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Logistics

assignments
• Assignment 1 due Thursday


• Assignment 2 to be published later this week
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Today's lecture

Naïve Bayes Classifiers

Bayes error

ROC curves

Linear regression
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Representing joint distributions

• Assume data with binary features


• How to represent ?


• Create a truth table of all  values


• Specify  for each entry


• How many parameters?


‣

p(x |y)

x

p(x |y)

2n − 1

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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Representing joint distributions

• Assume data with binary features


• How to represent ?


• Create a truth table of all  values


• Specify  for each cell


• How many parameters?


‣

p(x |y)

x

p(x |y)

2n − 1

A B C p(A,B,C | y=1)

0 0 0 0.50

0 0 1 0.05

0 1 0 0.01

0 1 1 0.10

1 0 0 0.04

1 0 1 0.15

1 1 0 0.05

1 1 1 0.10
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Estimating joint distributions

• Can we estimate  from data?


• Count how many data points for each ?


• If , most instances never occur


‣ Do we predict that missing instances are impossible?


- What if they occur in test data?


• Difficulty to represent and estimate go hand in hand


‣ Model complexity → overfitting!

p(x |y)

x

m ≪ 2n

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10
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Regularization

• Reduce effective size of model class


‣ Hope to avoid overfitting


• One way: make the model more “regular”, less sensitive to data quirks


• Example: add small “pseudo-count” to the counts (before normalizing)


‣ 


‣ Not a huge help here, most cells will be uninformative 

̂p(x |y = c) =
#c(x) + α

mc + α ⋅ 2n

α
mc + α ⋅ 2n
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Simplifying the model
• Another way: reduce model complexity


• Example: assume features are independent of one another (in each class)


‣ 


• Now we only need to represent / estimate each  individually


p(x1, x2, …, xn |y) = p(x1 |y)p(x2 |y)⋯p(xn |y)

p(xi |y)

y ⟶ x

⟶
⟶
⟶y

x1
x2

xn

⋮

A p(A |y=1)

0 .4

1 .6

A B C p(A,B,C | y=1)

0 0 0 .4 * .7 * .1

0 0 1 .4 * .7 * .9

0 1 0 .4 * .3 * .1

0 1 1 …

1 0 0

1 0 1

1 1 0

1 1 1

B p(B |y=1)

0 .7

1 .3

C p(C |y=1)

0 .1

1 .9
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Naïve Bayes models
• We want to predict some value , e.g. auto accident next year


• We have many known indicators for  (covariates) 


‣ E.g., age, income, education, zip code, ...


‣ Learn  — but cannot represent / estimate  values


• Naïve Bayes


‣ Estimate prior distribution 


‣ Assume , estimate covariates independently 


‣ Model: 

y

y x = x1, …, xn

p(y |x1, …, xn) O(2n)

̂p(y)

p(x1, …, xn |y) = ∏
i

p(xi |y) ̂p(xi |y)

̂p(y |x) ∝ ̂p(y)∏
i

̂p(xi |y)

causal structure wrong! 
(but useful...)

y ⟶ x

⟶
⟶
⟶y

x1
x2

xn

⋮
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Naïve Bayes models: example
• 


•  = observed words in email


‣ E.g., [“the” ... “probabilistic” ... “lottery” ...]


‣  (  = word appears;  = otherwise)


• Representing  directly would require  parameters


• Represent each word indicator as independent (given class)


‣ Reducing model complexity to thousands of parameters


• Words more likely in spam pull towards higher , and v.v.

y ∈ {spam, not spam}

x

x = [0,1,0,0,…,0,1] 1 0

p(x |y) 2thousands

p(spam |x)
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Numeric example

• 


• 


• 


• 


• What to predict for ?


‣

̂p(y = 1) =
4
8

= 1 − ̂p(y = 0)

̂p(x1, x2 |y) = ̂p(x1 |y) ̂p(x2 |y)

̂p(x1 = 1 |y = 0) =
3
4

̂p(x1 = 1 |y = 1) =
2
4

̂p(x2 = 1 |y = 0) =
2
4

̂p(x2 = 1 |y = 1) =
1
4

x1, x2 = 1,1

̂p(y = 0) ̂p(x = 1,1 |y = 0) =
4
8

⋅
3
4

⋅
2
4

̂p(y = 1) ̂p(x = 1,1 |y = 1) =
4
8

⋅
2
4

⋅
1
4

x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

prediction: ̂y = 0
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Numeric example

• 


• 


• 


• 


• What is ?


‣

̂p(y = 1) =
4
8

= 1 − ̂p(y = 0)

̂p(x1, x2 |y) = ̂p(x1 |y) ̂p(x2 |y)

̂p(x1 = 1 |y = 0) =
3
4

̂p(x1 = 1 |y = 1) =
2
4

̂p(x2 = 1 |y = 0) =
2
4

̂p(x2 = 1 |y = 1) =
1
4

̂p(y = 1 |x1 = 1,x2 = 1)

̂p(y = 0) ̂p(x = 1,1 |y = 0) =
4
8

⋅
3
4

⋅
2
4

̂p(y = 1) ̂p(x = 1,1 |y = 1) =
4
8

⋅
2
4

⋅
1
4

x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

̂p(y = 1) ̂p(x = 1,1 |y = 1)
̂p(x = 1,1)

=
̂p(y = 1) ̂p(x = 1,1 |y = 1)

̂p(y = 0) ̂p(x = 1,1 |y = 0) + ̂p(y = 1) ̂p(x = 1,1 |y = 1)
=

4
8 ⋅ 2

4 ⋅ 1
4

4
8 ⋅ 3

4 ⋅ 2
4 + 4

8 ⋅ 2
4 ⋅ 1

4

=
1
4
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Recap

• Bayes' rule: 


• Bayes classifiers: estimate  and  from data


• Naïve Bayes classifiers: assume independent features 


‣ Estimate each  individually


• Maximum posterior (MAP): 


‣ Normalizer  not needed

p(y |x) =
p(y)p(x |y)

p(x)

p(y) p(x |y)

p(x |y) = ∏
i

p(xi |y)

p(xi |y)

̂y(x) = arg max
y

p(y |x) = arg max
y

p(y)p(x |y)

p(x)
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Today's lecture

Naïve Bayes Classifiers

Bayes error

ROC curves

Linear regression
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Bayes classification error

• What is the training error of the MAP prediction ?


• 


• Bayes error rate: probability of misclassification by MAP of true posterior

̂y(x) = arg max
y

p(y |x)

p( ̂y ≠ y) =
15 + 287 + 3

690
= 0.442

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

prediction:

bad

bad

good

errors
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Bayes error rate
• Suppose that we know the true probabilities 


‣ And that we can compute prior  and posterior 


• Bayes-optimal decision = MAP: 


• Bayes error rate: 


‣ This is the optimal error rate of any classifier


‣ Measures intrinsic hardness of separating  values given only 


- But may get better with more features


• Normally we cannot estimate the Bayes error rate, only approximate with good classifier

p(x, y)

p(y) p(y |x)

̂y = arg max
y

p(y |x)

𝔼x,y∼p[ ̂y ≠ y] = 𝔼x∼p[1 − max
y

p(y |x)]

y x
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Bayes error rate: Gaussian example

decision boundary

p(y = 0)p(x |y = 0)

p(y = 1)p(x |y = 1)

area: p(y = 0)

area: p(y = 1)

, ̂y = 1 y = 0, ̂y = 0 y = 1



Roy Fox | CS 273A | Fall 2021 | Lecture 4: Linear Regression

Today's lecture

Naïve Bayes Classifiers

Bayes error

ROC curves

Linear regression
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Terminology

• Class prior probabilities: 


‣ Prior = before seeing any features


• Class-conditional probabilities: 


• Class posterior probabilities: 


• Bayes' rule: 


• Law of total probability: 

p(y)

p(x |y)

p(y |x)

p(y |x) =
p(y)p(x |y)

p(x)

p(x) = ∑
y

p(x, y) = ∑
y

p(y)p(x |y)
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Measuring error
• Confusion matrix: all possible values of 


• Binary case: true / false (correct or not) positive / negative (prediction)


‣ Accuracy: 


‣ True positive rate (TPR):  (aka, sensitivity)


‣ False negative rate (FNR): 


‣ False positive rate (FPR): 


‣ True negative rate (TNR):  (aka, specificity)

(y, ̂y)

TP + TN
TP + TN + FP + FN

= 1 − error rate

̂p( ̂y = 1 |y = 1) = #(y = 1, ̂y = 1)
#(y = 1)

̂p( ̂y = 0 |y = 1) = #(y = 1, ̂y = 0)
#(y = 1)

̂p( ̂y = 1 |y = 0) = #(y = 0, ̂y = 1)
#(y = 0)

̂p( ̂y = 0 |y = 0) = #(y = 0, ̂y = 0)
#(y = 0)

Predict 0 Predict 1

Y=0 380 5
Y=1 338 3

TN

FN

FP

TP
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• Not all errors are equally bad


‣ Do some cost more? (e.g. red / green light, diseased / healthy)


• False negative rate: ; false positive rate: 
p(y = 1, ̂y = 0)

p(y = 1)
p(y = 0, ̂y = 1)

p(y = 0)

Types of error

“positive”

“negative”

false positive

false negative
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• Weight different costs differently


‣ 


• Increase  to prefer class 0 — increase FNR, decrease FPR

α ⋅ p(y = 0)p(x |y = 0) ≶ p(y = 1)p(x |y = 1)

α

Cost of error

false positive

false negative
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• Weight different costs differently


‣ 


• Decrease  to prefer class 1 — decrease FNR, increase FPR

α ⋅ p(y = 0)p(x |y = 0) ≶ p(y = 1)p(x |y = 1)

α

Cost of error

false positive

false negative
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Bayes-optimal decision

• Maximum posterior decision: 


‣ Optimal for the error-rate (0–1) loss: 


• What if we have different cost for different errors? , 


‣ 


• Bayes-optimal decision: 


‣ Log probability ratio: 

̂p(y = 0 |x) ≶ ̂p(y = 1 |x)

𝔼x,y∼p[ ̂y(x) ≠ y]

αFP αFN

ℒ = 𝔼x,y∼p[αFP ⋅ #(y = 0, ̂y(x) = 1) + αFN ⋅ #(y = 1, ̂y(x) = 0)]

αFP ⋅ ̂p(y = 0 |x) ≶ αFN ⋅ ̂p(y = 1 |x)

log
̂p(y = 1 |x)
̂p(y = 0 |x)

≶ log
αFP
αFN

= α
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• Often models have a “knob” for tuning preference over classes (e.g. )


‣ Changing the decision boundary to include more instances in preferred class


• Characteristic performance curve:


α

ROC curve

log
̂p(y = 1 |x)
̂p(y = 0 |x)

≶ α

small  
always 

α
̂y = 1

large  
always 

α
̂y = 0

random guess

Bayes-optimal
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Demonstration

• http://www.navan.name/roc

http://www.navan.name/roc
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• Which classifier (A or B) performs “better”?


‣ A is better for high specificity


‣ B is better for high sensitivity


‣ Need single performance measure


• Area Under Curve (AUC)


‣ 0.5 ≤ AUC ≤ 1


‣ AUC = 0.5: random guess


‣ AUC = 1: no errors

Comparing classifiers

small  
always 

α
̂y = 1

large  
always 

α
̂y = 0

classifier A

classifier B
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Discriminative vs. probabilistic predictions

• Probabilistic learning gives more nuanced prediction


‣ Can use  to find  (if argmax is feasible)


‣ Express confidence in predicting 


‣ Conditional models: ; vs. generative models: 


- Can be used to generate 


- Bayes classifiers, Naïve Bayes classifiers are generative

p(y |x) ̂y(x) = arg max
y

p(y |x)

̂y

p(y |x) p(x, y)

x

discriminative predictions ̂y(x) probabilistic predictions p(y |x)
>> learner = gaussianBayesClassify(X,Y)  % build a classifier

>> Ysoft = predictSoft(learner, X)       %  M x C matrix of confidences

>> plotSoftClassify2D(learner,X,Y)       %  shaded confidence plot
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Gaussian models

• Bayes-optimal decision:


‣ Scale each Gaussian by prior  and relative cost of error


‣ Choose the larger scaled probability density


• Decision boundary = where scaled probabilities equal

p(y)
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Gaussian models
• Consider binary classifier with Gaussian conditionals


‣ 


‣ Assume same covariance 


• What is the shape of the decision boundary ?


 

p(x |y = c) = 𝒩(x; μc, Σc) = (2π)− d
2 |Σc |− 1

2 exp (− 1
2 (x − μc)⊺Σ−1

c (x − μc))
Σ0 = Σ1

p(y = 0 |x) = p(y = 1 |x)

α ≶ log
p(y = 1)p(x |y = 1)
p(y = 0)p(x |y = 0)

=
p(y = 1)
p(y = 0)

+ const

+ 1
2 (x⊺Σ−1x − 2μ⊺

0Σ−1x + μ⊺
0Σ−1μ0)

− 1
2 (x⊺Σ−1x − 2μ⊺

1Σ−1x + μ⊺
1Σ−1μ1)

= 1
2 (μ1 − μ0)⊺Σ−1x + const

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

linear!
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Gaussian models

• Isotropic covariance: 


‣ Decision: 


‣ Decision boundary perpendicular to segment between means


• General (but equal) covariance:


‣ Decision boundary linear, but


- scaled, if  has different eigenvalues


- rotated, if  is not diagonal

Σ = σ2Id

(μ1 − μ0)⊺x ≶ α

Σ

Σ

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1

0

1

2

3

4

Σ = [3 0
0 .25]
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Machine learning

Learner /
Model /

Agent


            fθθ

Training 
data

𝒟

Learning 
algorithmtrain

Score /

Loss

predictTest

data evaluate
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Linear regression

• Decision function  is linear, 


•  is stored by its parameters 

f : x ↦ y f(x) = θ0 + θ1x

f θ = [θ0 θ1]
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Linear regression

• More generally: 


• Define dummy feature  for the shift / bias 


‣
; where 

̂y(x) = θ0 + θ1x1 + θ2x2 + ⋯θnxn

x0 = 1 θ0

̂y(x) = θ⊺x x =

x0
x1
⋮
xn

θ =

θ0

θ1
⋮
θn

∈ ℝn+1
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Machine learning

Learner /
Model /

Agent


            fθθ

Training 
data

𝒟

Learning 
algorithmtrain

Score /

Loss

predictTest

data evaluate
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Measuring error

• Error / residual: 


• Mean square error (MSE): 

ϵ = y − ̂y

1
m ∑

j

(ϵ( j))2 =
1
m ∑

j

(y( j) − ̂y( j))2

observation y

prediction 
̂y = f(x)

ϵ



Roy Fox | CS 273A | Fall 2021 | Lecture 4: Linear Regression

Mean square error

• 


• Why MSE?


‣ Mathematically and computationally convenient (we'll see why)


‣ Estimates the variance of the residuals


‣ Corresponds to log-likelihood under Gaussian noise model


ℒθ =
1
m ∑

j

(y( j) − ̂y(x( j)))2 =
1
m ∑

j

(y( j) − θ⊺x( j))2

log p(y |x) = log 𝒩(y; θ⊺x, σ2) = − 1
2σ2 (y − θ⊺x)2 + const
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MSE of training data

•
Training data matrix: 


• Training labels vector: 


• Prediction: 


• Training MSE: 

X =

x(1)
0 ⋯ x(m)

0

x(1)
1 ⋯ x(m)

1
⋮ ⋮

x(1)
n ⋯ x(m)

n

∈ ℝ(n+1)×m

y = [y(1) ⋯ y(m)]
̂y = [ ̂y(1) ⋯ ̂y(m)] = θ⊺X

ℒθ(𝒟) =
1
m ∑

j

(y( j) − θ⊺x( j))2 =
1
m

(y − θ⊺X)(y − θ⊺X)⊺

# Python / NumPy:

e = y - theta.T @ X

loss = (e @ e.T) / m  # == np.mean( e ** 2 )



Roy Fox | CS 273A | Fall 2021 | Lecture 4: Linear Regression

Loss landscape
• 
ℒθ(𝒟) = 1

m (y − θ⊺X)(y − θ⊺X)⊺ = 1
m (θ⊺XX⊺θ − 2yX⊺θ + yy⊺)

ℒθ

θ0

θ1

θ0

θ1

θ0

θ1

θ0

θ1

quadratic!

minimum loss
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Logistics

assignments
• Assignment 1 due Thursday


• Assignment 2 to be published later this week


