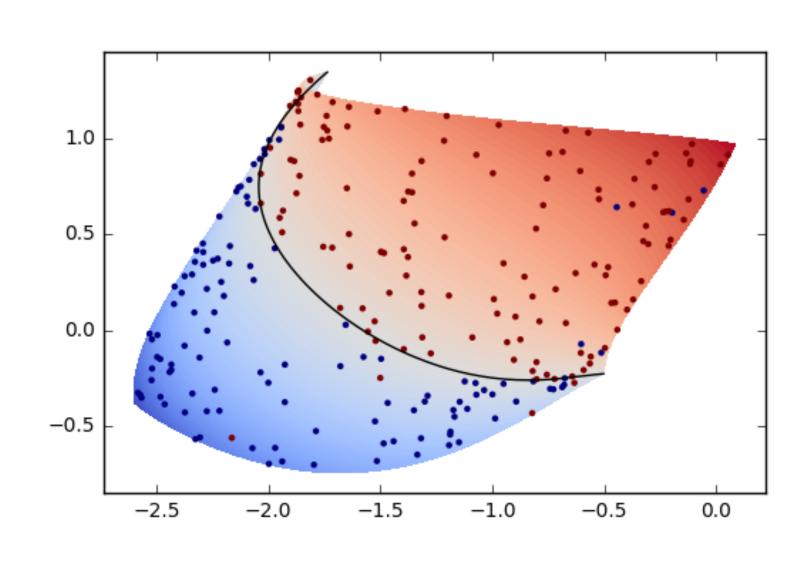
CS 273A: Machine Learning Fall 2021

Lecture 3: Bayes Classifiers

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



Logistics

assignment 1

Assignment 1 is due Tuesday

recordings

- Lectures will be recorded, starting today
- Recordings from Fall'21 also available

Today's lecture

k-Nearest Neighbors

Bayes classifiers

Naïve Bayes Classifiers

Bayes error

k-Nearest Neighbor (kNN)

- Find the k nearest neighbors to x in the dataset
 - Given x, rank the data points by their distance from x, $d(x, x^{(j)})$

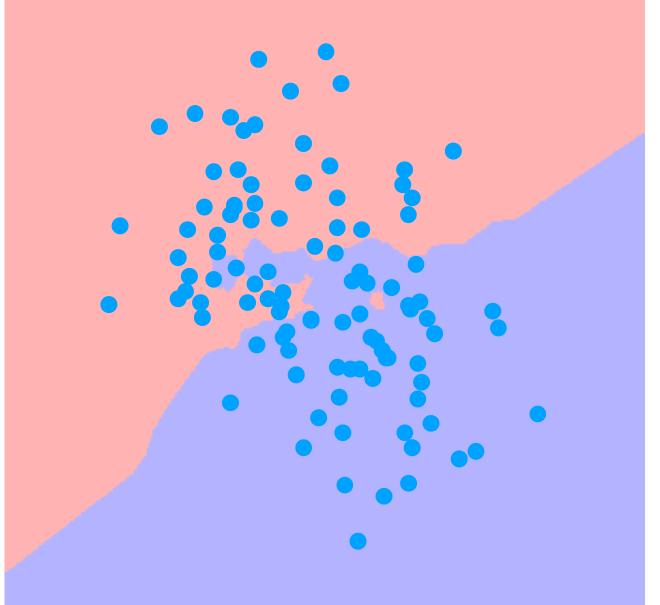
Usually, Euclidean distance
$$d(x, x^{(j)}) = \sqrt{\frac{1}{n} \sum_{i} (x_i - x_i^{(j)})^2}$$

- lacktriangle Select the k data points which are have smallest distance to x
- What is the prediction?
 - Regression: average $\boldsymbol{y}^{(j)}$ for the k closest training examples
 - Classification: take a majority vote among $y^{(j)}$ for the k closest training examples
 - No ties in 2-class problems when k is odd

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
 - Majority voting means less emphasis on individual points

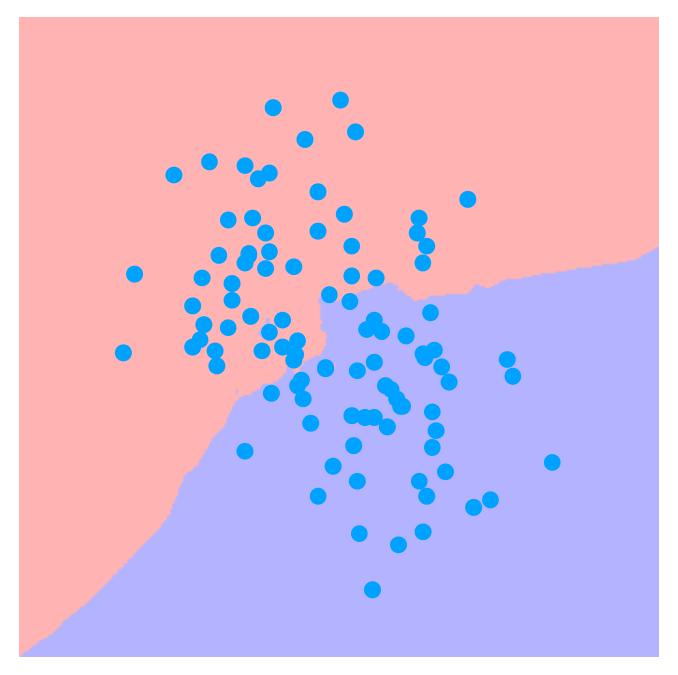
$$k = 1$$



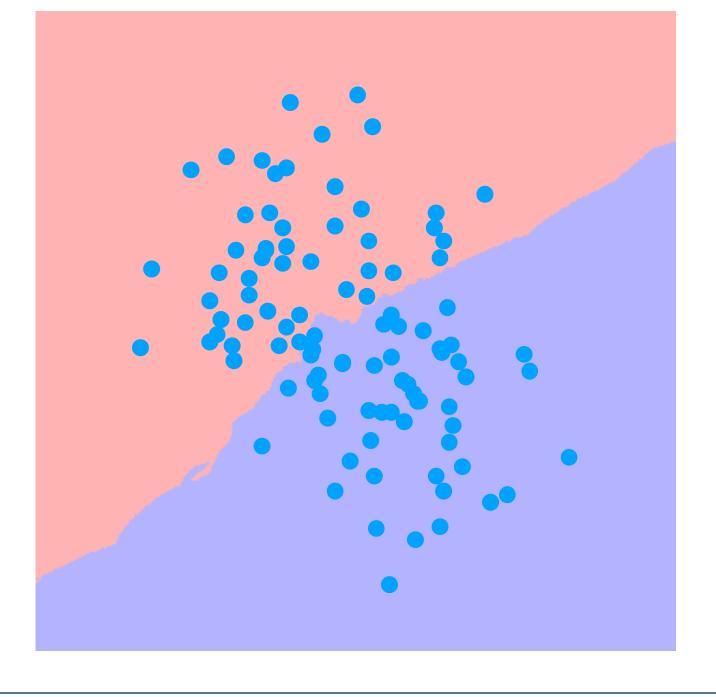
kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
 - Majority voting means less emphasis on individual points

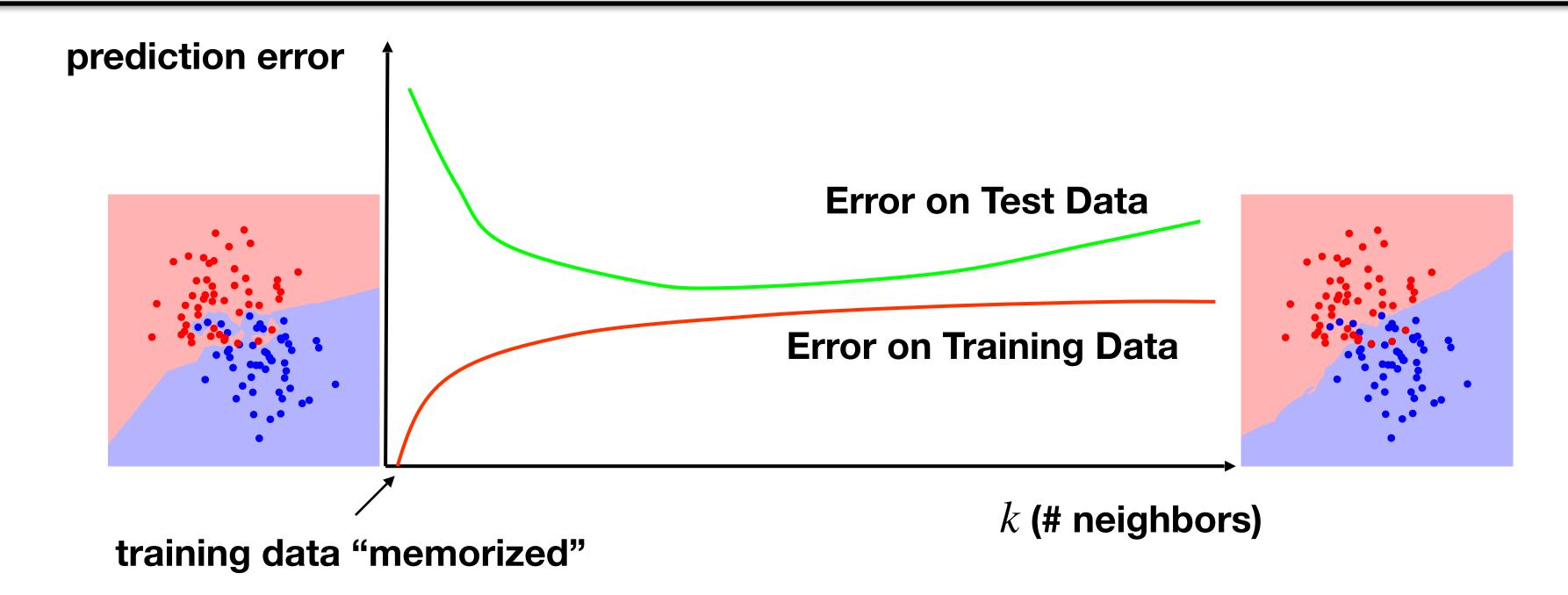
$$k = 7$$



$$k = 25$$



Error rates and k



- A complex model fits training data but generalizes poorly
- k = 1: perfect memorization of examples = complex
- k = m: predict majority class over entire dataset = simple
- We can select k with validation

kNN classifier: further considerations

- Decision boundary smoothness
 - Increases with k, as we average over more neighbors
 - \triangleright Decreases with training size m, as more points support the boundary
 - Generally, optimal k should increase with m
- Extensions of *k*-Nearest Neighbors
 - Do features have the same scale? importance?

Weighted distance:
$$d(x, x') = \sqrt{\sum_{i} w_i (x_i - x_i')^2}$$

- Non-Euclidean distances may be more appropriate for type of data
- ullet Fast search techniques (indexing) to find k closest points in high-dimensional space

Weighted average / voting based on distance:
$$\hat{y} = \sum_{j} w(d(x, x^{(j)}))y^{(j)}$$

Recap: k-Nearest Neighbors

- Piecewise linear decision boundary
 - Just for analysis the algorithm doesn't compute the boundary
- With k > 1:
 - ► Regression → (weighted) average
 - Classification → (weighted) vote
- Overfitting and complexity:
 - Model "complexity" goes down as k grows
 - Use validation data to estimate test error rates and select k

Today's lecture

k-Nearest Neighbors

Bayes classifiers

Naïve Bayes Classifiers

Bayes error

Conditional probabilities

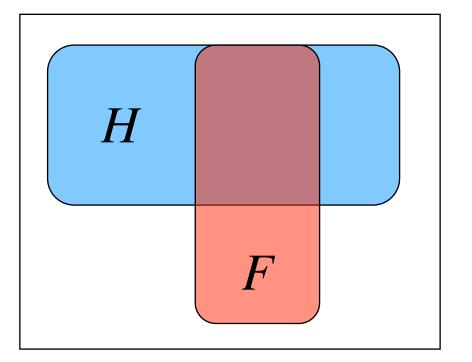
• Two events: headache (H), flu (F)

$$p(H) = \frac{1}{10}$$

$$p(F) = \frac{1}{40}$$

$$p(H|F) = \frac{1}{2}$$

- You wake up with a headache
 - What are the chances that you have the flu?



$$p(F,H) = p(F)p(H|F)$$

$$= \frac{1}{40} \cdot \frac{1}{2} = \frac{1}{80}$$

$$p(F|H) = \frac{p(F,H)}{p(H)}$$

$$= \frac{1}{80} \cdot \frac{10}{1} = \frac{1}{8}$$

Probabilistic modeling of data

- Assume data with features x and discrete labels y
- Prior probability of each class: p(y)
 - Prior = before seeing the features
 - E.g., fraction of applicants that have good credit
- Distribution of features given the class: p(x | y = c)
 - How likely are we to see x in applicants with good credit?
- Joint distribution: p(x, y) = p(x)p(y | x) = p(y)p(x | y)

models:

$$x \longrightarrow y$$

$$y \longrightarrow x$$

does not imply causality!

Bayes' rule: posterior
$$p(y|x) = \frac{p(y)p(x|y)}{p(x)} = \frac{p(y)p(x|y)}{\sum_{c} p(y=c)p(x|y=c)}$$

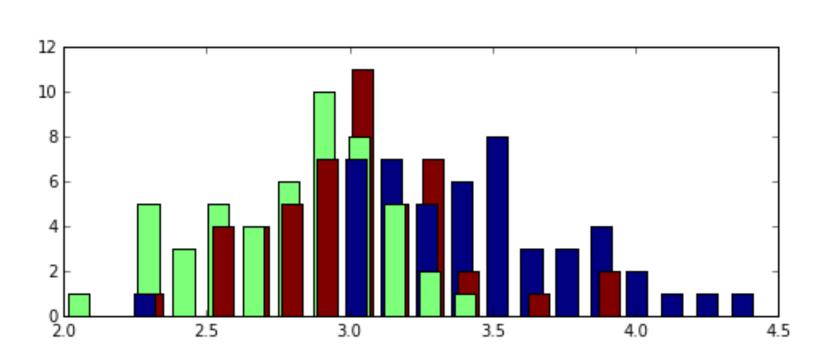
Bayes classifiers

- Learn a "class-conditional" model for the data
 - Estimate the probability for each class p(y = c)
 - Split training data by class $\mathcal{D}_c = \{x^{(j)} : y^{(j)} = c\}$
 - Estimate from \mathcal{D}_c the conditional distribution p(x | y = c)
- For discrete x, can represent as a contingency table

Features	# bad	# good	p(x y=0)	p(x y=1)	p(y=0 x)	p(y=
X=0	42	15	42/383	15/307	.7368	.2632
X=1	338	287	338/383	287/307	.5408	.4592
X=2	3	5	 3/383	5/307	.3750	.6250
p(y)	383/690	307/690				

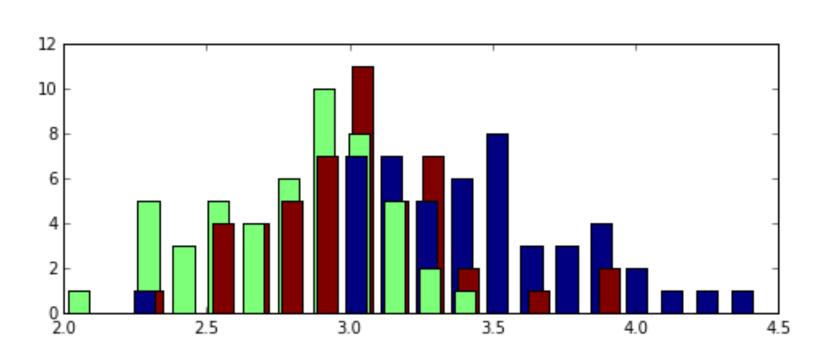
Bayes classifiers

- Learn a "class-conditional" model for the data
 - Estimate the probability for each class p(y = c)
 - Split training data by class $\mathcal{D}_c = \{x^{(j)} : y^{(j)} = c\}$
 - Estimate from \mathcal{D}_c the conditional distribution p(x | y = c)
- For continuous x, we need some other density model
 - Histogram
 - Gaussian
 - others...



Histograms

- Split training data by class $\mathcal{D}_c = \{x^{(j)} : y^{(j)} = c\}$
- For each class, split x into k bins and count data points in each bin
- Normalize the k-dimensional count vector to get $p(x \mid y = c)$
- To use: given x, find its bin, output probability for that bin



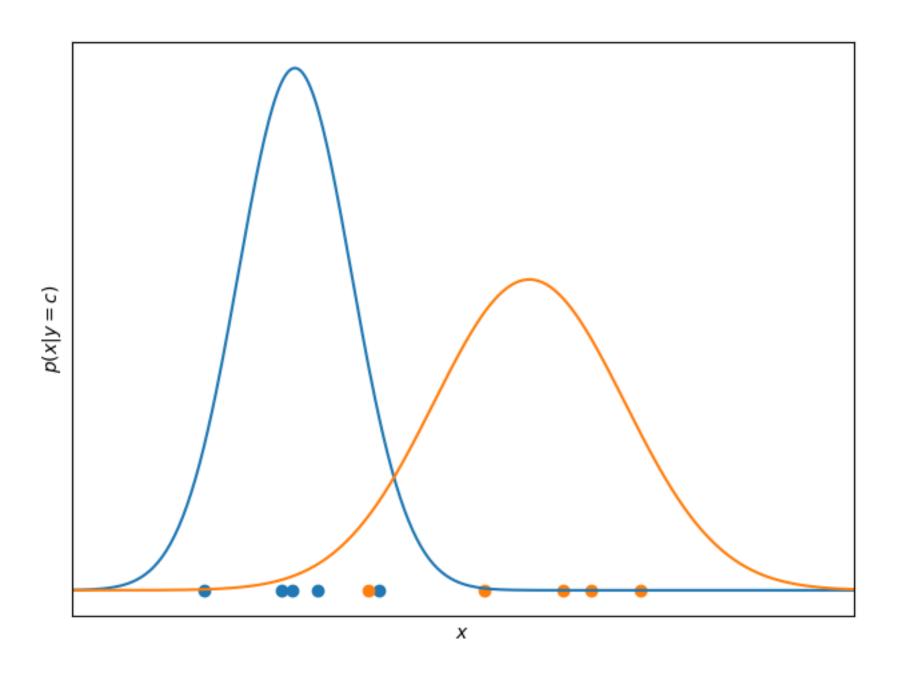
Gaussian models

- Model instances in each class with a Gaussian $p(x | y = c) \sim \mathcal{N}(\mu_c, \sigma_c^2)$
- Estimate parameters of each Gaussians from the data \mathcal{D}_{c}

$$\hat{p}(y=c) = \frac{m_c}{m} \text{ where } m_c = |\mathcal{D}_c|$$

$$\hat{\mu}_{c} = \frac{1}{m_{c}} \sum_{j: \ y^{(j)} = c} x^{(j)}$$

$$\hat{\sigma}_c^2 = \frac{1}{m_c} \sum_{j: \ y^{(j)} = c} (x^{(j)} - \hat{\mu}_c)^2$$



Multivariate Gaussian models

- Multivariate Gaussian: $\mathcal{N}(x;\mu,\Sigma) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right)$
- Estimation similar to univariate case:

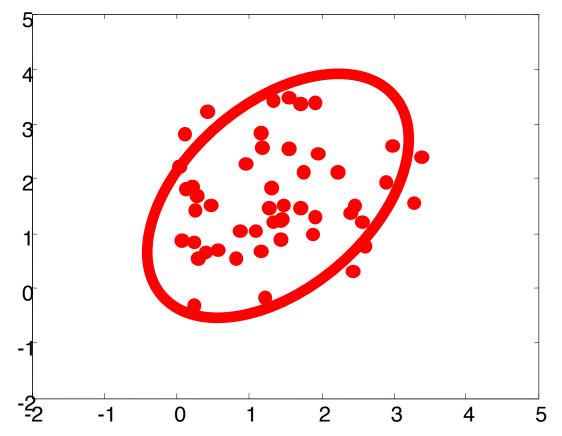
$$\hat{\mu}_c = \frac{1}{m_c} \sum_j x^{(j)}$$

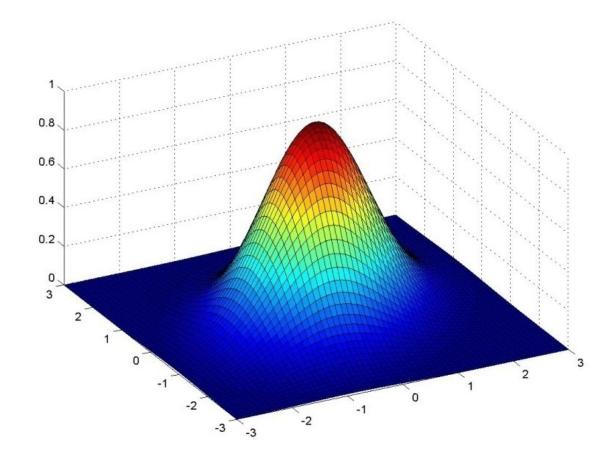
$$\mu$$
 = mean (d -dimensional vector)
 Σ = covariance ($d \times d$ matrix)
 Σ^{-1} = precision ($d \times d$ matrix)
 $|\cdot|$ = determinant (scalar)

$$\hat{\Sigma}_c = \frac{1}{m_c} \sum_j (x^{(j)} - \hat{\mu}_c)(x^{(j)} - \hat{\mu}_c)^{\mathsf{T}} \text{ (outer product)}$$

How many parameters?

$$\rightarrow d + d^2$$





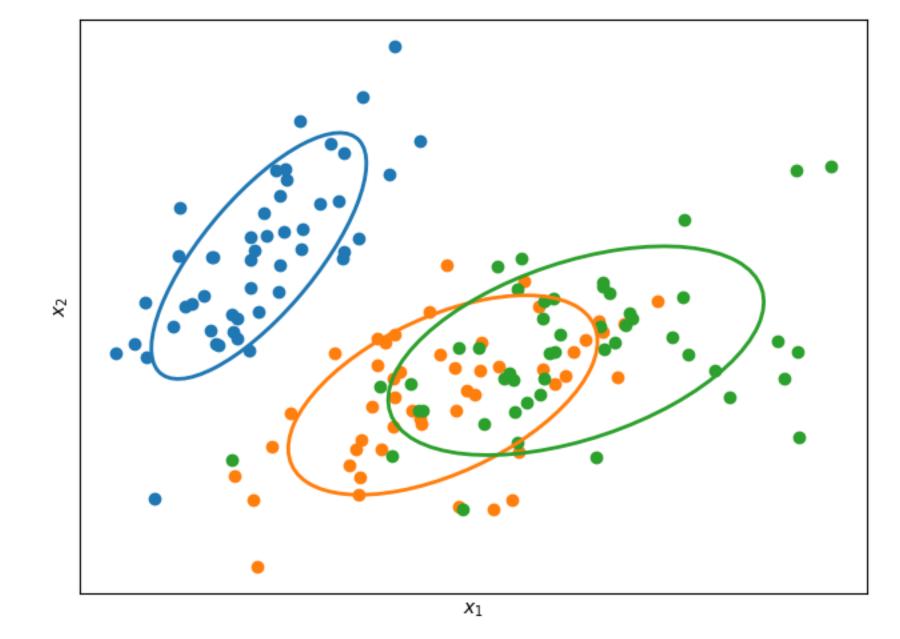
Gaussian Bayes: Iris example

•
$$\hat{p}(y = c) = \frac{50}{150}$$
; $y \sim \text{Categorical}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

• Fit mean and covariance for each class, $\hat{p}(x \mid y=c)=\mathcal{N}(x;\hat{\mu}_c,\hat{\Sigma}_c)$

How to use:

$$\hat{p}(y|x) = \frac{\hat{p}(y)\hat{p}(x|y)}{\hat{p}(x)} \propto \hat{p}(y)\hat{p}(x|y)$$



Maximum posterior (MAP): $\hat{y}(x) = \arg \max_{y} \hat{p}(y)\hat{p}(x \mid y)$

Today's lecture

k-Nearest Neighbors

Bayes classifiers

Naïve Bayes Classifiers

Bayes error

Representing joint distributions

- Assume data with binary features
- How to represent p(x | y)?
- Create a truth table of all x values

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Representing joint distributions

- Assume data with binary features
- How to represent p(x | y)?
- Create a truth table of all x values
- Specify p(x | y) for each cell
- How many parameters?
 - $\rightarrow 2^n 1$

A	В	С	p(A,B,C y=1)
0	0	0	0.50
0	0	1	0.05
0	1	0	0.01
0	1	1	0.10
1	0	0	0.04
1	0	1	0.15
1	1	0	0.05
1	1	1	0.10

Estimating joint distributions

- Can we estimate p(x | y) from data?
- Count how many data points for each x?
 - If $m \ll 2^n$, most instances never occur
 - Do we predict that missing instances are impossible?
 - What if they occur in test data?
- Difficulty to represent and estimate go hand in hand
 - ► Model complexity → overfitting!

Α	В	С	p(A,B,C y=1)
0	0	0	4/10
0	0	1	1/10
0	1	0	0/10
0	1	1	0/10
1	0	0	1/10
1	0	1	2/10
1	1	0	1/10
1	1	1	1/10

Regularization

- Reduce effective size of model class
 - Hope to avoid overfitting
- One way: make the model more "regular", less sensitive to data quirks
- Example: add small "pseudo-count" to the counts (before normalizing)

$$\hat{p}(x | y = c) = \frac{\#_c(x) + \alpha}{m_c + \alpha \cdot 2^n}$$

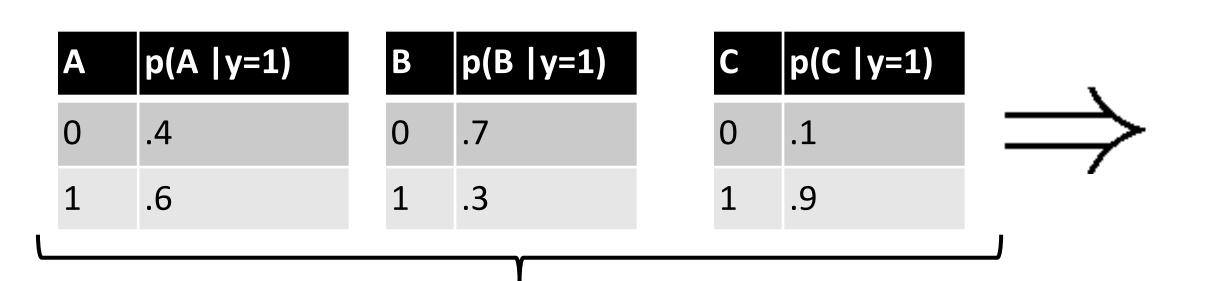
Not a huge help here, most cells will be uninformative $\frac{\alpha}{m_c + \alpha \cdot 2^n}$

Simplifying the model

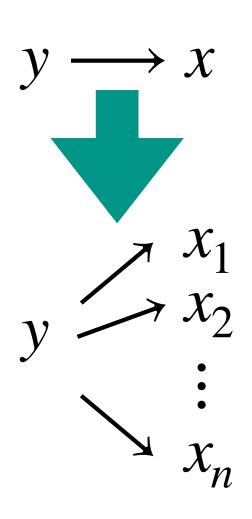
- Another way: reduce model complexity
- Example: assume features are independent of one another (in each class)

$$p(x_1, x_2, ..., x_n | y) = p(x_1 | y)p(x_2 | y) \cdots p(x_n | y)$$





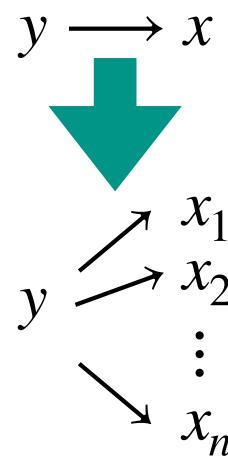
1	$\sim \iota$	1 /	
A	В	С	p(A,B,C y=1)
0	0	0	.4 * .7 * .1
0	0	1	.4 * .7 * .9
0	1	0	.4 * .3 * .1
0	1	1	•••
1	0	0	
1	0	1	
1	1	0	
1	1	1	



Naïve Bayes models

- We want to predict some value y, e.g. auto accident next year
- We have many known indicators for y (covariates) $x = x_1, \dots, x_n$
 - ► E.g., age, income, education, zip code, ...
 - Learn $p(y | x_1, ..., x_n)$ but cannot represent / estimate $O(2^n)$ values
- Naïve Bayes
 - Estimate prior distribution $\hat{p}(y)$
 - Assume $p(x_1, ..., x_n | y) = \prod_i p(x_i | y)$, estimate covariates independently $\hat{p}(x_i | y)$

Model:
$$\hat{p}(y|x) \propto \hat{p}(y) \prod_{i} \hat{p}(x_i|y)$$



causal structure wrong! (but useful...)

Naïve Bayes models: example

- $y \in \{\text{spam}, \text{not spam}\}$
- x =observed words in email
 - E.g., ["the" ... "probabilistic" ... "lottery" ...]
 - x = [0,1,0,0,...,0,1] (1 = word appears; 0 = otherwise)
- Representing p(x | y) directly would require 2^{thousands} parameters
- Represent each word indicator as independent (given class)
 - Reducing model complexity to thousands of parameters
- Words more likely in spam pull towards higher p(spam | x), and v.v.

Numeric example

$$\hat{p}(y=1) = \frac{4}{8} = 1 - \hat{p}(y=0)$$

•
$$\hat{p}(x_1, x_2 | y) = \hat{p}(x_1 | y)\hat{p}(x_2 | y)$$

$$\hat{p}(x_1 = 1 \mid y = 0) = \frac{3}{4} \qquad \hat{p}(x_1 = 1 \mid y = 1) = \frac{2}{4}$$

$$\hat{p}(x_2 = 1 \mid y = 0) = \frac{2}{4} \qquad \hat{p}(x_2 = 1 \mid y = 1) = \frac{1}{4}$$

X_1	X ₂	У
1	1	0
1	0	0
1	0	1
0	0	0
0	1	1
1	1	0
0	0	1
1	0	1

• What to predict for $x_1, x_2 = 1,1$? prediction: $\hat{y} = 0$

$$\hat{p}(y=0)\hat{p}(x=1,1 \mid y=0) = \frac{4}{8} \cdot \frac{3}{4} \cdot \frac{2}{4} \qquad \hat{p}(y=1)\hat{p}(x=1,1 \mid y=1) = \frac{4}{8} \cdot \frac{2}{4} \cdot \frac{1}{4}$$

Numeric example

$$\hat{p}(y=1) = \frac{4}{8} = 1 - \hat{p}(y=0)$$

•
$$\hat{p}(x_1, x_2 | y) = \hat{p}(x_1 | y)\hat{p}(x_2 | y)$$

•
$$\hat{p}(x_1 = 1 | y = 0) = \frac{3}{4}$$
 $\hat{p}(x_1 = 1 | y = 1) = \frac{2}{4}$

•
$$\hat{p}(x_2 = 1 | y = 0) = \frac{2}{4}$$
 $\hat{p}(x_2 = 1 | y = 1) = \frac{1}{4}$

X ₁	X ₂	y
1	1	0
1	0	0
1	0	1
0	0	0
0	1	1
1	1	0
0	0	1
1	0	1

• What is $\hat{p}(y = 1 | x_1 = 1, x_2 = 1)$?

$$\frac{\hat{p}(y=1)\hat{p}(x=1,1|y=1)}{\hat{p}(x=1,1)} = \frac{\hat{p}(y=1)\hat{p}(x=1,1|y=1)}{\hat{p}(y=0)\hat{p}(x=1,1|y=0) + \hat{p}(y=1)\hat{p}(x=1,1|y=1)} = \frac{\frac{\frac{4}{8} \cdot \frac{2}{4} \cdot \frac{1}{4}}{\frac{4}{8} \cdot \frac{3}{4} \cdot \frac{2}{4} + \frac{4}{8} \cdot \frac{2}{4} \cdot \frac{1}{4}}}{\frac{2}{4} \cdot \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{4}{4} \cdot \frac{1}{4}} = \frac{1}{4}$$

Recap

Bayes' rule:
$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

- Bayes classifiers: estimate p(y) and p(x | y) from data
- Naïve Bayes classifiers: assume independent features $p(x \mid y) = \prod_{i} p(x_i \mid y)$
 - Estimate each $p(x_i | y)$ individually
- Maximum posterior (MAP): $\hat{y}(x) = \arg\max_{y} p(y|x) = \arg\max_{y} p(y|x) = \arg\max_{y} p(y)p(x|y)$
 - Normalizer p(x) not needed

Today's lecture

k-Nearest Neighbors

Bayes classifiers

Naïve Bayes Classifiers

Bayes error

Bayes classification error

• What is the training error of the MAP prediction $\hat{y}(x) = \arg\max_{y} p(y \mid x)$?

Features	# bad	# good	prediction:		
X=0	42	15 /	bad		
X=1	338	287/	bad		
X=2	3	5	good		
errors					

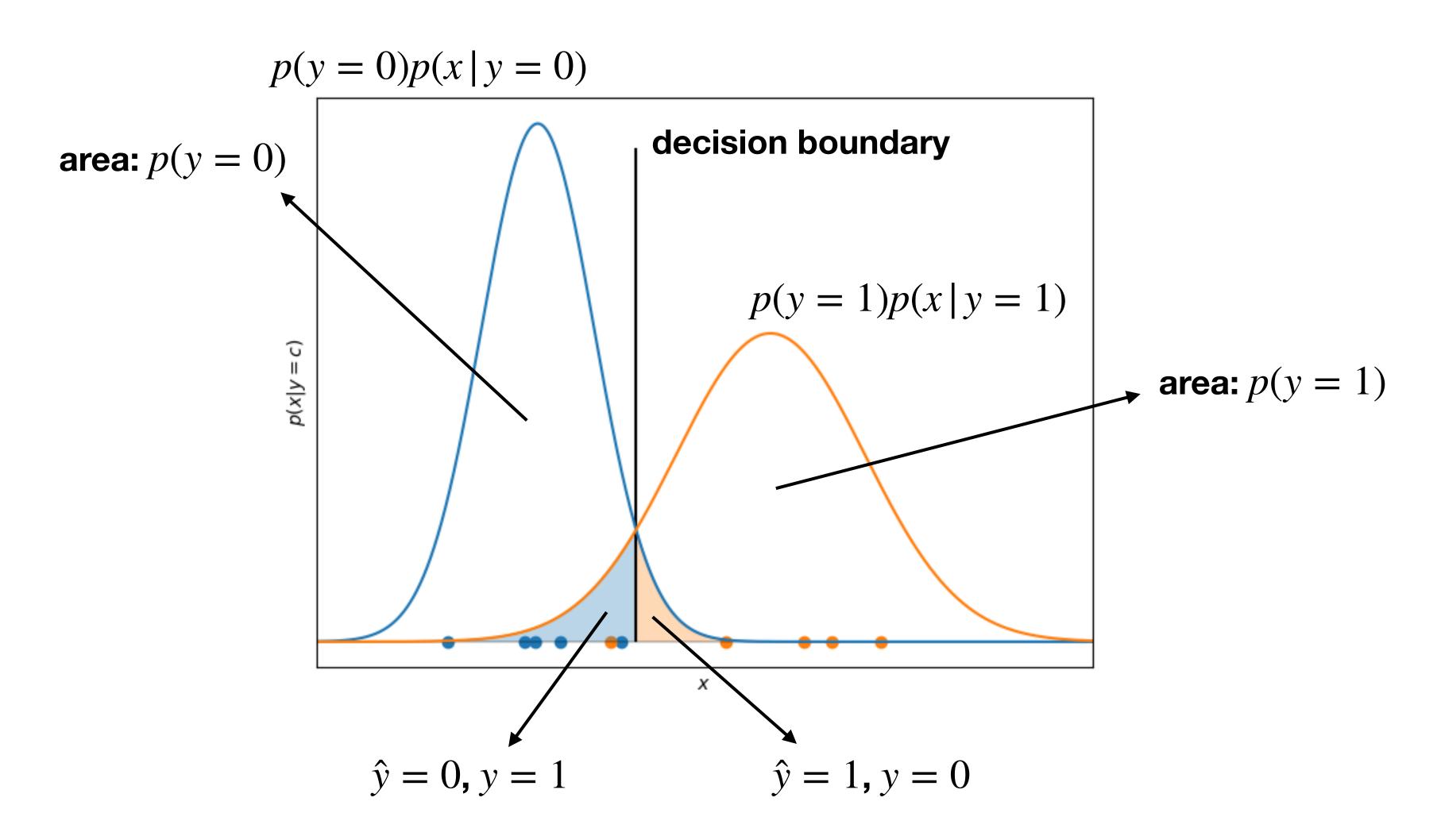
$$p(\hat{y} \neq y) = \frac{15 + 287 + 3}{690} = 0.442$$

• Bayes error rate: probability of misclassification by MAP of true posterior

Bayes error rate

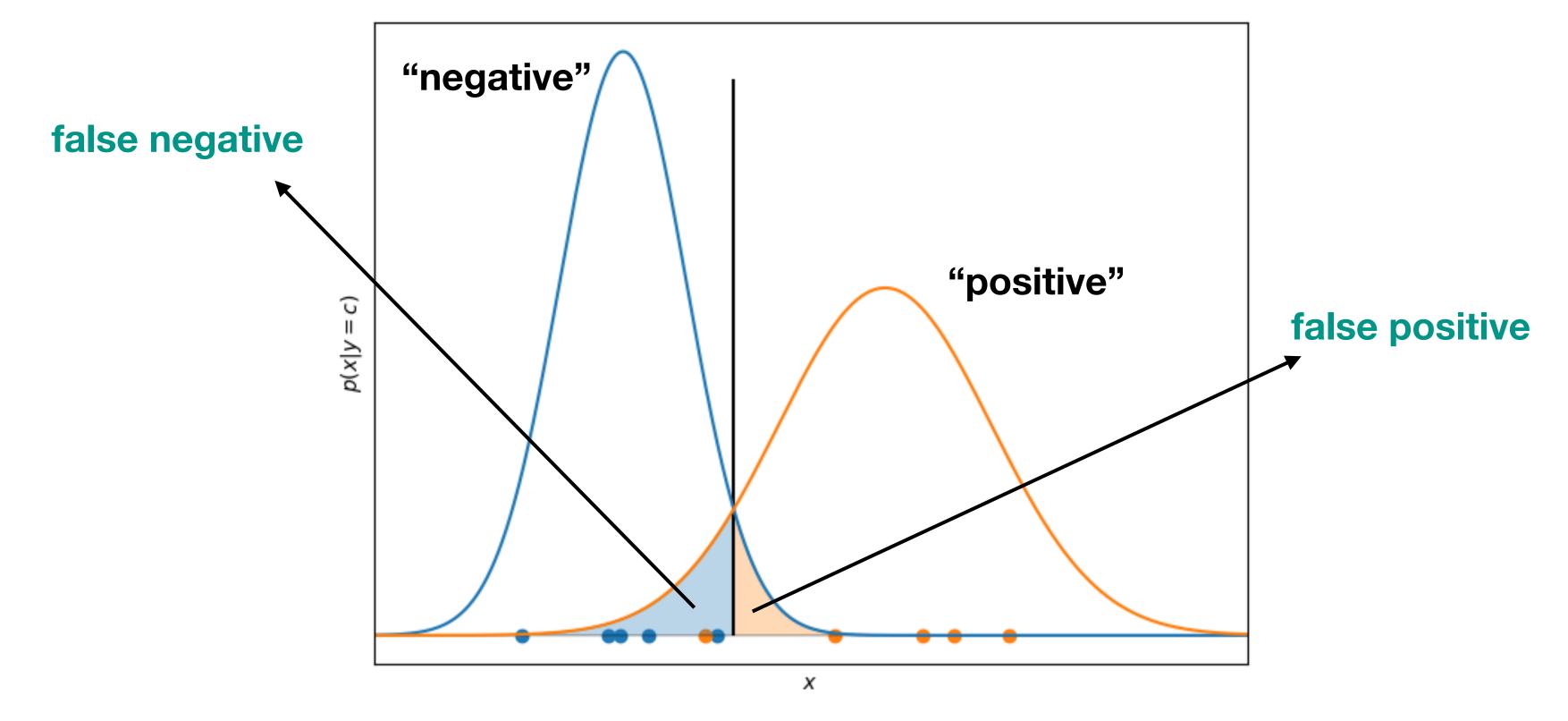
- Suppose that we know the true probabilities p(x, y)
 - And that we can compute prior p(y) and posterior p(y|x)
- Bayes-optimal decision = MAP: $\hat{y} = \arg\max_{y} p(y \mid x)$
- Bayes error rate: $\mathbb{E}_{x,y\sim p}[\hat{y}\neq y] = \mathbb{E}_{x\sim p}[1-\max_{y}p(y\mid x)]$
 - This is the optimal error rate of any classifier
 - Measures intrinsic hardness of separating y values given only x
 - But may get better with more features
- Normally we cannot estimate the Bayes error rate, only approximate with good classifier

Bayes error rate: Gaussian example



Types of error

- Not all errors are equally bad
 - Do some cost more? (e.g. red / green light, diseased / healthy)

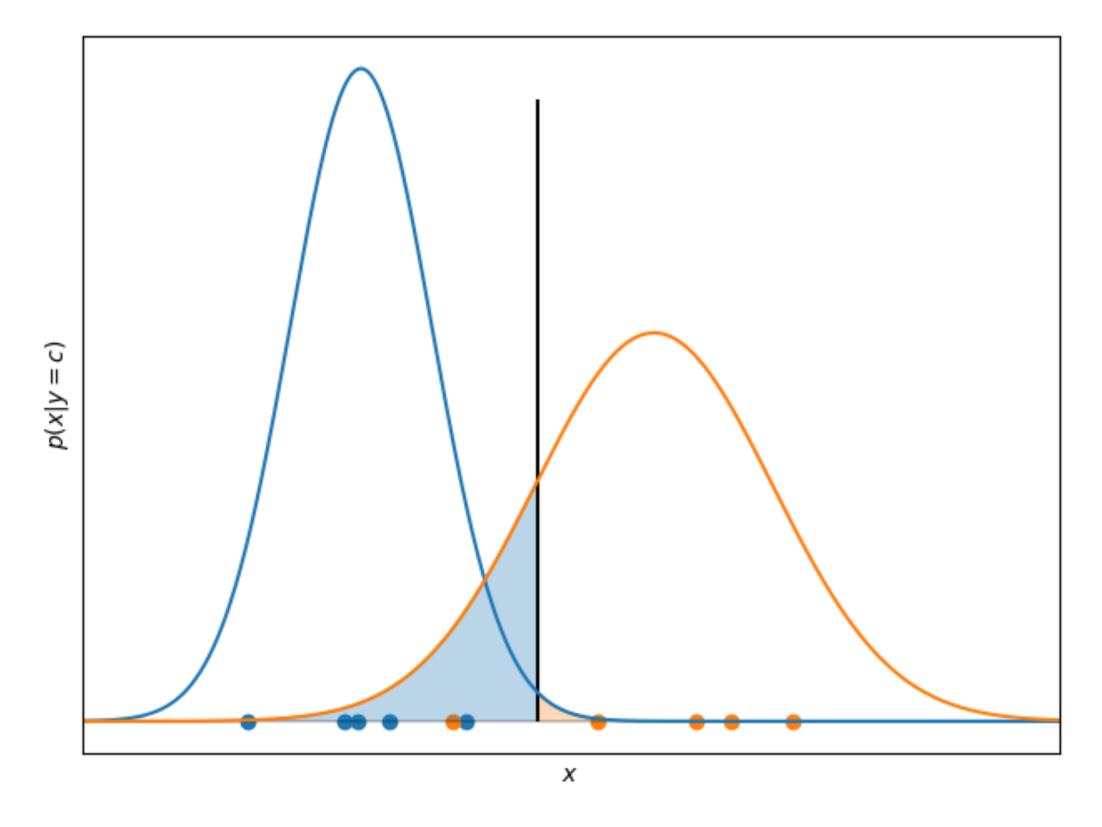


• False negative rate: $\frac{p(y=1,\hat{y}=0)}{p(y=1)}$; false positive rate: $\frac{p(y=0,\hat{y}=1)}{p(y=0)}$

Cost of error

Weight different costs differently

•
$$\alpha \cdot p(y = 0)p(x | y = 0) \le p(y = 1)p(x | y = 1)$$

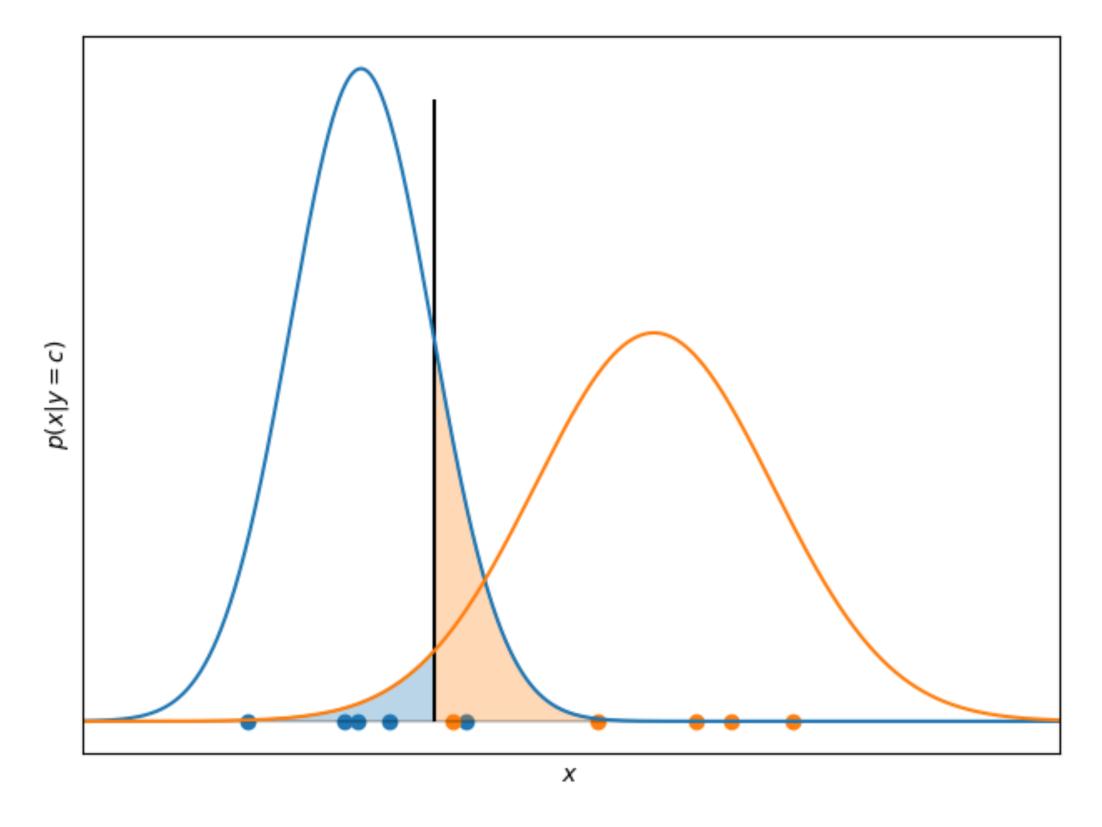


• Increase α to prefer class 0

Cost of error

Weight different costs differently

•
$$\alpha \cdot p(y = 0)p(x | y = 0) \le p(y = 1)p(x | y = 1)$$



• Decrease α to prefer class 1

Logistics

assignment 1

Assignment 1 is due Tuesday

recordings

- Lectures will be recorded, starting today
- Recordings from Fall'21 also available